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Abstract: Background and Objectives: In lumbar spine radiography, the oblique view is frequently
utilized to assess the presence of spondylolysis and the morphology of facet joints. It is crucial to
instantly determine whether the oblique angle is appropriate for the evaluation and the necessity of
retakes after imaging. This study investigates the feasibility of using a convolutional neural network
(CNN) to estimate the angle of lumbar oblique images. Since there are no existing lumbar oblique
images with known angles, we aimed to generate synthetic lumbar X-ray images at arbitrary angles
from computed tomography (CT) images and to estimate the angles of these images using a trained
CNN. Methods: Synthetic lumbar spine X-ray images were created from CT images of 174 individuals
by rotating the lumbar spine from 0◦ to 60◦ in 5◦ increments. A line connecting the center of the spinal
canal and the spinous process was used as the baseline to define the shooting angle of the synthetic
X-ray images based on how much they were tilted from the baseline. These images were divided
into five subsets and trained using ResNet50, a CNN for image classification, implementing 5-fold
cross-validation. The models were trained for angle estimation regression and image classification
into 13 classes at 5◦ increments from 0◦ to 60◦. For model evaluation, mean squared error (MSE), root
mean squared error (RMSE), and the correlation coefficient (r) were calculated for regression analysis,
and the area under the curve (AUC) was calculated for classification. Results: In the regression
analysis for angles from 0◦ to 60◦, the MSE was 14.833 degree2, the RMSE was 3.820 degrees, and
r was 0.981. The average AUC for the 13-class classification was 0.953. Conclusion: The CNN
developed in this study was able to estimate the angle of an lumbar oblique image with high accuracy,
suggesting its usefulness.

Keywords: deep learning; angle estimation of lumbar; regression model; classification model

1. Introduction

Low back pain is a common health problem worldwide, with numerous studies finding
that it is a leading cause of disability and has a significant socioeconomic impact, reducing
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the quality of life for many people [1–3]. Lumbar spondylolysis and spondylolisthesis are
among the most common causes of low back pain [4–6]. Magnetic resonance imaging and
X-ray images are used to identify lumbar spondylolysis and spondylolisthesis, and lumbar
spine radiography is often used first [7,8]. Among these, lumbar oblique radiography is
often used to determine the presence of the aforementioned lumbar spondylolysis and the
morphology of the intervertebral joints, and the images obtained change depending on the
angle at which the body is tilted [9,10]. Therefore, since the optimal angle varies depending
on the joint or area to be observed and the suspected pathological condition, if the angle
can be instantly estimated from the obtained image, it is easier to determine whether the
image is what is required at that time. In other words, there is a need for instantaneous
estimation of whether the oblique angle is appropriate for post-imaging evaluation and
whether re-imaging is necessary.

Obtaining an appropriate lumbar oblique image is essential for accurate diagnosis and
treatment decisions. However, it is difficult even for skilled radiological technologists to
obtain the optimal angle in a single shot, and multiple shots are sometimes required. This
leads to an increase in patient radiation exposure and prolongation of examination time, so
improvements are needed. In addition, images taken at inappropriate angles may lead to a
decrease in diagnostic accuracy and oversight, which may adversely affect the patient’s
treatment plan.

In recent years, deep learning techniques have been used in the medical field [11–17],
and there has been a lot of research related to the spine [18]. Deep learning has the potential
to automate the estimation of optimal imaging angles by modeling the experience and
knowledge of skilled radiologists. The development of such technology is expected to
reduce the burden on radiological technologists and improve the efficiency of examinations,
thereby contributing to improvements in the quality of medical care.

To further elucidate the methodology of our study, it is crucial to explain the rationale
behind employing two distinct convolutional neural network (CNN) models: one special-
ized for classification and another for regression. These models interact by initially using
the classification model to categorize the images based on certain predefined criteria, which
then guides the regression model to accurately estimate the imaging angles.

In this study, we wanted to investigate the possibility of using a convolutional neural
network (CNN) to estimate the angle of a lumbar oblique image. Since big data is needed
to create a CNN model, in the case of this study, lumbar oblique X-ray images from various
angles with known acquisition angles are required. In this study, however, we created
lumbar spine X-ray images of arbitrary angles pseudo-created from computed tomography
(CT) images, and we used these images to create the model and evaluate its accuracy. This
makes it possible to generate a large number of images from various angles. This will
ensure a large dataset necessary for training the CNN model.

The purpose of this study is to create lumbar spine X-ray images of arbitrary angles
pseudo-rectified from CT images and to estimate the angles of lumbar spine oblique images
using a CNN trained by those images. The results of this study are expected to contribute
to the optimization and efficiency of lumbar oblique imaging, thereby reducing the burden
on patients and improving the quality of medical care. In addition, the method proposed
in this study can be applied to images other than lumbar oblique images, and it is expected
to contribute to the development of medical image analysis.

The significance of this study is that it proposes a method for automatically estimating
the imaging angles of lumbar oblique images using deep learning. This method will enable
the determination of the imaging angle based on objective data, which until now has relied
heavily on the radiological technologist’s experience and intuition. This is expected to
improve the reproducibility and consistency of imaging and lead to improved diagnostic
accuracy. The findings obtained in this study can also be applied to radiographic imaging
of other parts of the body and are expected to contribute widely to the optimization of
radiographic examinations.
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Furthermore, this study is also significant in terms of the application of artificial
intelligence (AI) in the medical field. AI is being applied to various aspects of medicine, but
it has not yet been fully utilized in the field of radiological examinations. This study shows
one way to improve the quality of radiological examinations using AI and expands the
possibilities for medical applications of AI. As described above, this study proposes a new
approach to the global health problem of low back pain using deep learning. The results of
this study are expected to contribute to the optimization and efficiency of lumbar oblique
radiography, thereby reducing the burden on patients and improving the quality of medical
care. Furthermore, this research demonstrates the potential for medical applications of AI,
and it is expected to help promote the use of AI in the medical field.

To provide a clear understanding of the research presented in this article, the structure
is organized as follows. Following this introduction, Section 2 describes the datasets used,
the preprocessing steps, and the deep learning models developed. Section 3 presents the
findings of the CNN’s performance in estimating the angles of lumbar spine oblique images.
Subsequently, Section 4 interprets these results, comparing them with existing methods,
and explores the implications for clinical practice. Finally, Section 5 summarizes the study’s
contributions and outlines future research directions.

2. Materials and Methods
2.1. Subjects and Research Environments

In this study, CT data of the mediastinum and abdomen were obtained from “A new
2.5D representation for lymph node detection in CT” published in TCIA (The Cancer Image
Archive) [7]. This dataset contained CT images from a variety of patients and was deemed
suitable for the purpose of this study. Of the data acquired, those that did not include
all of the lumbar spine were excluded, and finally, CT data from 174 patients were used.
Table 1 shows the specifications of the computer used in this study. MATLAB (2022a; The
MathWorks, Inc., Natick, MA, USA) was used as the analysis software.

Table 1. Software and specifications of the computer used in this study.

Environment Contents

Software MATLAB 2022a (Mathworks)
OS Windows 10

CPU Intel Core i9-10980XE 3.5 GHz
RAM DDR4 2666 Mhz 64 GB
GPU NVIDIA RTX P5000 16 GB × 4

2.2. Data Preprocessing—The Creation of Supervised Data

A large amount of supervised data is required to create a CNN model [19]; however,
the dataset of lumbar spine oblique X-ray images at various angles needed for this study
was not publicly available. Therefore, in this study, lumbar spine X-ray images of arbi-
trary angles were pseudo-fabricated from CT images, and these images were used as the
supervised data.

The procedure for creating supervised data using the software shown in Figure 1 is
summarized below:

1. Specify the center of the spinal canal and the spinous process in the axial section
image of the third lumbar vertebra, thereby creating a reference line for the angle;

2. The axial section image is converted to a coronal section image, and the range is set so
that the first to the fifth lumbar vertebrae are included in the image;

3. Cut out the set area in the plane perpendicular to the created reference line;
4. Create a pseudo X-ray image containing three-dimensional information by adding

together the images cut out in step 3 to an arbitrary extent;
5. Visually adjust the maximum and minimum pixel values of the image to create an

image with contrast similar to the actual X-ray image;
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6. Create and save an image according to the procedure described up to step 5, rotated
in 5◦ increments from −60◦ to 60◦ relative to the reference angle.

The selection of the range from −60◦ to 60◦ relative to the reference angle (0◦) for
generating lumbar spine X-ray images was primarily based on the typical clinical angles
used in lumbar oblique radiography. This range was chosen to encompass the angles most
commonly utilized for diagnostic accuracy, as angles beyond 60◦ often result in a lateral
view, which was not the focus of this study. Consequently, the study limited its scope to
60◦ to maintain relevance to standard oblique imaging practices. The above procedure was
applied to all CT images, and 25 lumbar spine X-ray images were created per CT image per
patient. An example of the images produced is shown in Figure 2.
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Figure 1. Example of implementation for creating a supervised image. The green line represents the
corrected 0◦ based on the CT image. The yellow dashed lines indicate the range used for generating
the pseudo X-ray image, while the solid yellow line denotes the center of this range.

In creating the supervised data, a line connecting the center of the spinal canal and
the spinous process was used as the reference line, and the imaging angle of the pseudo
X-ray image was defined by how many degrees it was tilted from that line. This enabled
the generation of a large amount of supervised data with clear imaging angles.

Since this method created a pseudo X-ray image from a CT image, there was a possibil-
ity that there may be some differences from the actual X-ray image. However, considering
that the purpose of this study was to estimate the shooting angle, the pseudo X-ray images
were considered to be sufficiently useful. In addition, this method allowed the generation of
a large amount of supervised data, which was necessary for the training of the CNN model.
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Figure 2. Example of lumbar spine pseudo X-ray image; (a) upper left: 0◦, (b) upper right: 20◦,
(c) lower left: 40◦, and (d) lower right: 60◦.

A dedicated program was developed to generate the supervised data. This program
read CT images and automatically generated pseudo X-ray images at specified angles. The
implementation screen of the program is shown in Figure 1. The program was developed
using MATLAB. The development of the program enabled the efficient creation of a large
amount of supervised data.

2.3. Training Dataset

The CNN model was trained using the created supervised data under the hyperparam-
eters shown in Table 2. For data augmentation, the images were first flipped left and right,
doubling the dataset size. Then, the luminance of each image was adjusted to five different
levels (0.5, 0.75, 1.0, 1.25, and 1.5) by multiplying the pixel values of the original images
by these coefficients, effectively increasing the dataset size by five. Collectively, these
augmentations increased the diversity of the supervised data by a factor of ten, thereby
enhancing the model’s generalization performance.

Next, by integrating the ± variations of the supervised images to encompass angles
from 0◦ to 60◦, using the expanded supervised data, two CNN models were created: the
first was an image classification model that classified images into 13 classes of 5◦ each from
0◦ to 60◦, and the second was a regression model that estimated angles from lumbar oblique
images from 0◦ to 60◦. Both models utilized ResNet50 [20] pretrained with ImageNet as
the base architecture, with modifications to replace the original classification layer with
a regression layer for the purpose of performing both classification and regression tasks.
ResNet50 is known for its excellent performance in image recognition tasks and was
considered suitable for the purposes of this study.
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A 5-fold cross validation was used to train the model. This method divided the data set
into five folds, four of which were used as the training set and the remaining one as the test
set. This method reduced the bias of the dataset and allowed for an accurate evaluation of
the generalization performance of the model. Figure 3 provides a comprehensive overview
of the training process, including the implementation of 5-fold cross-validation to ensure
the robustness and reliability of our models.
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and evaluation.

Table 2. Hyperparameters for training.

Parameters

architecture ResNet50
mini batch size 128

number of epochs 10
optimizer SGDM a

momentum 0.9
learn rate drop factor 0.1
initial learning rate 0.0001
L2 regularization 0.0001

a Stochastic gradient descent with momentum.

2.4. Evaluation of Created Models
2.4.1. Evaluation of Regression Models

The accuracy of the created CNN models was evaluated. The correlation coefficient
(r), mean squared error (MSE), and root mean squared error (RMSE) were used to evaluate
the regression models, where r was the correlation coefficient between the actual angle and
the estimated angle and is a measure of the strength of the correlation between the two.
These indices were calculated using the following equations:
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MSE =
∑n

i=1

(
yobs,i − ypred,i

)2

n

RMSE =

√√√√∑n
i=1

(
yobs,i − ypred,i

)2

n

where yobs,i is the actual angle, ypred,i is the estimated angle, and n is the number of samples.
Lower values of MSE and RMSE indicated better performance of the model, as it

suggested that the predicted values were closer to the actual values. In our study, we used
these metrics to compare the accuracy of our proposed method to assess its effectiveness in
estimating oblique angles from lumbar spine X-ray images.

2.4.2. Evaluation of Classification Models

The performance of our classification model was assessed using the confusion matrix
and the area under the curve (AUC) metric. The confusion matrix serves as a representation
of the alignment between the classification model’s predictions and the actual classes.
It does so by displaying the distribution of predictions across different actual classes,
providing a clear picture of the model’s accuracy in classification tasks.

Confusion Matrix: This matrix is crucial for visualizing the performance of the
classification model. It shows the numbers of correct and incorrect predictions divided into
each category by the model, allowing us to evaluate the model’s performance across various
class labels. The confusion matrix was particularly useful in identifying how the model
performed for each actual angle versus the predicted angle, enhancing our understanding
of its precision and areas where improvement was needed.

AUC: AUC is a metric derived from the receiver operating characteristic (ROC) curve,
which illustrates the trade-off between the true positive rate and the false positive rate of
a classification model at various threshold settings. The AUC metric, ranging between 0
and 1, serves as a summary of the model’s ability to correctly classify the instances across
all possible thresholds. A value closer to 1 indicates higher model performance. In our
study, the AUC was used to quantify the overall effectiveness of the classification model
in distinguishing between different classes, providing a single measure of performance
irrespective of any particular threshold.

Utilizing these evaluation methods allowed for a comprehensive assessment of the
classification model’s performance. The confusion matrix provided detailed insight into
the model’s accuracy for each class, and the AUC offered a holistic measure of its ability to
discriminate between classes. Combined, these approaches enabled a robust analysis of the
model’s performance, with the level of precision and reliability evident.

3. Results
3.1. Evaluation of Regression Model

The regression model’s performance is summarized in Table 3, where we evaluated the
model across five different folds (A to E) to ensure robustness and reliability. The metrics
presented are MSE, RMSE, and the correlation coefficient (r). The results highlighted an
average MSE of 14.833 degree2, indicating the variance between the predicted values and
the actual values across all folds. The RMSE, providing a sense of the average error margin,
stood at 3.820 degrees. The correlation coefficient, averaging at 0.981, underscored a
highly positive correlation between the predicted and actual values, suggesting the model’s
effectiveness in capturing the underlying relationship. In examining the performance across
the five folds in Table 3, it was observed that the values for folds 2 and 5 exhibited greater
MSE and RMSE values compared to folds 1, 3, and 4. Notably, fold 2 presented the highest
MSE at 20.035 degree2 and RMSE at 4.476 degrees, followed by fold 5 with an MSE of
18.83 degree2 and RMSE of 4.339 degrees. Despite this, the correlation coefficient for fold 2
was lower than that of fold 5, indicating a variance in prediction accuracy and reliability
across folds.
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Table 3. Summary of regression model performance metrics across five folds.

MSE a (degree2) RMSE b (degree) Correlation Coefficient (r)

fold 1 11.146 3.339 0.985
fold 2 20.035 4.476 0.970
fold 3 11.175 3.343 0.983
fold 4 12.982 3.603 0.980
fold 5 18.830 4.339 0.985

mean 14.833 3.820 0.981
a Mean squared error; b root mean squared error.

3.2. Evaluation of Classification Model

The classification model’s performance is depicted through the ROC curve in Figure 4,
showcasing the model’s ability to discriminate between classes effectively. Table 4 details
the area under the curve (AUC) for each class across all folds, with a mean AUC of 0.953.
This high level of AUC across varying degrees indicated the model’s consistent and reliable
classification capability.
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Table 4. AUC for each angular classification at each fold.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

0◦ 0.978 0.971 0.972 0.975 0.984 0.976
5◦ 0.968 0.965 0.965 0.964 0.969 0.966

10◦ 0.956 0.940 0.964 0.955 0.959 0.955
15◦ 0.946 0.935 0.961 0.959 0.955 0.951
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Table 4. Cont.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

20◦ 0.940 0.933 0.961 0.951 0.952 0.947
25◦ 0.932 0.945 0.959 0.950 0.946 0.946
30◦ 0.943 0.931 0.957 0.943 0.944 0.944
35◦ 0.942 0.936 0.955 0.942 0.939 0.943
40◦ 0.954 0.939 0.956 0.939 0.941 0.946
45◦ 0.958 0.934 0.954 0.938 0.940 0.945
50◦ 0.949 0.928 0.945 0.939 0.945 0.941
55◦ 0.962 0.938 0.947 0.953 0.939 0.948
60◦ 0.983 0.974 0.978 0.984 0.982 0.980

mean 0.955 0.944 0.960 0.953 0.953 0.953

Additionally, the confusion matrix (Figure 5) visually represented the model’s classifi-
cation accuracy regarding actual angles versus predicted angles. The matrix employed a
color-coded scheme where red cells (value 1) signified complete accuracy in classification,
while blue cells (value 0) indicated discrepancies. The granular breakdown provided by
the confusion matrix revealed the model’s strengths and areas for improvement, offering
valuable insight into its performance across different angle classifications.

In summary, both the regression and classification models demonstrated high degrees
of accuracy and reliability in their respective tasks. The detailed metrics and visualizations,
such as the ROC curve and confusion matrix, provided a comprehensive overview of the
models’ performance, highlighting their strengths in predicting and classifying angles with
high precision. Future work could explore further optimization techniques to enhance
model performance, particularly at angles where classification accuracy could be improved.
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4. Discussion
4.1. Study Results and Model Accuracy

The RMSE was 3.820 degrees and the correlation coefficient r was 0.981. The RMSE
was used as an index to evaluate the error between the actual angle of the lumbar oblique
image and the estimated angle output by the angle estimation model created in this study.
The smaller the RMSE, the better the accuracy of the created model. On the other hand,
the correlation coefficient is a statistical index that numerically indicated the strength and
direction of the relationship between two variables, with a value closer to 1 indicating a
stronger correlation. However, we compared the accuracy with that of other studies in
similar fields as a reference.

4.2. Comparison with Other Studies

As for angle prediction using CNNs in the vertebral field, many studies [21–23] have
been conducted to estimate the Cobb angle in patients with scoliosis. The Cobb angle
represents the angle of posterior curvature of the spine and generally refers to the angle
that indicates the degree of posterior curvature of the thoracic spine. This angle is usually
quantified by measuring the curvature between two specific vertebrae of the thoracic spine.
With reference to these results, it can be said that the accuracy of the regression model
created in this study in predicting the angle at which lumbar oblique image was taken was
sufficiently high. The reason why is that the accuracy of the present study was higher than
that of another study [24]. According to the paper, the RMSE for predicting the Cobb angle
was 5.48 degrees on average, and the correlation coefficient between the actual Cobb angle
and the predicted Cobb angle was 0.91. This is thought to be because the study used images
of a human bent forward taken from multiple angles to predict the Cobb angle, and the
images used were not as clear as X-ray images. On the other hand, when the accuracy of this
study was compared with that of another study [25] that estimated the Cobb angle using a
model similar to this study, which was created using X-ray images of the vertebral body, the
accuracy of this study was relatively lower. In the external validation dataset of the model
for predicting the Cobb angle, the RMSE value was 1.5◦, and although there was no direct
mention of the r value, the agreement between the model and the Cobb angle was shown
to be very high, with an intraclass correlation coefficient (ICC) of 0.996. This may be due to
the difference in the number of data used, but it is also thought to be due to the difference
in the dimension of the angle being predicted. Specifically, this is because the Cobb angle
estimation estimates a two-dimensional angle in terms of curvature between two specific
vertebrae, whereas the lumbar oblique image angle estimation estimates an angle that can
be described as a “degree of rotation” rather than a degree of vertebral flexion, etc., in
other words, a three-dimensional angle. We believe this difference is the reason why the
accuracy of this study was relatively low compared to the accuracy of other studies that
estimated Cobb angles. Similar to other regression methods using deep learning in medical
imaging [26,27], the significant positive correlation obtained suggested that the predictor
was reliable. In Table 3, the observed variations in MSE and RMSE values for folds 2 and 5
invite cautious speculation regarding their cause. These disparities might reflect distinctive
characteristics of the data subsets in these folds or specific interactions between the model
and these subsets. Notably, while fold 2 shows larger error magnitudes, as indicated by
the higher MSE and RMSE values, it has a lower correlation coefficient compared to fold 5,
suggesting that errors in fold 5, although smaller in magnitude, could be more variable or
less consistent. It is plausible that such differences are attributed to the stochastic nature
of the data or to unique patterns not yet fully understood. Increasing the number of cases
might enable a more comprehensive evaluation of the model’s performance across varying
data conditions. Our study effectively demonstrates the utility of a specific pre-trained
CNN model for medical imaging via transfer learning. However, reliance on this singular
CNN architecture, while efficient, limits the exploration of newer models that may offer
enhanced performance with fewer resources [28,29]. Future research should consider a
broader array of models to improve generalizability and performance in diverse imaging
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contexts [30,31]. This study lays the groundwork for further exploration into the capabilities
of CNNs and their alternatives in medical imaging.

The image classification model, classifying images into 13 classes of 5◦ each from 0◦ to
60◦, showed high accuracy with an average AUC of 0.953. To clarify the analysis of our
results, we examined why the classification accuracy varied significantly across different
angles. Specifically, we discussed the mechanisms that may contribute to higher AUC
scores at certain angles such as 0◦ and 60◦, considering factors like the unique characteristics
of these images and their representation in the training dataset. Despite the confusion
matrix appearing inaccurate, the high AUC was due to the difference between the target
and output angles being within ± 5◦ for most test data. For instance, for the 30◦ target, 67
out of 68 images were classified as 25◦ to 35◦. However, for the 0◦ target, more images were
classified as 5◦ than 0◦, resulting in lower accuracy. Further, we considered the reasons
behind the notably lower classification accuracy for most angles except the 60◦ classes. This
was likely because the number of learned images for 0◦ was half that of other angles, as +x◦

and −x◦ were used as x◦, resulting in twice the number of images for angles other than 0◦.
To address the concerns regarding the data volume of the 0◦ category, we should analyze in
a future study whether the reduced number of images for this angle was solely responsible
for its decreased accuracy or if it also contributed to lower accuracy across other categories.
Consequently, it can be speculated that the model did not learn enough 0◦ lumbar spine
X-ray images, which may have led to the observed decrease in accuracy.

4.3. Limitations of the Study

Although the results of this study show a sufficiently high degree of accuracy, several
limitations exist. First, it is unclear whether the regression and classification models created
look at the vertebrae and determine their angles in the same manner as humans. Not
only pseudo-created lumbar spine X-ray images such as those used in this study but also
X-ray images contain a variety of information in addition to the vertebral bodies, so it
is unclear which part of the body the models are looking at to estimate the angle. Next,
while this study used lumbar spine X-ray images pseudo-generated from CT images for
model creation, we acknowledge the importance of incorporating real-world X-ray images
for a more comprehensive evaluation of the model’s performance. Future studies should
validate the accuracy of the model using actual lumbar spine X-ray images to confirm its
applicability in clinical settings.

As in other studies using CNNs [11–14,16,17], we believe that the accuracy of the
angle estimation model may be improved by increasing the number of training images and
by using other models and parameters. In particular, in terms of increasing the number
of training images, by using the method of pseudo-creating lumbar spine X-ray images
from CT images in this study, it is possible to obtain lumbar spine X-ray images from any
dataset as long as the lumbar spine is included in the CT image range. We believe that this
will solve one of the major problems in CNN research, namely, the lack of training data.
However, it is not easy to collect a large number of datasets that include the lumbar spine
in the CT scan area. In addition, the lumbar spine X-ray images pseudo-generated from CT
images do not exactly match the actual X-ray images, so there are limitations to learning
using pseudo images. Effective data collection and learning methods need to be considered
while taking these points into account.

The significance of this study lies in the fact that the CNN was trained using pseudo
X-ray images of the lumbar spine taken at arbitrary angles from CT images. We have
not been able to confirm any studies that have created CNNs using pseudo X-ray images,
indicating the uniqueness of this study. In addition, no previous study has been confirmed
that regressively analyzes the lumbar spine according to angle or classifies the lumbar spine
into classes by angle. Therefore, we believe that the present results suggest the usefulness
of the CNN created using lumbar spine X-ray images pseudo-generated from CT images for
angle estimation in lumbar spine oblique images using deep learning techniques. However,
this study is only an initial investigation, and the aforementioned limitations exist. In
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the future, while taking these limitations into account, it will be necessary to verify the
method using a larger dataset to explore other models and parameters and to evaluate the
method using actual X-ray images. It is also important to further validate the usefulness
of the method proposed in this study by applying it to X-ray images of other sites. To
further enhance our research perspective, incorporating advanced techniques in image
processing, segmentation, and simulation of spine or bone is essential. Notable studies such
as CSR-Net for scaphoid fracture segmentation [32], wearable technologies for monitoring
spinal movement [33], adversarial models for bone segmentation in CT images [34], and
neuroprosthetic approaches for managing hemodynamics post-spinal injury [35] provide
valuable insight for future implementations.

The clinical significance of this study is that it is expected to optimize the angle and
improve reproducibility in lumbar oblique imaging. Lumbar oblique radiography plays
an important role in the diagnosis of lumbar spondylolysis and spondylolisthesis, but it
must be performed at an appropriate angle. However, at present, determination of the
imaging angle relies heavily on the radiologist’s experience and intuition, and it lacks
reproducibility and consistency. The CNN-based angle estimation proposed in this study
will enable objective and quantitative angle determination, which is expected to lead to
improved diagnostic accuracy. It is also expected to contribute to the reduction of patient
radiation exposure by reducing the need for re-imaging. However, further verification and
improvements are needed to introduce the system proposed in this study into actual clinical
practice. In particular, evaluation using actual X-ray images and comparative studies with
radiologists are important. In addition, issues such as the impact on the work of radiologists
and costs associated with the introduction of the system should also be considered.

The main limitations of this study include the aforementioned problems with the
dataset and the imprecise basis for model decisions. We used a ResNet pre-trained on
ImageNet, but we must also consider using a model pre-trained on medical images [36]
to learn our dataset in this study. The other several limitations of this study should be
acknowledged. First, it is unclear whether the regression and classification models created
look at the vertebrae and determine their angles in the same manner as humans. Both
pseudo-created and actual X-ray images contain various information besides vertebral bod-
ies, so it is uncertain which parts the models used to estimate angles. While this study used
pseudo-generated lumbar spine X-ray images for model creation, future studies should
validate the accuracy of the model using real-world X-ray images to confirm its applicability
in clinical settings. Additionally, the study focused only on lumbar oblique images and
did not examine the applicability to other sites or imaging methods. Furthermore, the
study concentrated solely on the accuracy of angle estimation, but in actual clinical practice,
factors other than angle, such as the patient’s body shape, pathological condition, and
characteristics of the equipment used, may also influence the optimization of imaging. A
more comprehensive study that takes these factors into account is needed.

4.4. Future Research Directions

In future work, it would be beneficial to explore model optimization algorithms and
feature selection techniques that could not be applied in this study. Adapting the per-
formance of algorithms through other state-of-the-art meta-heuristic algorithms [37] and
feature selection methods [38] could provide further insight into their effectiveness. More-
over, investigating the impact of different parameter settings and incorporating adaptive
mechanisms could potentially enhance the robustness and efficiency of the proposed model
in this study.

The results, significance, and limitations of this study are discussed above. This
study proposed a new approach of angle estimation by CNN using lumbar spine X-ray
images pseudo-generated from CT images and suggested its usefulness. Future work
should take into account the limitations of this study while conducting a larger-scale,
multifaceted validation.
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5. Conclusions

In this study, a CNN-based regression model and a classification model were created
using lumbar spine X-ray images pseudo-generated from CT images. As a result, the
regression model achieved a high accuracy of 3.820 degrees for the RMSE and 0.981 for the
correlation coefficient r, and the classification model obtained an excellent result with an
average AUC of 0.953. These results suggested that the CNN using lumbar spine X-ray
images pseudo-generated from CT images was useful for angle estimation of lumbar spine
oblique images. The significance of this study lies in the fact that we proposed a new
approach of creating pseudo-created lumbar spine X-ray images from CT images and used
them to estimate angles using a CNN. Conventionally, a large number of actual lumbar
spine X-ray images are required for angle estimation of lumbar spine oblique images using
a CNN. However, by using the method proposed in this study, it was possible to create
pseudo lumbar spine X-ray images from CT images, thereby ensuring the large amount of
image data necessary for CNN training. This will greatly contribute to the development of
angle estimation of lumbar spine oblique images using deep learning techniques.

This study proposes a new approach to optimize and standardize lumbar oblique
radiography and is expected to contribute to the development of radiological examination.
In the future, further validation and improvement of this study should be conducted
while taking into account the limitations of this study. In addition, it is expected that the
findings obtained in this study will be applied to other sites and imaging methods, thereby
contributing widely to the optimization and standardization of radiological examinations.
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