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Abstract: As a load-bearing tool, steel wire rope plays an important role in industrial production.
Therefore, diagnosing the fracture and damage of steel wire ropes is of great significance for ensuring
their safe operation. However, the detection and identification of wire rope breakage damage mainly
focus on identifying external damage characteristics, while research on inspecting internal breakage
damage is still relatively limited. To address the challenge, an intelligent detecting method is proposed
in this paper for diagnosing internal wire breakage damage, and it introduces residual modules to
enhance the network’s feature extraction ability. Firstly, time–frequency analysis techniques are used
to convert the extracted one-dimensional magnetic flux leakage (MFL) signal into a two-dimensional
time–frequency map. Secondly, the focus of this article is on constructing a residual network to
identify the internal damage accurately with the features of the time–frequency map of the MFL
signal being automatically extracted. Finally, the effectiveness of the proposed method in identifying
broken wires is verified through comparative experiments on detecting broken wires in steel wire
ropes. Three common recognition methods, the backpropagation (BP) neural network, the support
vector machine (SVM), and the convolutional neural network (CNN), are used as comparisons. The
experimental results show that the residual network recognition method can effectively identify
internal and external wire breakage faults in steel wire ropes, which is of great significance for
achieving quantitative detection of steel wire ropes.

Keywords: steel wire rope; residual network; quantitative identification

1. Introduction

As one of the important load-bearing tools in industrial production, steel wire ropes
have the advantages of high strength and stable and reliable use and have important
applications in engineering fields such as coal mines, offshore oil development, and bridge
traction [1–3]. However, due to prolonged exposure to harsh working environments and
long-term high-load conditions, steel wire ropes inevitably suffer from various damages
such as wire breakage, wear, and corrosion, which emphasizes the need for effective moni-
toring and maintenance methods. Unfortunately, the timely evaluation of the safety status
of in-service wire ropes is hindered by the lack of effective wire rope damage detection
methods and rigorous safety assessment techniques [4,5]. This leads to potential safety
hazards going undetected. Hence, there exists an urgent imperative to cultivate a scientifi-
cally robust quantitative identification methodology for detecting broken wires. Such an
approach would not only yield economic advantages but also harbor substantial societal
significance. Therefore, developing a scientifically effective quantitative identification
method for broken wires has high economic benefits and social value.

At present, the detection technology for steel wire ropes mainly includes destructive
testing and non-destructive testing. Destructive testing may cause damage to the steel wire
rope due to the need for tensile or fatigue testing, so non-destructive testing technology
has been widely applied. The commonly used non-destructive testing methods currently
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include ultrasonic testing [6], thermal imaging testing [7], infrared testing, and electro-
magnetic testing [8]. Due to its simple principle and high reliability, the electromagnetic
detection method is highly suitable for the detection of damage in steel wire ropes with
good magnetic conductivity [9].

In recent years, in order to accurately and quantitatively evaluate the defect informa-
tion of steel wire ropes, experts and scholars have proposed various signal processing and
fault recognition technologies. The initial signal of detected wire breakage from sensors
typically involves a significant amount of noise [10]. To distill the distinctive features of
the damaged signal, preprocessing of the signal is essential [11]. Ju Won Kim et al. use an
envelope process based on Hilbert transform to reduce noise and improve the resolution
of magnetic flux leakage (MFL) signals [12]. Mukhopadhyay et al. use wavelet transform
decomposition and reconstruction techniques to denoise the original damage signal [13].

Early quantitative recognition primarily relies on the manual extraction of signal
features, which are used to form feature vectors based on extracted characteristics such
as peak, width, and peak-to-peak. The feature vectors are then fed into the network
for training, ultimately allowing the classification and recognition of broken wires to be
enabled. Qin et al., who used a wavelet decomposition and reconstruction algorithm to
process magnetic leakage signals, designed an SVM classifier and achieved quantitative
identification of broken wires, thereby proving the effectiveness of SVM classification [14].
Zhou et al. proposed a time–frequency domain coupling method to address the issues of
low strength and weak lifting effect of steel wire ropes and constructed a BP neural network
to extract multiple sets of time-domain feature values as inputs for feature recognition [15].
Nevertheless, conventional manual feature extraction methods necessitate a substantial
amount of prior expertise to process and analyze the original signal, and the extraction and
selection of signal features are subject to limitations.

As the advent of deep learning has occurred, artificial intelligence-based deep learn-
ing theories have begun to be utilized for the non-destructive detection of broken wire
damage in steel wire ropes. Deep learning harnesses self-supervised reverse algorithms for
optimization and adjustment, enabling the automatic extraction of fault feature informa-
tion from the original signal devoid of manual interference. It sequentially processes this
information layer by layer, transforming it into abstract features conducive to classifica-
tion. Consequently, it mitigates the constraints linked to manual feature selection [16,17].
Zhang et al. proposed a quantitative recognition model based on convolutional neural
networks to address the issue of insufficient manual signal feature extraction, converting
one-dimensional signals into two-dimensional signals and thereby improving the accuracy
and speed of wire rope breakage recognition [18]. Huang et al. used machine vision
technology to train ground wave radar surface images, automatically extract discriminative
features, and import them into the constructed convolutional neural network for training,
overcoming the inherent limitations of manual feature extraction methods and achieving
good results [2].

However, it is worth noting that the above-mentioned wire breakage detection meth-
ods mainly focus on detecting external wire breakage damage, and there has been relatively
limited research on the detection of internal wire breakage damage characteristics. There-
fore, there is an urgent need for a new method to accurately identify the internal and
external wire breakage characteristics of steel wire ropes. The residual network was pro-
posed by Microsoft Labs in 2015; it greatly improves the training depth and speed of the
network and enhances its feature extraction ability by utilizing residual modules. Hence,
residual networks will be proposed and compared with three common neural networks
in this article, using sample data to adjust network parameters in a timely manner and
determine the optimal method for quantitative damage identification.

The main research findings of this article are as follows:

1. A new method for processing broken wire signals has been proposed, which con-
verts the one-dimensional signal of broken wire MFL into a two-dimensional time–
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frequency map through a neural network, eliminating the tedious step of manually
extracting features and improving the efficiency of signal processing.

2. By constructing a residual network for internal wire breakage recognition and utilizing
the residual module to improve the training depth and speed of the network, the
accuracy of identifying internal wire breakage within steel wire ropes can be markedly
enhanced.

The rest of this article is organized as follows: Section 2 introduces the theoretical
knowledge of convolutional neural networks and residual networks. Section 3 provides
detailed preparations for the experiment. In Section 4, the experimental method of this
paper is proposed, and the accuracy of four neural networks for wire breakage recognition
is compared. Finally, the conclusions are drawn in Section 5.

2. Theoretical Background
2.1. Convolutional Neural Network

A convolutional neural network (CNN) is a multi-layer feedforward neural network
structure that mainly consists of input layers, convolutional layers, pooling layers, fully
connected layers, and output layers [19]. The structure of a convolutional neural network
is illustrated in Figure 1. The convolutional and pooling layers are arranged alternately,
and the results are finally output through one or more fully connected layers. Additionally,
loss functions, batch normalization, and other operations are added to the CNN structure
to optimize its performance.
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Figure 1. Convolutional neural network framework.

The convolutional layer is the core of convolutional neural networks and mainly
extracts autonomous feature information through convolutional kernels. By adjusting the
size and stride of the convolutional kernels, the transformation from input to output can be
controlled. The parameters and bias values of the convolutional kernels in convolutional
neural networks are typically initialized randomly [20]. During the training process, these
parameters and bias values are updated through backpropagation. In the convolutional
layer, multiple convolutional kernels are used to convolve the input image data. After the
addition of bias, a series of feature maps are obtained through an activation function [20].
The convolution process can be calculated as follows:

xl
j = f ( ∑

i∈Mj

xl−1
i ∗ kl

ij + bl
j) (1)

where the Mj represents the j − th convolutional region of the input feature map; xl−1
i is

the j − th element of the l − th layer in the network, and k is the matrix of the convolution
kernel; f is a nonlinear activation function; bl

j represents the bias of the output feature map.
The pooling layer compresses the data volume through down-sampling, increasing the

receptive field. Usually, two methods, mean pooling and maximum pooling, are used for
pooling processing. After several alternating convolution and pooling layers, one or more fully
connected layers are usually connected to achieve intelligent classification and recognition.
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2.2. Residual Network

The residual network was proposed by Microsoft Labs in 2015, and its advantage lies in
the introduction of the residual module [21]. The depth of a model impacts the intricacy of
the extracted features and the quantity of model parameters. Nevertheless, deeper models
are susceptible to challenges such as gradient explosion or vanishing. The residual network
addresses this issue by employing the residual module [22,23]. This approach significantly
improves the training depth and speed of the network while enhancing its feature extraction
capability. There are several types of residual networks, such as ResNet18, ResNet50, and
ResNet101. Numbers represent the number of layers in the residual network. ResNet18
has a moderate number of layers and fast training speed and belongs to the deep separable
CNN architecture, which is widely used in classification tasks. In response to the relatively
small scale and high real-time requirements of wire rope breakage damage classification
tasks, this paper selects ResNet18 as the main network model, and its structural model is
shown in Figure 2.
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The ResNet18 architecture begins by performing convolution calculations on a two-
dimensional RGB image with three channels and an input size of 224 × 224 × 3. Then,
four residual modules are used, each consisting of two convolutional layers and a skip
connection. The four residual modules are stacked twice and finally inputted into a
fully connected layer. The extracted broken wire damage features are used to predict the
probability of classification results through a SoftMax classifier. Figure 3 illustrates the
structure of the first residual module (residual module I) in ResNet18. This module starts
with a 3 × 3 convolution operation with 64 channels, followed by batch normalization and
the ReLU activation function to enhance the network’s convergence speed. The output of
this operation is then added to the input feature map using the ReLU activation function.
This process is repeated once, resulting in a convolution size of 56 × 56 × 64. This is
followed by the convolution of the second residual module, whose residual module II is
shown in Figure 4. The second residual module uses a 128-channel convolution kernel with
a size of 28 × 28. In order to add to the output feature map of the previous residual module,
a 1 × 1 × 128 convolution needs to be added to the skip connection for up-sampling
and down-sampling. The skip connection can directly connect the input to the output,
allowing the network to learn residual information and better perform feature extraction
and processing. The ability of residual networks to learn identity maps is mathematically
represented by the following function:

F(x) = H(x)− x (2)
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where the x represents the input vector of the neural network, F(x) represents the residual
mapping that needs to be learned, F(x) adds the corresponding elements to x, and the
expected output vector is H(x). When F(x) = 0, an identity mapping can be formed.
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3. Experimental Study
3.1. Sample Production

To simulate real working conditions, a total of 18 types of internal and external broken
wire specimens were created for galvanized steel wire ropes with diameters of 20 mm, 22 mm,
and 24 mm. For each diameter, there were 1–3 external broken wires and 1–3 internal broken
wires. The corresponding labels and fault descriptions can be found in Table 1. The fracture
length of the broken wire is 12 mm. As an example, Figure 5 illustrates the 6 types of broken
wire specimens present both inside and outside the 20 mm diameter steel wire rope.
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Table 1. Broken wire label.

Label Description
(Diameter 20 mm) Label Description

(Diameter 22 mm) Label Description
(Diameter 24 mm)

1 1 internal broken
wire 7 1 internal broken

wire 13 1 internal broken
wire

2 2 internal broken
wires 8 2 internal broken

wires 14 2 internal broken
wires

3 3 internal broken
wires 9 3 internal broken

wires 15 3 internal broken
wires

4 1 surface broken
wire 10 1 surface broken

wire 16 1 surface broken
wire

5 2 surface broken
wires 11 2 surface broken

wires 17 2 surface broken
wires

6 3 surface broken
wires 12 3 surface broken

wires 18 3 surface broken
wires
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3.2. Signal Extraction

The wire rope breakage and damage detection test bench is illustrated in Figure 6a.
Rope buckles are created at both ends of the wire rope with broken wires and damage,
and the wire rope is securely fastened to the test bench using the rope buckle. During the
signal acquisition process, the tray is controlled to move along the guide rail, driving the
sensor in the direction of the steel wire rope for damage detection. The sensor preprocesses
the magnetic leakage signal collected by the circuit board and transmits it to the signal
acquisition system. Figure 6b shows the signal acquisition system, which utilizes NI
and LabVIEW to achieve real-time display and storage of the signal. Figure 7 shows the
one-dimensional magnetic leakage signal of the steel wire rope collected by the focusing
magnetic sensor.
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3.3. Time–Frequency Conversion

The signal collected by the MFL sensor is a one-dimensional MFL signal. To better
suit convolutional neural networks and residual network models, it is necessary to convert
the one-dimensional MFL signal into a two-dimensional time–frequency image using time–
frequency analysis technology. This article utilizes continuous wavelet transform (CWT)
to extract time-domain and frequency-domain features of MFL signals. These features are
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then used as inputs for quantitative identification in neural networks. The continuous
wavelet transform of signal f (t) can be expressed as follows:

CWTf (u, s) = ⟨ f (t), ψu,s(t)⟩ =
∫

+∞
−∞ f (t)

1√
s

ψ∗
(

t − u
s

)
dt (3)

where wavelet time–frequency atoms ψu,s(t) = 1√
s ψ

( t−u
s
)

are obtained by scaling (s: scale
factor) and translating (u: shift factor) the mother wavelet. After the wavelet transform,
the one-dimensional signals f (t) are decomposed into a series of wavelet coefficients
related to scale and translation factors, which are then projected into a two-dimensional
time–frequency distribution image.

Taking the inner and outer damage samples of a 20 mm diameter steel wire rope as
an example, the time–frequency images obtained through continuous wavelet transform
(CWT) are shown in Figure 8. The horizontal axis in the picture represents the time domain,
and the vertical axis represents the frequency domain.
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wire rope.

4. Experimental Results
4.1. Experimental Procedure

In order to verify the recognition effect of internal wire breakage in steel wire ropes
using residual networks, this paper conducts comparative experiments and compares the
residual network with three other neural networks. The basic framework is shown in
Figure 9. Firstly, this article uses continuous wavelet transform technology to convert
one-dimensional MFL signals into two-dimensional time–frequency maps, preserving the
time-domain and frequency-domain information of the signals, and constructs a Residual
Network 18 (ResNet18) model. The preprocessed time–frequency characteristics are used
as inputs to ResNet18. Secondly, as a comparison, a convolutional neural network is
constructed, and the two-dimensional time–frequency map transformed by continuous
wavelet transform is used as the input of the convolutional neural network. Feature vectors
formed by the peak, pulse width, and inter-peak features are manually extracted from
the signal, and the backpropagation (BP) neural network and the support vector machine
(SVM) are constructed, with the manually extracted signal features being used as inputs
for quantitative recognition in the latter two networks. Finally, the article will compare
the accuracy of internal and external disconnection for the four models and select the best
recognition model.
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4.2. Analysis of Residual Network Model Results

After the one-dimensional MFL signals of 18 types of internal and external broken
wires in steel wire ropes with diameters of 20 mm, 22 mm, and 24 mm are converted
into two-dimensional time–frequency maps of size 224 × 224 through continuous wavelet
transform (CWT), a total of 1800 image sample data are obtained; 75% of the sample
data is used for network training, and the remaining 25% is used for testing the network.
The network structure of ResNet18 consists of an input layer, four residual modules, a
fully connected layer, and an output layer, effectively addressing gradient vanishing and
exploding issues through the use of residual modules. The network is initialized with a
learning rate of 0.0015, and each iteration utilizes 30 training subsets. The training progress
is visualized by plotting the training progress, and the recognition accuracy results are
shown in Figure 10. The quantitative recognition method for broken wires in steel wire
ropes based on ResNet18 can accurately identify the internal and external broken wire
faults of steel wire ropes. The overall recognition accuracy reaches 95.33%, which is 6.66%
higher than that of convolutional neural networks, providing a reliable basis for identifying
damage to steel wire ropes.
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4.3. Analysis of BP Neural Network Model Results

The backpropagation (BP) neural network is a multi-layer feedforward neural network
that utilizes magnetic leakage signals collected by sensors to create feature vectors based
on manually extracted features such as the peak, width, and peak-to-peak values of the
magnetic leakage signal. These features are then input into the BP neural network for
training, allowing for the classification and recognition of broken wires. The BP neural
network is trained with an iteration number (epoch) of 300, a learning rate of 0.1, and
a target goal of 0.001. The output layer is responsible for classifying 18 types of broken
wire faults. Figure 11 shows the confusion matrix of the classification results, where the
rows represent the real class, the columns represent the predicted class, and the diagonal
represents correct classifications. The classification accuracy and error rate of the actual
class are achieved on the right side of the confusion matrix, while the classification accuracy
and error rate of the predicted class are achieved on the lower side. From Figure 11, it can
be observed that the 18th category achieves the highest accuracy in classifying broken wire
faults, with a 100% accuracy rate. Categories 5 and 6 have the lowest accuracy in wire
breakage fault classification, with an overall accuracy of only 35.66% and an error rate of
64.34% for the BP neural network.
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4.4. Analysis of Support Vector Machine Model Results

Based on the principle of structural risk minimization and statistical theory, the support
vector machine (SVM) classification method finds wide application in image classification
and machine learning. When solving nonlinear classification problems, SVM maps the
sample space to a high-dimensional or even infinite-dimensional feature space through
nonlinear mapping and seeks the optimal classification surface in the feature space. The
classification function of SVM is similar to a neural network in form, where each inter-
mediate layer node corresponds to the inner product of the input sample and a support
vector, and the output is a linear combination of several intermediate layer nodes. To
solve nonlinear classification problems, non-negative relaxation terms, misclassification
penalty constants, and kernel functions are introduced. The kernel function transforms a
completely indivisible problem into a separable or approximately separable state without
increasing algorithm complexity. The commonly used kernel functions include polynomial,
radial basis function (RBF), and sigmoid. The radial basis kernel function, which contains
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fewer hyperparameters and exhibits strong classification ability, has shown good results in
identifying broken wire damage in steel wire ropes. In this study, cross-validation was used
to set the learning parameter misclassification penalty factor C to 0.1 and the parameter
Gamma of the radial basis function to 5. The one-dimensional signal collected by the sensor
was manually extracted with damage features such as the peak and width, and this feature
information was used as inputs for the support vector machine model for quantitative
recognition. The confusion matrix, shown in Figure 12, indicates that the accuracy of the
support vector machine classification model is 64.81%.
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4.5. Analysis of Convolutional Neural Network Model Results

This study conducted a comprehensive analysis of the one-dimensional magnetic
leakage signals of 18 types of internal and external broken wires in steel wire ropes with di-
ameters of 20 mm, 22 mm, and 24 mm. The signals were transformed into two-dimensional
time–frequency maps using continuous wavelet transform (CWT), resulting in a total of
1800 image sample data of size 227 × 227. The network training utilized 75% of the sample
data, while the remaining 25% was used for testing. The convolutional neural network was
trained with an iteration epoch number of 5, and the solving environment was set to CPU.
The network structure consisted of three convolutional layers, two max pooling layers with
a step size of 2, and an output layer for classifying the 18 types of broken wire faults. After
each convolution, a normalization layer and ReLU activation function were applied. The
classification results were visualized using a confusion matrix, which is shown in Figure 13.
The convolutional neural network achieves a final accuracy of 88.44% with an error rate
of 11.56%, with particular shortcomings observed in the recognition performance of the
third and fourth broken wire features. Notably, the overall recognition accuracy of the
convolutional neural network was superior to that of traditional BP neural networks and
support vector machines.
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4.6. Overall Evaluation Indicators

In order to evaluate the effectiveness of various neural network models in the classifi-
cation of steel wire rope damage faults, relying solely on the confusion matrix to evaluate
the model quality is relatively singular. Therefore, this paper introduces the overall clas-
sification accuracy (OA coefficient) and Kappa coefficient evaluation indicators to judge
the classification accuracy. The OA coefficient represents the value obtained by comparing
the number of correctly classified pixels to the total number of labeled pixels. The Kappa
coefficient is based on the confusion matrix and is used to measure the consistency between
evaluators. Its value range is in the interval [–1,1], and the closer the value is to 1, the higher
the consistency of the evaluation. The OA coefficient and Kappa coefficient calculation
formula based on a confusion matrix are as follows:

OA =

n
∑

i=1
hii

n
∑

i=1
Ni

(4)

where N is the number of categories of the image target, Ni is the number of i − th class
pixels, and hii is the number of correctly classified i − th class pixels.

M =

 m11 . . . m1Nr
...

. . .
...

mNr1 · · · mNr Nr

 (5)

Kappa =

N
N
∑

i=1
mii −

N
∑

i=1
mi + m+i

N2 −
N
∑

i=1
mi + m+i

(6)

where the M represents the confusion matrix and mij represents the number of pixels
in class i that have been misclassified into class j. If the values of i and j are the same,
they represent the number of correctly classified samples, while if i and j are different,
they represent the number of misclassified samples. The calculation method of the Kappa
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coefficient is shown in Equation (6), where N is the number of pixels tested in the total
training sample and “+“ refers to the sum that can be performed on rows or columns.

The classification results of the four neural network models are shown in Table 2, where
the horizontal axis represents the four prebuilt neural network models, and the vertical axis
represents the evaluation indicators using OA and Kappa coefficients. Figure 14 presents
the accuracy of four neural network classification results in a more intuitive manner using
a bar chart format. From Figure 13, it can be seen that the residual network has higher OA
and Kappa coefficients, which are more suitable for wire rope fault classification and have
achieved good classification results.

Table 2. Statistical table of classification results.

Evaluation
Indicator

BP Neural
Network SVM CNN ResNet18

OA coefficient 36.43% 64.70% 88.44% 94.29%
Kappa

coefficient 32.61% 62.62% 87.76% 93.95%
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4.7. Comparison of Visualization Results

In order to better compare the recognition performance of the prebuilt neural networks,
the T-SNE algorithm was used to visualize the recognition features of four classification
models: backpropagation neural network, support vector machine (SVM) classification
model, convolutional neural network (CNN), and deep residual network (ResNet18), as
shown in Figure 15. The depicted figure distinctly showcases that the residual network,
following meticulous layer-by-layer processing, facilitates precise discrimination among 18
distinct types of damage features, outperforming the classification efficacy of the remaining
three models.



Appl. Sci. 2024, 14, 3753 14 of 16
Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 16 
 

 
Figure 15. Feature dimension reduction results by using T-SNE. 

5. Conclusions 
This article aims to identify the types of broken wire damage in steel wire ropes more 

quickly and accurately and proposes a method for identifying internal and external bro-
ken wire damage in steel wire ropes based on ResNet18. The ResNet18 network has a 
moderate number of layers and fast convergence speed, which is suitable for the classifi-
cation task of broken wire damage in steel wire ropes with relatively small scale and high 
real-time requirements. Comparing the accuracy of traditional neural networks and deep 
learning networks, the results show that the recognition rates of the two traditional neural 
networks are relatively low, while deep learning networks have higher recognition accu-
racy. Specifically, the ResNet18 network has an accuracy of 95.33%, which is conducive to 
improving the effectiveness of wire breakage recognition. We compared the recognition 

Figure 15. Feature dimension reduction results by using T-SNE.

5. Conclusions

This article aims to identify the types of broken wire damage in steel wire ropes
more quickly and accurately and proposes a method for identifying internal and external
broken wire damage in steel wire ropes based on ResNet18. The ResNet18 network
has a moderate number of layers and fast convergence speed, which is suitable for the
classification task of broken wire damage in steel wire ropes with relatively small scale and
high real-time requirements. Comparing the accuracy of traditional neural networks and
deep learning networks, the results show that the recognition rates of the two traditional
neural networks are relatively low, while deep learning networks have higher recognition
accuracy. Specifically, the ResNet18 network has an accuracy of 95.33%, which is conducive
to improving the effectiveness of wire breakage recognition. We compared the recognition
accuracy of the four classification models using four evaluation indicators: confusion matrix,
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recognition feature visualization, overall classification accuracy, and Kappa coefficient. The
results indicate that the ResNet model is more accurate compared to other models and has
good application prospects.

Although the proposed ResNet18 model demonstrates excellent performance in clas-
sifying external and internal wire breakages on the steel ropes, it has only been tested
under laboratory conditions. Currently, we are simulating real experimental conditions
and conducting a large number of testing experiments, striving to make the data collection
and testing accuracy of wire rope damage closer to real conditions.

Author Contributions: Conceptualization, J.H. and Y.Z.; methodology, J.H.; software, Z.F.; validation,
J.H. and L.Z.; formal analysis, J.H.; investigation, Z.F.; resources, Y.Z.; data curation, J.H.; writing—
original draft preparation, J.H.; writing—review and editing, Y.Z.; visualization, Z.F.; supervision,
Y.Z.; project administration, L.Z.; funding acquisition, L.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Doctoral Start-up Funds (No. 318052148).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chen, H.; Guo, L.; Liu, H.; Chen, H. Finite element study of behaviour and interface force conditions of locked coil wire rope

under axial loading. Constr. Build. Mater. 2021, 272, 121961. [CrossRef]
2. Huang, X.; Liu, Z.; Zhang, X.; Kang, J.; Zhang, M.; Guo, Y. Surface damage detection for steel wire ropes using deep learning and

computer vision techniques. J. Meas. 2020, 161, 107843. [CrossRef]
3. Zhou, P.; Zhou, G.; Zhu, Z.; He, Z.; Ding, X.; Tang, C. A Review of Non-Destructive Damage Detection Methods for Steel Wire

Ropes. J. Appl. Sci. 2019, 9, 2771. [CrossRef]
4. Wang, H.; Tian, J.; Tian, Z. Simulation analysis and experimental investigation of wire rope leakage magnetic field detection.

Insight 2023, 65, 203–208. [CrossRef]
5. Li, X.; Zhang, X.; Shi, J. Quantitative Nondestructive Testing of Broken Wires for Wire Rope Based on Magnetic and Infrared

Information. J. Sens. 2020, 2020, 6419371. [CrossRef]
6. Raisutis, R.; Kažys, R.; Mažeika, L.; Žukauskas, E.; Samaitis, V.; Jankauskas, A. Ultrasonic guided wave-based testing technique

for inspection of multi-wire rope structures. NDT E Int. 2014, 62, 40–49. [CrossRef]
7. Kresak, J.; Peterka, P.; Kropuch, S.; Novák, L. Measurement of tight in steel ropes by a mean of thermovision. Measurement 2014,

50, 93–98. [CrossRef]
8. Weischedel, H.R. The Magnetic Flux Leakage Inspection of Wire Ropes; NDT Technologies, Inc.: Montreal, QC, Canada, 2009; pp. 1–19.
9. Yan, X.; Zhang, D.; Pan, S.; Zhang, E.; Gao, W. Online nondestructive testing for fine steel wire rope in electromagnetic interference

environment. NDT E Int. 2017, 92, 75–81. [CrossRef]
10. Liu, S.; Sun, Y.; Jiang, X.; Kang, Y. Comparison and analysis of multiple signal processing methods in steel wire rope defect

detection by hall sensor. J. Meas. 2021, 171, 108768. [CrossRef]
11. Tian, J.; Wang, H.; Zhou, J.; Meng, G. Study of pre-processing model of coal-mine hoist wire-rope fatigue damage signal. J. Min.

Sci. Technol. 2015, 25, 1007–1011. [CrossRef]
12. Kim, J.W.; Tola, K.D.; Tran, D.Q.; Park, S. MFL-Based Local Damage Diagnosis and SVM-Based Damage Type Classification for

Wire Rope NDE. Materials 2019, 12, 2894. [CrossRef] [PubMed]
13. Mukhopadhyay, S.; Srivastava, G.P. Characterisation of metal loss defects from magnetic flux leakage signals with discrete

wavelet transform. NDT E Int. 2000, 33, 57–65. [CrossRef]
14. Qin, Y.; Hua, X.; Lian, M. Wire Rope Fault Diagnosis Based on Wavelet Analysis and Support Vector Machine (SVM). Adv. Mater.

Res. 2014, 971–973, 1396–1399. [CrossRef]
15. Zhou, C.; Wei, C.; Wang, W. A New Detection Method Based on Magnetic Leakage Theory and BP Neural Network for Broken

Steel Strands in ACSR Conductor. IEEE Sens. J. 2022, 22, 19620–19634. [CrossRef]
16. Huang, W.; Cheng, J.; Yang, Y. An improved deep convolutional neural network with multi-scale information for bearing fault

diagnosis. J. Neurocomput. 2019, 359, 77–92. [CrossRef]
17. Gündüz, H.A.; Binder, M.; To, X.Y.; Mreches, R.; Bischl, B.; McHardy, A.C.; Münch, P.C.; Rezaei, M. A self-supervised deep

learning method for data-efficient training in genomics. Commun. Biol. 2023, 6, 928. [CrossRef] [PubMed]

https://doi.org/10.1016/j.conbuildmat.2020.121961
https://doi.org/10.1016/j.measurement.2020.107843
https://doi.org/10.3390/app9132771
https://doi.org/10.1784/insi.2023.65.4.203
https://doi.org/10.1155/2020/6419371
https://doi.org/10.1016/j.ndteint.2013.11.005
https://doi.org/10.1016/j.measurement.2013.12.026
https://doi.org/10.1016/j.ndteint.2017.07.017
https://doi.org/10.1016/j.measurement.2020.108768
https://doi.org/10.1016/j.ijmst.2015.09.021
https://doi.org/10.3390/ma12182894
https://www.ncbi.nlm.nih.gov/pubmed/31500253
https://doi.org/10.1016/S0963-8695(99)00011-0
https://doi.org/10.4028/www.scientific.net/AMR.971-973.1396
https://doi.org/10.1109/JSEN.2022.3202253
https://doi.org/10.1016/j.neucom.2019.05.052
https://doi.org/10.1038/s42003-023-05310-2
https://www.ncbi.nlm.nih.gov/pubmed/37696966


Appl. Sci. 2024, 14, 3753 16 of 16

18. Zhang, Y.; Feng, Z.; Sheng, S. A quantitative identification method based on CWT and CNN for external and inner broken wires
of steel wire ropes. Heliyon 2022, 8, e11623. [CrossRef] [PubMed]

19. Chen, X. The Study for Convolutional Neural Network and Corresponding Applications. Null 2023, 5, 182–187. [CrossRef]
20. Tang, S.; Yuan, S.; Zhu, Y. Convolutional neural network in intelligent fault diagnosis toward rotatory machinery. IEEE Access

2020, 8, 86510–86519. [CrossRef]
21. He, K.; Zhang, X.; Ren, S. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
22. Fang, J.; Lin, X.; Tian, J.; Wu, Y. Face recognition technology in classroom environment based on ResNet neural network. Electron.

Imaging 2022, 31, 051421. [CrossRef]
23. Xie, L.; Huang, C. A Residual Network of Water Scene Recognition Based on Optimized Inception Module and Convolutional

Block Attention Module. In Proceedings of the 2019 6th International Conference on Systems and Informatics, Shanghai, China,
2–4 November 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.heliyon.2022.e11623
https://www.ncbi.nlm.nih.gov/pubmed/36419658
https://doi.org/10.54254/2753-8818/5/20230387
https://doi.org/10.1109/ACCESS.2020.2992692
https://doi.org/10.1117/1.JEI.31.5.051421

	Introduction 
	Theoretical Background 
	Convolutional Neural Network 
	Residual Network 

	Experimental Study 
	Sample Production 
	Signal Extraction 
	Time–Frequency Conversion 

	Experimental Results 
	Experimental Procedure 
	Analysis of Residual Network Model Results 
	Analysis of BP Neural Network Model Results 
	Analysis of Support Vector Machine Model Results 
	Analysis of Convolutional Neural Network Model Results 
	Overall Evaluation Indicators 
	Comparison of Visualization Results 

	Conclusions 
	References

