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Abstract: Due to its effectiveness as a risk-hedging trading strategy in financial markets, futures
arbitrage is highly sought after by investors in turbulent market conditions. The essence of futures
arbitrage lies in formulating strategies based on predictions of future futures price differentials.
However, contemporary research predominantly focuses on projections of single indicators for the
subsequent temporal juncture, and devising efficacious arbitrage strategies often necessitates the
examination of multiple indicators across timeframes. To tackle the aforementioned challenge, our
methodology leverages a PSO Deep-ConvLSTM network, which, through particle swarm optimiza-
tion (PSO), refines hyperparameters, including layer architectures and learning rates, culminating
in superior predictive performance. By analyzing temporal-spatial data within financial markets
through ConvLSTM, the model captures intricate market patterns, performing better in forecasting
than traditional models. Multistep forward simulation experiments and extensive ablation studies
using future data from the Shanghai Futures Exchange in China validate the effectiveness of the
integrated model. Compared with the gate recurrent unit (GRU), long short-term memory (LSTM),
Transformer, and FEDformer, this model exhibits an average reduction of 39.8% in root mean squared
error (RMSE), 42.5% in mean absolute error (MAE), 45.6% in mean absolute percentage error (MAPE),
and an average increase of 1.96% in coefficient of determination (R2) values.

Keywords: convolutional long short-term memory model (CONVLSTM); particle swarm optimization
(PSO); inter-commodity spread; multistep and multidimensional forecast

1. Introduction

In the dynamic arena of financial markets, futures arbitrage continues to be a pivotal
subject for scrutiny among investors and scholars. This strategy is integral to capitalizing on
profit avenues discerned through meticulous analysis and the tactical exchange of futures
contracts, by capitalizing on the variances in pricing that occur in diverse markets over
time [1]. To achieve successful arbitrage, it typically demands advanced forecasts of market
trajectories and asset pricing volatilities. Price, which is a paramount factor in the ebbs
and flows of trading activities, carries significant implications for the expansion of the
market and the welfare of its participants. As a result, predicting price trends is an essential
component of research in financial investment and a foundational element in devising
strong arbitrage tactics.

Transitioning from the fundamental theory of futures arbitrage, early attempts to
predict commodity futures prices were grounded in standard econometric methods. Histor-
ically, these methods were defined by the groundbreaking work of academics, such as the
ARCH model introduced by Robert Engle in 1982, which explained time-varying volatility
for economic time series data [2]. Following this innovation, a multitude of statistical
models emerged, refining the approach to predict financial market behaviors. Notably, in
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1986, Bollerslev presented the GARCH model, enhancing the ARCH concept and tailoring
it more explicitly to financial datasets [3]. These econometric models, with the GARCH
model in particular, were not only used in alignment with traditional regression techniques,
but they also uniquely accounted for fluctuating error variance, facilitating a more nuanced
understanding of market volatility—a key component in investor decision-making. A sig-
nificant milestone was achieved with Morana’s study in 2001, which successfully applied
GARCH-based methods for short-term crude oil price forecasts [4]. Despite their empirical
successes, challenges have persisted with these traditional models, primarily due to the
intricacy and dynamic nature of financial data, which present nonlinear characteristics and
time-sensitive elements that traditional mathematical models struggle to encapsulate fully.

The advent of machine learning techniques in the financial sector has ushered in
a new era for algorithmic trading. Currently, researchers in related fields are primarily
concentrating on two aspects: the extraction of Alpha factors and the optimization of
synthetic models.

Factor mining, which is based on artificial intelligence algorithms, has evolved beyond
the traditional approach of establishing clear investment logic relationships to mine and
screen factors. Instead, it has become more adaptable, extracting and learning valuable in-
formation from relational events and sentiment data to enhance the efficiency of investment
decisions. For instance, deep learning models can analyze unstructured data such as news
articles and social media posts by natural language processing (NLP) technology. It allows
models to capture market sentiment and potential influencing factors and enhance the
precision of spread predictions. Recent literature corroborates that deep learning models
excel at distilling crucial features from complex data and adeptly applying these insights to
new contexts [5].

An accumulation of research underscores the efficacy of machine learning techniques
in anticipating futures prices. Early initiatives, such as Grudnitski’s 1993 study [6], em-
ployed neural network (NN) algorithms for predicting gold futures prices, showing a
marked improvement over traditional time series approaches. The competitive edge of
NNs was further highlighted by Moshiri and Foroutan’s 2006 comparison [7], which found
NNs to outperform ARMA and GARCH models in crude oil price forecasting. Extending
this success, Diana Osorio et al., (2017) [8] applied neural networks to project S&P and
gold futures prices, yielding promising outcomes. Hailei Zhao’s research in 2021 [9] imple-
mented machine learning techniques grounded on the fundamental factors of agricultural
product futures, enhancing forecast precision and providing key contributions to the field.
Tsantekidis et al. (2017) [10] chose convolutional neural networks for anticipating stock
prices and discovered they surpassed traditional multilayer perceptrons and support vector
machines in their predictive prowess. Dixon et al. implement a deep neural network (DNN)
in 2016 [11] for various commodity futures prices and reported uniquely accurate results. In
the vein of leveraging sophisticated AI, Long et al. (2018) [12] incorporated LSTM, BPNN,
and CNN in creating arbitrage models, with experiments on coking coal, iron ore, and rebar
futures demonstrating LSTM’s superior performance. Sheng Y and Ma D’s comparison in
2022 [13] among LASSO, Xgboost, BPNN, and LSTM for arbitrage effects underlined the
outstanding forecasting abilities of deep learning models. Zhou et al., (2021) [14] proposed
the Informer model based on the Transformer model and demonstrated the effectiveness of
the model in enhancing the prediction capacity of long sequence time-series forecasting
(LSTF) through experiments. Liu et al. (2022) [15] designed a SCINet model based on TCN,
which achieved higher accuracy on public datasets across multiple fields. Moreover, neural
network-based generative techniques have also begun to be applied in the field of financial
time series. Zhang et al. [16] proposed a generative adversarial network (GAN) structure
based on LSTM and got a promising performance in the closing price prediction on the
real data. It is becoming increasingly clear that AI, especially through deep learning and
machine learning, offers tremendous promise for futures market prediction and navigation.
These advanced methodologies adeptly tame the nonlinearity of financial markets, elevate



Appl. Sci. 2024, 14, 3798 3 of 20

forecasting accuracy to new heights, and furnish investors with sophisticated tools for
crafting strategic decisions.

Nonetheless, current predictive endeavors within financial studies commonly focus
on the immediate future, aiming to determine the upcoming value or direction for a
single metric, essentially for univariate time series projection. Researchers often design
models that are calibrated solely to forecast a single point or a unidimensional trend in
subsequent time steps. This traditional approach, however, does not suffice for arbitrage
strategy construction, where a broader temporal and dimensional perspective is essential for
evaluating multiple indicators over an upcoming time span. To navigate these complexities,
this study introduces a convolutional long short-term memory (ConvLSTM) model geared
toward predicting futures price spreads. This advanced model boasts capabilities for
multistep and multidimensional forecasting, which aligns more closely with the nuanced
demands of practical trading scenarios.

However, network architectures like ConvLSTM pose challenges due to their complex
decision-making process and limited transparency in how predictions are influenced [17],
which can affect confidence and trust in their results. Additionally, choosing the right
hyperparameters often depends on previous research or the subjective judgment of practi-
tioners. Selecting the appropriate hyperparameters is essential for enhancing the network’s
structure, which improves its ability to generalize and fit data accurately. A significant
scholarly effort is directed toward developing systematic methods to reduce subjective bias
and identify the best set of hyperparameters.

This study presents an innovative forecasting approach tailored for the futures arbi-
trage domain, utilizing a PSO Deep-ConvLSTM model—a sophisticated, multidimensional,
multistep predictor that seamlessly integrates PSO with the ConvLSTM network. The pri-
mary aim is to enhance the accuracy of futures price spread forecasts, thereby amplifying
the potential for profitable arbitrage strategies. By harnessing real historical futures price
spread data, the study endeavors to ascertain the efficacy of the PSO Deep-ConvLSTM
through a comprehensive comparative analysis against alternative forecasting models.

In addressing the inherent challenges associated with the opaque decision-making of
traditional ConvLSTM models, this research pioneers the utilization of the PSO algorithm
for optimizing hyperparameters, with the overarching goal of enhancing the model’s
transparency and augmenting its performance. This systematic tuning process is designed
to mitigate reliance on subjective expertise and historical precedents, thus transitioning
toward an objective and replicable methodology capable of reliably guiding the network’s
learning process.

Coupling the ConvLSTM’s aptitude for capturing complex data patterns with PSO’s
strengths in parameter optimization, the proposed PSO Deep-ConvLSTM model promises
to be a powerful tool in futures arbitrage. By advancing this synergy of methodologies,
the framework aims to provide actionable insights, decision support, and investment
strategies for market participants. Findings from this research are expected to offer a
strong endorsement for the practical application of the PSO Deep-ConvLSTM model in
arbitrage decision-making and risk management, thereby illuminating a pathway toward
more sophisticated and precise financial market analyses.

In short, we summarize the key contributions of this work as follows:

1. We employ the ConvLSTM model to prognosticate multiple pertinent indicators in
the future timeline of the futures price spread data.

2. By introducing the PSO algorithm, we optimize the ConvLSTM network. This ap-
proach rectifies the shortfall related to the inaccurate acquisition of initial connection
weights and hyperparameters intrinsic to the ConvLSTM model. Consequently, it
fortifies the objectivity of hyperparameter selection and enables a more accurate
prediction of futures price spread data.

3. To evaluate the predictive performance of our PSO Deep-ConvLSTM model, we con-
ducted comparative experiments with existing models, such as the FEDformer. Our
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research findings demonstrate that our model exhibits marginally superior accuracy
compared with state-of-the-art approaches.

The remainder of this paper is structured to facilitate clear comprehension and logical
flow. Section 2 delineates the problem and engages in an in-depth analysis of the dataset.
It aims to articulate the objective function configured for our peculiar study needs and
to confirm the empirical dataset’s reliability and accessibility. In Section 3, we expound
on both the COVLSTM and the innovative PSO Deep-ConvLSTM frameworks. Section 4
is devoted to a detailed experimental evaluation and analytical comparison between the
PSO Deep-ConvLSTM and established benchmark models, focusing specifically on their
applicability to forecasting inter-commodity spread. Section 5 concludes the paper and
discusses future perspectives.

2. Problem Statement and Data Analysis

In this section, we initially offer a concise overview of the problem that our research
seeks to address. Furthermore, we provide a clear and succinct description of the data
through correlation analysis and Engle–Granger (EG) cointegration tests, thereby verifying
its validity and applicability.

2.1. Problem Statement

For predicting futures markets, engaging in multistep forecasting across diverse dimen-
sions presents a more significant practical impact than single-step prediction or forecasting
within isolated dimensions. This multifaceted approach garners the interest of both fi-
nancial practitioners and researchers. The primary objective of multistep forecasting is to
analyze historical data and project values for forthcoming time periods. In contrast to single-
step forecasting, multistep forecasting grapples with heightened uncertainty, which may
precipitate a decline in the predictive model’s effectiveness due to cumulative errors during
the modeling process. In response to this challenge, we propose the PSO Deep-ConvLSTM
model as a viable solution. To demonstrate and validate our approach, we selected futures
contracts for rebar (RB) and hot-rolled coil (HC) listed on the Shanghai Futures Exchange
to formulate a pair trading strategy. We then trained and backtested the predictive model
using the fitted spread data derived from this arbitrage investment portfolio.

More specifically, our approach entails the use of actual price spread data via the
ConvLSTM model to forecast and generate an array of price spread variations, such as
closing price, opening price, and lowest and highest price spreads, over an ensuing period.
The end goal of these forecasts is to inform and guide us in formulating an appropriate
futures arbitrage strategy. Therefore, with the intention of elevating the returns of our
pair trading strategy, our foremost objective is to enhance the prediction accuracy of the
ConvLSTM model. This objectivity is primarily achieved through the optimization of the
model’s hyperparameters. Guided by our sophisticated enhanced heuristic algorithm, the
hyperparameter search within the ConvLSTM model is treated as a black-box optimization
task. The corresponding objective is defined as follows:

minimize
Θ

∑
t∈Ωtest

∥yt − modelΘ(Xt)∥2
F (1)

where Θ denotes the hyperparameter set of our model, Ωtest is the set of time stamps used
for testing, F is the Frobenius norm, and modelΘ is the predictive model.

2.2. Data Structure

The Shanghai Futures Exchange proffers a snapshot-based order feed implemented via
the CTP (Comprehensive Transaction Platform). The feed accumulates changes occurring
within the preceding 500 milliseconds, encompassing multiple fields that encapsulate trade
and order-book information. Specifically for our analysis, we capitalized on the price field
to compute the spread between rebar and hot-rolled coil. The dataset utilized in this study
was sourced from Choice Financial Software. Given the inherent noisy characteristics of



Appl. Sci. 2024, 14, 3798 5 of 20

financial data, we transformed the 500-millisecond spread data, ranging from 21:01 on 15
July 2020, to 10:50 on 18 May 2022, into 1 min K-line data. This transformation effectively
mitigated the impact of noise, thereby enhancing our model’s capacity to capture the
temporal dependencies inherent in the data. Additionally, among the extensive array of
contracts listed annually, we narrowed our focus to the historical data derived from January,
May, and October contracts.

Subsequently, all adjusted data points were integrated, taking into account the trading
volume. This comprehensive process culminated in a comprehensive dataset consisting
of 153,440 historical trading data points, spanning a period of 447 days. Each data point
comprises the following features:

1. OPEN/HIGH/LOW/CLOSE: the first/highest/lowest/last value in 1-min spread data.
2. Exponential moving average (EMA):

EMA = Close ∗ Weight + EMApre ∗ (1 − Weight)

3. Difference (DIF): DIFi = EMA(CLOSE, 12)− EMA(CLOSE, 26)
4. Differential exponential average (DEA): DEAi = EMA(DIFi, 9)
5. Moving average convergence and divergence (MACD):

MACDi = 2 × (DIFi − DEAi)

6. The price spread fluctuation.

2.3. Data Analysis

Commodity contracts for paired transactions often need to have a long-term and stable
cointegration relationship, such as the combination of rebar and hot-rolled coil. This paper
makes a prediction study based on the real price difference data of this combination. This
section demonstrates the effectiveness of using data.

To ascertain the presence of a long-term stable cointegration relationship among
the selected futures contracts, we utilized EViews10 software to conduct a cointegration
analysis on the original price data.

A close examination of the contract time series plot shown in Figure 1 reveals that the
closing price data for both RB and HC display comparable fluctuation patterns. This initial
observation indicates a potential correlation between the price data of these two commodity
futures. A comprehensive quantitative analysis of this correlation is furnished in Table 1.
The correlation coefficients computed for the opening price, closing price, highest price, and
lowest price collectively suggest a significant correlation between the two commodities.
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Table 1. Correlation test of the time series.

CORR Open Close High Low

RB-HC 0.990999 0.991001 0.991005 0.990997
A correlation analysis of two time series, RB and HC, was conducted based on tick data and fitted into 1 min
candlesticks where four price indicators are correspondingly analyzed for correlation.
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While most variables within financial data are nonstationary, research into their corre-
lations reveals intrinsic linkages and a stable equilibrium relationship over the long term. In
this study, we performed stationarity tests on the selected RB and RH price series, employ-
ing the commonly used augmented Engle–Granger (ADF) method to test the stationarity
of the time series. Tests were conducted for the series at 0th and 1st order unit root, with
results presented in Table 2. As the data in the table elucidate, for the price series of RB and
HC, we could not reject the null hypothesis at a 5% confidence level in the 0-order unit root
test. Therefore, all variables were nonstationary. However, after differentiating the series
at the 1st order, the absolute values of the t-statistics of each variable were greater than
any critical value, with accompanying probabilities of zero, indicating each of them was
stationary under a first-order differential. Consequently, it can be inferred that the price
series of the principal futures contracts of both RB and HC are integrated into order one.

Table 2. ADF test on the price data of RB and HC.

Order Series
Test

Statistic
Critical Value p

Value
Stationarity

(5%)1% 5% 10%

Zero

RB

CLOSE −1.889

−3.431 −2.862 −2.567

0.337 no
OPEN −1.872 0.345 no
HIGH −1.891 0.337 no
LOW −1.934 0.334 no

HC

CLOSE −1.927

−3.431 −2.862 −2.567

0.312 no
OPEN −1.933 0.317 no
HIGH −1.925 0.337 no
LOW −2.067 0.258 no

One

RB

CLOSE −67.71

−3.431 −2.862 −2.567

0.000 yes
OPEN −227.87 0.000 yes
HIGH −45.67 0.000 yes
LOW −48.87 0.000 yes

HC

CLOSE −64.35

−3.431 −2.862 −2.567

0.000 yes
OPEN −148.11 0.000 yes
HIGH −55.819 0.000 yes
LOW −49.22 0.000 yes

Subsequently, we can initiate the Engle–Granger cointegration test, beginning with
the formulation of the cointegration equation as follows:

hc_close = c · rb_close + et (2)

where et denotes the cointegration residual, or simply the residual. The parameter c
represents the cointegration coefficient.

Table 3 presents the results of the Engle–Granger cointegration test. At the 1% confi-
dence level, the ADF test statistic of the residual series is smaller than the critical value. As
a result, we reject the null hypothesis and consider the series to be stationary. In accordance
with Engle–Granger’s cointegration theory, we deduce that the price data for the main
contracts of RB and HC exhibit a cointegration relationship. Consequently, these data are
suitable for pair trading.

Table 3. ADF test on the residual series.

Residual ADF Test
Statistic

Critical Value
p-Value Conclusion

1% 5% 10%

et −4.52 −3.431 −2.862 −2.567 0.0001 cointegration
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To ensure the effectiveness of our fitting process, we conducted a stationarity test on
the fitted spread data. Table 4 demonstrates that the fitted spread data are a stationary time
series at a 5% confidence level, indicating that our fitting process is robust and reliable. The
time series plot of the fitted data for the closing price spreads is displayed in Figure 2.

Table 4. ADF test on the fitted spread series.

Series ADF Test
Statistic

Critical Value
p-Value Stationarity

(5%)1% 5% 10%

CLOSE −4.609

−3.431 −2.862 −2.567

0.0001

yesOPEN −4.825 0.0000
HIGH −4.785 0.0001
LOW −4.607 0.0000
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3. Methodology
3.1. Convolutional Long Short-Term Memory (ConvLSTM)

Originally introduced in 2015 by Shi et al. [18], ConvLSTM is a neural network architec-
ture that ingeniously combines convolutional neural networks (CNN) and long short-term
memory networks (LSTM). This special blend of architectures allows ConvLSTM to lever-
age the benefaction of convolution operations in data feature extraction and characterize
the recurrent information propagation inherent in LSTM.

In comparison with conventional LSTM networks (the structure of the ConvLSTM cell
is shown in Figure 3), ConvLSTM initially employs convolution operations to extract data
features before training to better predict numerical trends. ConvLSTM, fundamentally a
recurrent neural network, uses the output of the previous recurrent unit as the input to
the subsequent one and hosts three LSTM gating units. With the inclusion of convolution
operations, ConvLSTM exhibits the ability to capture spatial variations during object
motion. Consequently, ConvLSTM has found extensive applications across various spheres
like video prediction [19], image compression [20], and other general algorithmic tasks [18].

The internal structure of ConvLSTM comprises a fully connected layer where the
input, cell output, and state vectors are all one-dimensional (1D). The entire input data,
cell outputs, hidden layers, and all three gating units of ConvLSTM, however, maintain a
representation in 3D tensors. The state of a unit at a specific moment is determined by the
convolution operator in the ConvLSTM network, with the convolution kernel size outlining
the speed of the detected action. Contrasting with traditional fully connected LSTM,
ConvLSTM effectively handles the tokenization of pure numerical data. ConvLSTM is better
suited for handling the tokenization of raw numerical data. Through the convolutional
operation between data and convolution kernels, kernel parameters are shared across input
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data, enhancing the extraction of more generalized features. Equation (3) provides the
mathematical representation of a single ConvLSTM network unit:

it = σ(Wxi · Xt + Whi · Ht−1 + Wci ⊙ Ct−1 + bi)

ft = σ(Wx f · Xt + Wh f · Ht−1 + Wc f ⊙ Ct−1 + b f )

Ct = ft ⊙ Ct−1 + it ⊙ tan h(Wxc · Xt + Whc · Ht−1 + bc)

ot = σ(Wxo · Xt + Who · Ht−1 + Wco ⊙ Ct + bo)

Ht = ot ⊙ tan h(Ct)

(3)

where Xt represents the input data and hidden state at sequential time t, while ft, it and ot
denote the forget gate, input gate, and output gate, respectively. The function is a sigmoid
function defined as σ(x) = 1/(1 + e−x). ⊙ signifies an element-wise dot product. W and b
represent weight matrices and bias vectors, respectively. The forget gate layer determines
the extent to which previous information, gathered from Ht−1 combined with Xt. If ft
equals 0, the model completely discards prior information; if ft equals 1, the model retains
all previous information. The input gate layer establishes which information to store in
the cell state ct, in conjunction with the ct vector. Last, the output layer identifies which
information to transmit, incorporating the cell state ct and filtered input ot in the process.
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In application to futures spread prediction, the ConvLSTM network method considers
the correlation of influencing factors. Samples can be perceived as “T images (n, K)” where
T corresponds to the time step, n to the predicted step, and K to the number of selected
influencing factors. This design allows ConvLSTM not only to handle time series autocorre-
lation effectively but also to consider the correlation between various factors. This holistic
approach facilitates addressing multicollinearity problems in regression models, yielding
more accurate futures spread predictions. Thus, through the application of ConvLSTM,
incorporating both time series autocorrelation and inter-factor correlation into account, the
accuracy of predictions is enhanced.

3.2. PSO Deep-ConvLSTM Network

Although ConvLSTM models have demonstrated their aptitude for handling time
series data, determining optimal hyperparameters remains a formidable challenge. Un-
doubtedly, these hyperparameters substantially dictate the resulting network model’s
topology. Consequently, different hyperparameter configurations can lead to varying
degrees of predictive performance. Therefore, the judicious selection of model hyper-
parameters is of paramount importance [21]. However, current research predominantly
relies on subjective means, relying on intuition and trial-and-error methods for hyperpa-
rameter selection. Such an approach obscures the accuracy of determining the model’s
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optimal network structure hyperparameters, resulting in suboptimal prediction accuracy
and inefficient training procedures.

To mitigate these challenges, this study introduces a pioneering integration of the
particle swarm optimization (PSO) algorithm with ConvLSTM, culminating in the PSO
Deep-ConvLSTM model. The model’s primary goal is to facilitate an automated search
for the optimal network structure hyperparameters of ConvLSTM by leveraging the PSO
algorithm. Drawing inspiration from avian foraging behaviors, PSO stands as an intelligent
optimization algorithm [22]. By simulating the collaborative interactions of birds, the
algorithm steers a swarm toward their food source. This is achieved through iteratively
updating their positions based on individual best positions and relative swarm positions,
eventually forming an optimal configuration [23].

The PSO algorithm further boasts an array of appealing features, including ease of
implementation, accelerated convergence rates, and the capacity to search for global optima.
Therefore, the integration of the PSO algorithm enables swift, accurate searching for optimal
ConvLSTM neural network structural hyperparameters. The proposed framework of the
PSO Deep-ConvLSTM model is illustrated in Figure 4.
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3.2.1. Dynamic Adjustment

In the PSO algorithm, for each particle k in the swarm, the velocity and position are
updated at each (i + 1)th iteration using the following Equation (4):{

Vk = ωVk(i + 1) + c1r1(pk
best,i − Xk(i)) + c2r2(gbest,i − Xk(i))

Xk(i + 1) = Xk(i) + Vk(i + 1)
(4)

where pk
best,i is the individual best position of the particle k in the ith iteration; gbest,i is the

global best position of any particle in the ith iteration; ω is the inertia weight, which is a
non-negative number and is used to adjust the search range of the solution space; c1 and c2
are the real acceleration coefficients that control how much the global and individual
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best positions should influence the particle’s velocity; r1 and r2 are uniformly distributed
random numbers in the range of 0 and 1, used to maintain an adequate level of diversity.
Algorithm 1 delineates the particle swarm optimization algorithm in pseudocode format.

Algorithm 1: The pseudocode of the algorithm is as follows

INPUT: Fitness function, lower bound, upper bound is part of the problem, i.e., it will be given in
the problem. N (population size), and T (the maximum number of iterations) are to be chosen by
the user. c1, c2 and ω update by the given equation.

1. Initialize a random population (P) and velocity (v) within the bounds;
2. Evaluate the objective function value (f ) of P;
3. Assign pbest as p and fbest as f ;
4. Identify the solution with the best fitness and assign that solution as gbest and fitness as fgbest

For iteration:
for i = 1 to T:

for k = 1 to N:
Determine the velocity (vk) of kth particle;
Determine the new position (Xk) of kth particle;
Bound Xk;
Evaluate the objective function value fk of kth particle;
Update the population by including Xk and fk;

Update pk
best and fpbest if fk < fpk

best
then

{
pk

best = Xk
fpbest = fk

Update gbest and fgbest if fpk
best

< fgbest then

{
gbest = pk

best
fgbest = fpk

best

end
end

The inertia weight denoted as ω in the PSO algorithm, plays a crucial role in managing
the inertia of particles and endorsing an expansive exploration of the search space. It functions
as an integral parameter in striking a balance between the algorithm’s global and local search
capabilities. An established method of allocating inertia weights involves a linearly decreasing
approach, offering ease of implementation. However, with a linear increase in iteration
numbers, this strategy may subsequently shrink the inertia weight excessively, dampening the
algorithm’s global search capability and precipitating a potential entrapment in local optima.
Moreover, as the algorithm advances into its late stages, the swarm’s diversity is at risk of
being diminished, reflecting a decelerated convergence speed [24].

In the PSO algorithm’s purview, the learning factors c1 and c2 primarily mediate the
step size adjustment for the particle’s trajectory toward the individual’s and flock’s optimal
positions. To hasten the search process during the preliminary iterations and enhance the
global search capability, a decrease in c1′s value coupled with an increase in c2′s value is
typically advocated, thereby fostering local refinement searches during the algorithm’s later
iterations. However, while present optimization research seldom espouses the optimization
of learning factors, traditional PSO algorithms tend to fixate c1 = c2 at constant values,
potentially failing to cater to pragmatic application needs.

Therefore, in light of the aforementioned rationales and extensive simulation experi-
ments, this paper subsequently embraces the ’Dynamic Adjustment Strategy’, as proposed
by Huang Jianhua et al. [24]. This strategy dynamically modulates both the inertia weight
and the learning factors, as modeled in the following implementation Equation (5):

ω = ωmin + [ωmax − ωmin] cos
(

πt
2Tmax

)
+ σ × betarnd(a, b)

c1 = 2
√

1 −
∣∣∣cos

(
cos

(
π
2 × t

Tmax

))∣∣∣
c2 = 2

√∣∣∣cos
(

π
2 × t

Tmax

)∣∣∣
(5)
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Among them ωmax and wmin are the maximum and minimum values of inertia weights,
respectively; Tmax is the maximum number of iterations for particles; σ is the inertia
adjustment factor; beta generates random numbers that follow a beta distribution where a
and b are the two parameters of the beta distribution.

3.2.2. Structure of PSO Deep-ConvLSTM

The network architecture of PSO Deep-ConvLSTM consists of an input layer, multiple
ConvLSTM layers, and an output layer. The specific number of ConvLSTM layers, as well
as hyperparameters such as learning rate, epoch number, and convolution kernel size,
serve as the objectives to be optimized through PSO. After defining the range of values
for hyperparameters optimization and setting the parameters for the particle swarm, the
positions and velocities of each particle are randomly initialized.

Within the learning model, both the loss function for ConvLSTM and the fitness
function for PSO are selected as the “mean squared error (MSE)”. The fitness values are
computed and ranked, aiming to identify a set of hyperparameters that minimize the
ConvLSTM error. The formula for the fitness function can be expressed as follows:

MSE =
1
n

n

∑
1
(ŷi − yi)

2 (6)

In this equation, the variable n represents the sample size of the validation dataset, yi
denotes the actual value, and ŷi represents the predicted value.

The optimal value of the target parameter is output when the optimization process
satisfies the convergence condition. Otherwise, it will repeat the process of computing
the particle’s fitness, updating the position and velocity of each particle, and updating the
pk

best,i and gbest,i until satisfying the convergence conditions.

3.2.3. Steps of the PSO Deep-ConvLSTM

The flowchart illustrating the process is depicted in Figure 5. The specific procedure
for optimizing the parameters of the ConvLSTM network using PSO can be methodically
outlined in six steps as follows:

Step 1: Preprocessing. The data preprocessing comprises several stages: conversion
of the data into a format compatible with CONVLSTM, data normalization, sorting, and
further normalization processing. Subsequently, we proportionally divide the data into the
training and test sets.

Step 2: Parameters Initialization. Initial settings for particle swarm parameters, such as
particle swarm size, the number of algorithm iterations, and the range of iteration steps, are
established. Afterward, we randomly initialize the position and velocity of each particle.

Step 3: Fitness Value Calculation. MSE (Mean Square Error) serves as the fitness
function in our method. By training the CONVLSTM neural network model, we can assess
the fitness of each particle. Consequently, the personal historical best value (pbest) and the
global best value (gbest) are deduced based on the current fitness values.

Step 4: Particle Speed and Position Update. Particles’ velocities are dynamically
adjusted according to the individual historical best position and the global best position of
the population. The particle’s position is influenced by both its previous position and the
current particle velocity. In particular, the update of each particle’s velocity and position
can be executed as per Equations (4) and (5).

Step 5: Iteration Loop Evaluation. If the iteration is completed, the best value is
outputted; otherwise, the process returns to Step 3.

Step 6: Prediction. The optimal hyperparameters are revealed and the model is trained
based on these hyperparameters. Following this, the model’s predictive capabilities are
utilized to forecast future data.
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The PSO Deep-ConvLSTM model we finally built is based on the algorithm-optimized
parameters, which determine the structure of the model and give a final decision-making
ability to the model. The process of algorithmic optimization search demonstrates the
origin of our parameter settings and model building while maximizing the elimination of
human factors and enhancing the interpretability of the model structure and parameters.

4. Experiment
4.1. Experimental Environment

The hardware and software configurations used for this experiment are shown in
Table 5. The network was built under the Pytorch deep learning framework, and training
and testing of the network were conducted based on this framework.

Table 5. Experimental environment.

Items Python
Version Memory GPU System CUDA

Parameter Python3.8 32GB Tesla V100 Centos7 CUDA11.7

4.2. The Processing of Data

To verify the performance of the proposed prediction model, this paper adopts one-
minute interval k-line fitting price spread data as the experimental data. Each term of
the price spread data is composed of eight features, including the opening price spread,
highest price spread, lowest price spread, closing price spread, MACD, DEA, DIF, and
price spread fluctuation. In the experiment, we allocate 70% of the dataset as the training
set for the comparative model, with the remaining 30% serving as the test set. For the
PSO Deep-ConvLSTM model, the first 70% of the dataset is utilized for the optimization
algorithm to search for optimal parameters and train the model, with the final 30% deployed
as the test set to assess the model’s generalization error. Herein, the data are processed
as follows: Prior to feeding the feature data into the artificial neural network, the data
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undergo normalization, being effectively converted into a [0, 1] range. This approach not
only minimizes the impact of noise, enhancing the predictive accuracy of the model, but
also expedites model convergence, ensuring efficient parameter updates within the neural
network. Equation (7) provides the formula for normalization:

xi =
xi − xmin

xmax − xmin
(7)

where xmin and xmax, respectively, represent the minimum and maximum values of the
entire training set.

As the data are subject to normalization during the model training phase, the output
of the test set can be reverse normalized using Equation (8).

xi = x′t · (xmax − xmin) + xmin (8)

where x′t is the output value of the forecasting model.

4.3. Judgement Criteria

To assess the performance of the prediction model, this study employs the following
four metrics to measure the model’s predictive accuracy: mean absolute percentage error
(MAPE), which takes into account the error between predicted and actual values as well
as the proportionality of the error to the actual values; root-mean-square error (RMSE), a
measure of the discrepancy between observation values and actual values; mean absolute
error (MAE), an indicator reflecting the real error in predicted values; and the coefficient of
determination (R2), a gauge of the predictive power of a statistical model. The respective
formulas are as follows: 

eMAPE = 1
n

n

∑
1

|ŷi−yi |
yi

eRMSE =

√
1
n

n

∑
1
(ŷi − yi)

2

eMAE = 1
n

n

∑
1
|ŷi − yi|

R2 =

n

∑
1
(ŷi−y)2

n

∑
1
(yi−y)2

(9)

In these equations, yi and ŷi denote the actual and predicted values of the price spread
data at time I, respectively; n stands for the sample size of the test dataset; and y represents
the average value of the dataset. Typically, the smaller the values of MAPE, RMSE, and
MSE, the less the deviation between the predicted and actual values. The value of R2,
which falls within the range [0, 1], is utilized to measure the accuracy of predictions by a
statistical model. Ordinarily, a higher R-squared implies superior modeling performance.

4.4. Optimizing Network Parameters by the PSO

In the pursuit of effectively updating the weight of the neural network, this study has
employed the Adam optimizer for the optimization of model parameters, with a batch size
established at 128. The ConvLSTM model’s compatibility with our dataset was assured via
the implementation of the particle swarm optimization (PSO) algorithm for ConvLSTM
hyperparameter optimization.

The PSO algorithm, by mimicking the communal behaviors exhibited by birds when
locating food, leverages a combination of individual and collective experiences to progressively
approach the target of interest. Continuous position updates, shaped by their personal
optimum position in tandem with the overall flock’s optimum position, consequently get



Appl. Sci. 2024, 14, 3798 14 of 20

folded into an optimal configuration [25]. PSO operates in iterations, allowing for swarm
updates through alterations in each component’s velocity and position in every cycle. These
updates fundamentally depend on personal best values (pbest) and global best values (gbest).
Therefore, the accurate tuning of the PSO parameters is of utmost importance.

Eberhart and Shi’s research [22] posits that a decent solution success rate is achievable
when a PSO algorithm deploys a particle range of 20 to 50. However, our experiments have
illustrated that employing a particle size of 6 allows for quicker convergence of the PSO
algorithm with fewer computational resource requirements. A comprehensive review of
PSO-centric literature [26–29] guided us in setting the particle size at 6 and iteration count
at 10, with the upper and lower bounds of W being determined as 0.9 and 0.4, respectively.

Furthermore, an examination of academic literature surrounding the application of the
ConvLSTM network in prediction problems [30,31], as well as relevant works, highlighted
the pivotal role of the number of ConvLSTM layers and the size of the convolution kernel
corroborated by the results of our experiments. Consequently, we selected the learning
rate, size of the convolution kernel, the number of ConvLSTM layers, and the epoch as
targets for optimization. A logical search range is essential to preventing issues such as
excessive resource consumption associated with expansive search ranges during the search
process. Following the analysis of related research, definitions for the search ranges were
formulated as being [0.00001, 0.0005] for the learning rate, [1, 9] for convolution kernel size,
and [2, 7] for layers of ConvLSTM. Besides, a few random epoch values were tested while
keeping other parameters constant, revealing a suboptimal model performance when the
epoch is less than 100 and an improved performance when it exceeds 300. However, to
account for potential randomness, the epoch range was set between [1, 400].

With the search range of the target optimization parameters, we will obtain the
optimal parameters by the PSO. As delineated in Table 6, the optimal parameters for
the ConvLSTM model, as yielded by application of the PSO, stand at a learning rate
of 5.7399496072129 × 105 an epoch count of 365, ConvLSTM layer featuring 6 neurons,
and kernel-size of 6. Figure 6 shows the evolution of the loss function of the PSO Deep-
ConvLSTM model during training and testing. Utilizing this optimal parameter configu-
ration should potentialize the performance of the ConvLSTM model, particularly in the
domain of arbitrage spread prediction.
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Table 6. Results of hyperparametric optimization.

Parameter Search Range Optimal Value

Learning rate [0.00001, 0.0005] 5.7399496072129 × 105

Epoch [1, 400] 365
ConvLSTM layers numbers

Kernel size
[2, 7]
[1, 9]

6
3

4.5. Experimental Results and Analysis

In this section, as we employ our proposed model to conduct multistep, multidimen-
sional predictions on inter-commodity futures price spread data, it is imperative to validate
the forecasting effectiveness of different models. According to the study by Kline et al. [32],
multistep predictions can be realized through either iterative or independent methods.

1. The iterative method uses a single step-ahead model to iteratively generate forecasts.
2. The independent method uses a dedicated network to forecast each forecast horizon.

For comparative experimentation purposes, we have selected the following models:
iterative LSTM, iterative GRU, Transformer, and FEDformer. The first two models belong to
the iterative category, while our employed ConvLSTM, Transformer, and FEDtransformer
adopt the independent prediction approach.

Specifically, recurrent neural networks (RNNs) have been appropriated in the realm
of financial forecasting due to their distinct advantages in handling time series problems.
However, they do present certain drawbacks, particularly the issue of gradient explosion.
LSTM networks, capable of remedying the setbacks of RNNs, offer enhanced feature
extraction and generalization abilities. The GRU model is another variant of the LSTM
model. We have made minor modifications to these models enabling them to perform
iterative predictions, thereby accomplishing multistep predictions.

Additionally, the Transformer [33] is an encoder-decoder structure primarily encom-
passing position encoding, position embedding, and a self-attention module. The multihead
attention feature in the Transformer allows for parallel computation, thereby reducing the
training duration. Since its introduction in 2017, the Transformer has been widely applied
to various data types, including text and image data. The FEDformer is a variant of the
Transformer model [34] that combines the Transformer with the seasonal-trend decom-
position method and uses randomly selected Fourier components to maintain a compact
representation of time series. This not only overcomes the Transformer’s high computation
cost and inability to capture a global view of time series, but it also further enhances
prediction accuracy. Thus, we have also selected these two models for comparison. By
evaluating our proposed model against these models, we can ascertain its performance
and effectiveness in predicting cross-commodity futures price spreads, supplying valuable
references for further research and application.

In the experiments, the batch size for all models was set to 128. For LSTM and GRU
models, a two-layer structure was adopted with a learning rate of 0.0001 over 100 training
epochs. The number of neurons was set to 100 and 20 for the first and second layers,
respectively, while the Transformer and FEDformer models utilized the official default
parameters. To comprehensively evaluate the performance of our proposed model and
validate its superiority under different prediction horizons, we selected prediction settings
of one, four, and eight steps. Specifically, the one-step prediction was primarily employed
for benchmarking against LSTM-based models, highlighting the competitive edge of our
proposed model in single-step forecasting. On the other hand, the four-step and eight-
step predictions were utilized to assess the model’s refinement capabilities in handling
multistep forecasting tasks. For ease of reference, the models were assigned numerical
identifiers: the GRU model was Model-1, the LSTM was Model-2, the Transformer was
Model-3, FEDforemer-W was Model-4, FEDformer-F was Model-5, and our proposed PSO
Deep-ConvLSTM was Model-6.
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Table 7 provides a detailed characterization of each model’s performance indicators for
one-step, four-step, and eight-step predictions across the “open”, “high”, “low”, and “close”
dimensions. To clearly observe that the PSO Deep-ConvLSTM model can approximately
predict the trend, we have plotted a comparison between the model’s eight-step predictions
for the “close” dimension and the actual values (as shown in Figure 6). Additionally,
Figure 7 illustrates the prediction errors of the PSO Deep-ConvLSTM model compared
with the actual values, providing further insight into its predictive accuracy.

Table 7. Evaluation results of the model for one-step, four-step, and eight-step predictions across
four dimensions.

Model Metrics
OPEN HIGH LOW CLOSE

One Four Eight One Four Eight One Four Eight One Four Eight

Model-1

RMSE 2.508 10.420 19.331 2.778 8.927 20.148 2.623 8.708 20.194 2.832 9.898 18.960
MAE 2.104 8.483 15.409 2.296 7.190 16.187 2.367 6.934 16.273 2.316 7.999 15.086

MAPE 1.782 6.195 12.565 1.942 5.389 13.567 2.187 4.912 12.992 2.268 5.817 12.351
R2 0.994 0.950 0.873 0.991 0.964 0.861 0.993 0.966 0.862 0.992 0.955 0.878

Model-2

RMSE 2.334 11.211 13.401 2.800 11.270 13.657 2.506 11.739 14.345 2.260 11.126 13.980
MAE 1.904 8.762 10.113 2.141 8.781 10.469 2.186 9.268 11.062 1.871 8.736 10.782

MAPE 1.642 6.279 7.706 1.439 6.402 8.223 1.843 6.511 8.367 1.700 6.261 8.275
R2 0.995 0.941 0.939 0.994 0.940 0.936 0.992 0.935 0.930 0.993 0.942 0.933

Model-3

RMSE 4.833 3.892 4.500 4.513 3.792 4.721 5.582 4.907 4.529 5.013 4.359 4.394
MAE 4.204 2.825 3.277 3.811 2.641 3.496 4.910 3.881 3.279 4.292 3.275 3.136

MAPE 3.397 2.099 2.439 3.069 1.897 2.692 3.928 3.002 2.387 3.390 2.488 2.266
R2 0.992 0.995 0.992 0.993 0.995 0.992 0.990 0.992 0.992 0.992 0.994 0.993

Model-4

RMSE 4.613 4.829 4.583 6.613 5.036 4.713 5.715 4.304 4.532 6.462 4.225 4.512
MAE 3.738 3.691 3.251 5.359 3.883 3.369 4.556 3.090 3.058 5.251 3.123 3.192

MAPE 2.796 2.647 2.270 4.143 2.825 2.409 3.347 2.152 2.094 3.848 2.224 2.228
R2 0.993 0.992 0.993 0.985 0.991 0.992 0.989 0.994 0.993 0.986 0.994 0.993

Model-5

RMSE 2.534 3.974 4.321 2.874 3.828 4.310 2.810 3.792 4.410 2.808 3.833 4.455
MAE 1.751 2.763 3.008 1.978 2.606 2.944 1.893 2.617 3.026 1.989 2.645 3.038

MAPE 1.245 1.963 2.094 1.438 1.854 2.085 1.312 1.793 2.071 1.410 1.844 2.137
R2 0.998 0.995 0.994 0.997 0.995 0.994 0.997 0.995 0.993 0.997 0.995 0.993

Model-6

RMSE 1.437 2.387 4.296 1.598 2.569 4.542 1.691 2.591 4.643 1.307 2.767 4.598
MAE 1.215 1.633 3.103 1.240 1.830 3.304 1.359 1.782 3.411 0.922 1.953 3.353

MAPE 0.910 1.162 2.218 0.949 1.311 2.447 1.006 1.258 2.405 0.669 1.411 2.405
R2 0.999 0.998 0.994 0.999 0.998 0.993 0.999 0.998 0.993 0.999 0.997 0.993

The GRU model was Model-1, the LSTM was Model-2, the Transformer was Model-3, FEDforemer-W was Model-4,
FEDformer-F was Model-5, and our proposed PSO Deep-ConvLSTM was Model-6.
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From these data and figures, we can obtain an approximate understanding of the
relative merits of each model. To enable a more intuitive and precise comparison of
predictive effectiveness among the models and to underscore the superior performance
of the PSO Deep-ConvLSTM model, we compiled the average of these indicators across
all dimensions.

Figure 6 clearly illustrates that, for one-step-ahead predictions, the LSTM model
has a significant advantage over other models, such as the Transformer. The PSO Deep-
ConvLSTM model yields RMSE, MAE, and MAPE values of 1.508, 1.184, and 0.884, respec-
tively. Compared with the traditional GRU and LSTM models, our proposed model has
achieved a reduction of 43.8% and 39.1% in RMSE, 47.9% and 41.6% in MAE, and 56.8% and
46.6% in MAPE, demonstrating its superior prediction performance in single-step forecast-
ing. From Figure 7, we observe that in four-step-ahead predictions, the LSTM and GRU
models start to falter, while the Transformer-type models begin to show their strengths.
The performance of LSTM and GRU deteriorates significantly, whereas the proposed model
attains RMSE, MAE, and MAPE values of 2.579, 1.800, and 1.286, still delivering satisfactory
results. When compared with advanced Transformer and FEDformer models, the PSO
Deep-ConvLSTM model exhibits a decrease in RMSE by 39.1%, 43.9%, and 33.1%; in MAE
by 43.0%, 47.8%; and 32.3%, and in MAPE by 45.8%, 47.8%, and 31.0%. This implies that
the discrepancy between predicted and actual values for the four-step-ahead forecast is
smaller with higher prediction accuracy. Furthermore, the R2 value is closer to 1, indicating
a strong fitting capability. In Figure 8, in the case of eight-step-ahead predictions, the
performance of LSTM and GRU models is quite poor, which also justifies their advantage
in short-term forecasting. As the number of prediction steps increases, the error metrics
exhibit substantial deterioration. However, the proposed model, with RMSE, MAE, and
MAPE values of 4.520, 3.293, and 2.369, can alleviate this issue to some extent. In com-
parison with the long-term forecasting-focused Transformer model, our model reduces
the various metrics by 0.4%, 0.1%, and 3.1%, respectively. Even when compared with the
FEDformer model, an expert in long-term forecasting, our model surpasses it under the
wavelet exchange mode and remains fairly competitive under the Fourier exchange mode.
Figures 9–11 display the average evaluation indicators for single-step and multiple-step
predictions of the six models.

In summary, the PSO Deep-ConvLSTM model achieves satisfactory prediction results
in both single-step and multistep forecasting.
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5. Conclusions and Future Perspectives

In this study, we propose the PSO Deep-ConvLSTM futures price spreads prediction
model, aiming to offer a superior predictive tool to aid investors in devising efficient arbi-
trage strategies within futures markets. The model’s efficacy was tested using real historical
futures data and assessed by juxtaposing the data with alternate time series models. The
empirical observations revealed the PSO Deep-ConvLSTM model’s distinct precision and
superiority in both single-step and multistep predictions for futures price spread forecast-
ing, particularly its augmented capacity to apprehend the nonlinear attributes embedded
in the data. Additionally, we employed multiple data sets to further enhance the model’s
confidence stability and generalization ability. The model exhibited comprehensive analyti-
cal competencies, considering multiple market indicators, thereby affirming its reliability
in handling the complexities and volatility inherent in futures markets.

The model’s supremacy is reflected in two primary facets. Initially, the application of
PSO methodology enhances the weight initialization and precision of parameters within
the ConvLSTM network model, thus augmenting the objectivity of parameter selection.
Moreover, its multidimensional and multistep predictive capacities pave the way for con-
structing arbitrage strategies based on forecast accuracy and comprehensiveness, elements
of paramount importance to financial market participants.

To conclude, while the PSO Deep-ConvLSTM model has demonstrated significant
performance potential, opportunities for amplification remain. These can include the
integration of strategic statistical combinations and the addition of more futures market
traits. Additionally, extending the model’s application to other financial markets might
further quantify its generalizability and adaptability. Anticipated future research may build
upon this groundwork, proffering an expanded range of applications within the financial
sector, thus presenting an array of profound possibilities.
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