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Abstract: Monitoring the health status of aerospace structures during their service lives is a critical
endeavor, aimed at precisely evaluating their operational condition through observation data and
physical modeling. This study proposes a probabilistic assessment approach utilizing Dynamic
Bayesian Networks (DBNs), enhanced by an improved adaptive particle filtering technique. This
approach combines physical modeling with various predictive sources, encompassing cognitive
uncertainties inherent in stochastic predictions and crack propagation forecasts. By employing crack
observation data, it facilitates predictions of crack growth and the residual life of metal structure. To
demonstrate the efficacy of this method, the research leverages data from three-point bending and
single-edge tension fatigue tests. It gathers data on crack length during the fatigue crack progression,
integrating these findings with digital twin theory to forecast the residual fatigue life of the specimens.
The outcomes show that the adaptive DBN model can precisely predict fatigue crack propagation
in test specimens, offering a potential tool for the online health assessment and life evaluation for
aerospace structures.

Keywords: dynamic Bayesian network; structural health monitoring; particle filter; fatigue crack growth

1. Introduction

Modern aerospace vehicles must withstand complex service environments, posing an
increasingly strict requirement for structural performance. As the service load condition
becomes severer, coupled with inevitable defects and residual stresses from manufacturing
processes, the degradation of material and structural performance is an issue that cannot
be ignored. The harsh service environment can generate structural damage in terms of
cracks, delamination, etc., which poses a serious threat to structural safety and integrity.
On the other hand, the reusability of aerospace structures has been a core concern in recent
years [1]. Reusability is achieved through a combination of a “safety factor + regular
maintenance” approach, that is, by increasing the safety margin to enhance structural
durability and ensuring reliability through inspections and maintenance [2]. This challenge
necessitates a deep understanding of the service environment and load-bearing capacity of
structures, as well as effective prediction and management of potential damages. To further
enhance the confidence in structural integrity assessments, structural health monitoring
technologies for real-time monitoring and evaluation of the service state of structures play a
significant role in improving structural performance, ensuring service safety, and reducing
maintenance costs [3].

Currently, there are two main methods for structural health monitoring [4]: one is
based on artificial intelligence data analysis, and the other is based on physical models
(PMs). However, the use of pure data-driven models can be expensive, as it requires
costly experiments to obtain data. Meanwhile, simulation-driven PM/FEM models have
modeling errors that deviate from actual structures. Practical systems inevitably encounter
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uncertainties [5], such as sensor noise, material defects, mechanical damage, vibration, and
load interference, which can interfere with their diagnostic reasoning and health assessment.
Additionally, real-world systems are dynamic and change over time with their health status.
Therefore, there is a crucial need to combine physical models with data-driven models to
solve health monitoring problems.

Recently, the concept of digital twins has gained widespread attention in the field
of intelligent manufacturing due to the development of communication technology in
intelligent algorithms [6,7]. Digital twins establish an interactive relationship between the
physical and digital worlds. They provide simulation models based on physical mecha-
nisms and health monitoring services for data obtained in the physical world. Complex
systems collect sensor data from the physical world and send them to digital twin virtual
models through communication technology. The digital twin virtual model processes these
data, updates the simulated physical model in real time, and sends control commands to
provide optimization and decision support for physical systems.

The U.S. Air Force adopted the “Airframe Digital Twin” (ADT) for aircraft design,
maintenance, and performance prediction. It employs digital twins to replicate the physical
and mechanical attributes of aircraft, enabling the prediction of structural fatigue cracks and
extension of the aircraft’s remaining service life [8–10]. The ADT encompasses three core
modules: online monitoring, condition assessment, and lifespan prediction. It integrates
aerodynamic and finite element analyses along with other structural models, which monitor
the evolution of fatigue, vibration, and other material states in flight structures. Through
dynamic updates incorporating specific geometry, material properties, flight history, and
maintenance data, the ADT precisely forecasts aircraft behavior. This allows decision-
makers to tailor personalized management strategies for each aircraft, thereby prolonging
service life and reducing maintenance expenses.

Various types of sensors are utilized within the monitoring data collection module of
ADT systems for the identification of damage, including ultrasonic sensors, X-ray devices,
piezoelectric sensors, fiber Bragg gratings, and distributed fiber optics [11–15]. These
sophisticated sensing devices enable the timely detection of crack damages, thus providing
a robust guarantee for the safety assessment of structures.

However, due to uncertainties associated with, e.g., material geometry, internal defects,
irregular damages, and mechanical environments, the prediction of damage evolution in
aerospace structures exhibits unsatisfactory accuracy. Therefore, it is necessary to establish
a probabilistic model that integrates diagnosis and prediction, which can reduce the un-
certainty of time-independent state variables through continuous observation (diagnosis)
and probabilistically predicts the evolution of future crack damages (prognosis), thereby
obtaining a more accurate assessment of the structural health state with multiple sources
of uncertainty.

Within the digital twin framework, the Dynamic Bayesian Network (DBN) is among
the most widely applied probabilistic methods [16,17]. Its robust system reliability frame-
work makes it a primary method for representing and managing uncertainties in physical
models (related to geometry, materials, connection stiffness, etc.) in digital twins. DBNs
excel at providing direct representations of complex systems and are highly effective in
identifying inter-component relationships, making them suitable for monitoring, diagnosis,
and prediction tasks in uncertain environments. A unique advantage of DBNs is their
ability to integrate a wide range of information sources, including experimental data, his-
torical records, and expert opinions, which is particularly valuable in fault-tolerant systems
where data are often sparse and varied. Additionally, DBNs stand out for their capability
to model the temporal dynamics of cascading events, offering a more accurate description
of how systems evolve over time. This enhances prediction accuracy and aids in better
decision-making, resource planning, and allocation in complex and evolving systems.

Wei et al. [18] proposed an object-oriented modeling approach, building a DBN for
the entire aviation system health in a bottom–up manner based on Bayesian theory, and
validated its effectiveness and robustness through experiments on a specific aviation fuel
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delivery system. Yu et al. [19] introduced a digital twin health monitoring method based
on non-parametric Bayesian networks, combining an improved Gaussian particle filter and
a Dirichlet process mixture model for real-time model updating, significantly enhancing
monitoring accuracy. Karve et al. [20] developed an intelligent task planning method
based on digital twins, employing a DBN to predict the probability distribution of crack
propagation, considering the quantification of uncertainties and encompassing damage
diagnosis, prediction, and task optimization, to optimize fatigue crack growth and mainte-
nance intervals. Rabiei et al. [21] proposed a DBN framework for the online integration of
health assessment information from empirical crack growth models, structural health mon-
itoring, and regular inspections, updating crack size distribution and model parameters for
prediction. Boris et al. [22] introduced a framework utilizing a DBN with MCMC for pre-
dicting and updating crack length in fatigued structural components, including parameter
probability density identification and updating. Lee et al. [23] proposed a Bayesian method
to estimate initial crack length distribution for PRA of repaired structures, improving
parameter selection and analyzing KT-1 aircraft repair risk.

However, Bayesian networks have some defects. For instance, they are highly depen-
dent on prior probabilities, and prior probabilities often depend on assumptions, leading to
poor prediction results. Moreover, the large noise of dynamic measurement data acquisition
and the calculation time cost of Bayesian distribution steps make online real-time Bayesian
network systems less accurate and precise than offline Bayesian monitoring systems [24],
especially for data that are more dependent on manual observation, such as cracks, which
are often scarce, and it is challenging to meet the needs of Bayesian networks for a large
amount of observation data.

To overcome existing limitations, this study introduces an innovative adaptive DBN
model aimed at crafting a predictive module for tracking the evolution of fatigue crack dam-
age in the digital twin systems of aerospace structures. This sophisticated model merges
adaptive particle filtering with a comprehensive range of cognitive uncertainties found in
crack propagation equations, spanning material characteristics, geometric configurations,
model parameters, measurements, and load conditions. It adeptly monitors the progres-
sion of time-variant state variables while minimizing uncertainties in time-invariant states
(diagnosis). Moreover, the model leverages real-time updates, drawing from calibrated
probability distributions of parameters and forecasts, to provide probabilistic estimates of
fatigue crack growth and the remaining lifespan (prognosis). Each update introduces new
particles to mitigate particle impoverishment, thus ensuring more accurate predictions.
The validity and applicability of this model were confirmed using data from three-point
bending and single-edge crack fatigue experiments. The findings reveal that the model
precisely forecasts the velocity of damage crack progression, offering a feasible tool for the
real-time evaluation of structural health and lifespan assessment.

2. Principle and Methods
2.1. Fatigue Crack Growth Theory

In general, the fatigue failure of materials will go through three stages: crack initiation,
stable expansion, and rapid unstable failure of cracks. Due to the relatively short time of
rapid unstable failure of cracks, the fatigue life is often calculated by selecting the crack
initiation life (from the beginning of use to the appearance of engineering detectable cracks)
and the crack expansion life (from detectable cracks to critical crack size), as shown in
Figure 1.
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The mechanism of crack formation life is quite complex. From the beginning of
crack nucleation to the point where microscopic cracks expand into macroscopic cracks,
it accounts for the largest proportion of fatigue life. Crack nucleation is mainly caused
by local stress and strain concentration, and the existence of tiny inclusions or voids in
engineering materials has a great influence on the crack nucleation process, resulting in
a large degree of discreteness in crack formation life. The length range of microscopic
cracks is generally 10–100 µm, which is at the same order of magnitude as the size of
the plastic zone at the crack tip. Currently, there are two commonly used methods for
estimating crack formation life without obvious macroscopic cracks. The first method is to
use the relationship curve between external constant amplitude cyclic stress amplitude S
and fatigue life N (referred to as S-N curve) as the main design basis for anti-fatigue design
methods. This method has a long history and is still adopted by many anti-fatigue design
specifications today. The other method is to assume a reasonable microscopic crack size
based on experience (such as a microscopic crack length of 0.0588 inches commonly used
in flight structures as the minimum observation size) and use the formula for macroscopic
crack extension in fracture mechanics to calculate residual life.

Therefore, whether it is the fatigue life prediction of cracks that assumes reasonable
microcrack sizes or the prediction of macroscopic crack fatigue life, it ultimately comes
down to the study of the crack propagation rate. Currently, within the category of online
elastic fracture mechanics, the strength of the crack tip singularity is characterized by a
single parameter, stress intensity factor K. Therefore, many scholars consider linking the
fatigue crack propagation rate with K and then propose a series of fatigue crack propagation
rate formulas, such as the most basic and commonly used Paris’ law [25], the Forman
law [26], and the Walker law [27] that considers the influence of stress ratio R and strength
factor threshold Kth, as well as the full crack propagation formula and Nasgro law [28] that
integrates simulation software.

According to Paris’ law [25], the crack growth is described by the following:

da
dN

= C(∆K)m (1)

where K = Fσ
√

πa is the stress intensity factor. F is the shape factor. σ is the equivalent
stress, which is the stress at the crack location calculated without cracks. a is the crack
length. C and m are material parameters determined by experiments. da/dN is the fatigue
crack propagation rate. This formula expresses the fatigue crack propagation rate in the
form of a power function of the stress intensity factor amplitude ∆K, which describes the
law of crack propagation well and has the advantage of convenient calculation. Therefore,
it is still widely used in engineering structural fatigue life prediction.

Fatigue crack growth life is the total number of load cycles from the initial crack a0
to the critical crack length ac. First, Equation (2) is used to obtain the size of critical crack
size ac.

ac =
1
π

(
KC

Fσmax

)2
(2)

where σmax is the maximum cyclic stress. KC is the fracture toughness of the material.
According to crack growth Equation (1), the theoretical formula for predicting residual

life is as follows:
N =

∫ ac

a0

da
C(∆K)m (3)

Walker considered the influence of stress amplitude on crack propagation and incor-
porated the stress ratio R into the Paris’ law, referred to as the Walker law [27], as follows:

da
dN

= C
(
(1 − R)α∆K

)m (4)
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However, these laws have some limitations, and the accuracy is different under
different crack conditions. For the complex crack conditions in practice, which law can
obtain more accurate results is a problem to be solved.

2.2. Brief Introduction to Dynamic Bayesian Network

Figure 2 illustrates a simple example of a DBN. Nodes Ai and Ci represent hidden
variables, indicating states that cannot be directly observed. In some cases, the variable
Ci corresponds to a physical model, and Ai represents parameters of Ci. The node Di
denotes observed variables. The subscripts correspond to different moments. The arrows
between nodes describe the conditional dependencies between variables, pointing from
parent nodes to child nodes. This directionality from “cause” to “effect” signifies a causal
relationship or non-conditional independence between parent and child nodes, which is
mathematically characterized by conditional probability distributions (CPDs). Variables
with the same subscript form an independent BN, and BNs across different time slices are
also connected by arrows, depicting the influence of variables from one moment to the next.
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According to Figure 2, a DBN consists of two parts [29]: prior network B and transition
network B→. The prior network defines the joint probability distribution C1 of the initial
state B1 at t = 1. According to Bayesian inference, the probability formula for the hidden
variable C can be written on the prior network as follows:

P(C|A, D ) =
P(D|C, A )P(A|C )

P(D|A )
(5)

The transition network defines the transition probability between Ct and Ct+1 at t and
t + 1, respectively. That is to say, the DBN composed of (B|B→) is a semi-infinite network
structure on B1, B2, . . ., Bt(t = 1, 2, . . .∞). Based on the first-order Markov assumption, the
probability of variable C at the next moment only depends on the current moment and
is independent of the past moments, that is, P(Ct+1|C1:t ) = P(Ct+1|Ct ). The probability
formula for variable a on the transition network can be articulated as follows:

P(C1:t) =
T

∏
t=2

P(Ct|Ct−1 ) (6)

The predictive probability distribution of the hidden variable C at cycles T can be
obtained by applying the total probability theorem as follows:

P(ĈT |D1:T ) =
∫

P(ĈT |A1:T , D1:T )P(A1:T |D1:T )dA (7)

After obtaining the posterior probability distribution of the variable C, posterior
updating and prediction of the parameter variable A can be carried out. Within a DBN, the
EM algorithm, Monte Carlo method, or the Metropolis–Hastings algorithm is commonly
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used for sample parameter selection. However, for models involving long-term observation
and updates, multiple iterations might lead to sample impoverishment, resulting in a
decrease in accuracy. Therefore, this paper employs a particle filtering algorithm, replacing
the backward propagation inference and the update and prediction of parameter A, as
shown in Equation (7).

In DBNs, the joint probability density function across the time dimension T can
be constructed by combining the prior network probability distribution Equation (6) at
the beginning of the time series and the state transition network probability distribution
Equation (7) between subsequent time points.

P(A|C1:T , D ) = P(A)× P(C1|A )×
T

∏
t=2

P(Ct|Ct−1 )× P(D|CT ) (8)

As shown, it is possible to compute the joint distribution probability of any node in
the DBN.

2.3. Introduction to Particle Filter
2.3.1. Dynamic Time-Varying System Evolution Equation

Particle filtering (PF), also known as Sequential Monte Carlo, is a general algorithm
for the evolution of state variables in DBNs [30]. Particle filtering approximates probability
distributions by sampling a set of random samples and then performs statistical calculations
on these samples to obtain the minimum variance estimation of the state; these samples
are referred to as “particles”. As the number of particles increases, the probability density
function described by all particles gradually approximates the true probability distribution
of the state, achieving the effect of optimal Bayesian estimation.

Assume there is a system, as shown in Figure 3, whose state variable Xt∈Rm at
time t evolves from the state variable Xt−1∈Rm at time t − 1 according to the following
state function:

Xt = f (Xt, vt−1) (9)

where the vector vt−1∈Rm represents the noise in the state function.
The observed data Zt∈Rn can be obtained via the following measurement function:

Zt = h(Xt, nt) (10)

From the perspective of Bayesian theory, the state estimation problem is to calculate the
credibility of the current state Xt based on a series of previously available data Z1:t (posterior
knowledge) through recursive calculation. This credibility is the probability formula
P(Xt|Z1:t), which needs to be calculated recursively through prediction and update steps.
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Figure 3. A state evolution system with noise.

The prediction process uses the system model (i.e., state Equation (9)) to predict the
prior probability density of the state, which is to guess the future state through existing
prior knowledge, that is, P(X(t)|X(t − 1)). The update process uses the latest measurement
value to correct the prior probability density and obtain the posterior probability density,
which is to correct the previous guess.

It is assumed that the system’s state transition follows a first-order Martov model, that
is, the current state X(t) at time t is only related to the previous state X(t − 1). At the same
time, it is assumed that the data Z(t) measured at time t are only related to the current state
X(t), as shown in measurement equation 10 above.
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Assuming that the probability density function P(Xt−1|Z1:t−1) of time t − 1 is known,
the prediction of the probability of the next state X(t) can be written as follows:

p(Xt|Z1:t−1 ) =
∫

p(Xt|Xt−1 )p(Xt−1|Z1:t−1 )dXt−1 (11)

where state X(t) is exclusively determined by X(t −1) due to the assumption of first-order
Markov processes, i.e., p(Xt|Xt−1, Z1:t−1) = p(Xt| Xt−1).

After obtaining the new measurement data Zt at time t, the correction of the prediction
of formula 10 based on the measurement data can be stated as follows:

p(Xt|Z1:t ) =
p(Zt|Xt )p(Xt|Z1:t−1 )

p(Zt|Z1:t−1 )
(12)

where p(Zk|Z1:k−1 ) =
∫

p(Zk|Xk )p(Xk|Z1:k−1 )dXt. The filtering update is now complete.
For generic nonlinear and non-Gaussian systems, it is challenging to arrive at the

analytical solution of the posterior probability because the derivation above involves
integration for continuous variables. Monte Carlo sampling must be used to address
this issue.

2.3.2. Monte Carlo Sampling

The goal of Monte Carlo sampling is to sample the target probability distribution and
calculate the target’s expected value. When the number of samples N is large enough, the
above formula approximates the true probability of winning. The Monte Carlo method is a
mathematical method for calculating the odds of multiple possible outcomes occurring in
an uncertain process through repeated random sampling.

E( f (XN)) ≈
1
N

N

∑
i=1

∫
f (XN)δ

(
XN − Xi

N

)
dXN (13)

2.3.3. Sequential Importance Sampling

The most basic particle filtering algorithm for sampling in posterior probability dis-
tribution is Sequential Importance Sampling (SIS) [31]. Assuming that N samples can
be sampled from the posterior probability, the calculation of posterior probability can be
represented as follows:

P(Xt|Z1:t ) =
1
N

N

∑
i=1

wi
tδ
(

Xt − Xi
t

)
(14)

where δ is the Dirac function. wi
t is the weight of the particle.

In other words, the new state Xi
t of the ith particle at the time step t is sampled from

the distribution with the current state and the observed value Z1:t as parameters.
At time step t, the weight wi

t is updated from wi
t−1 to the following:

wi
t ∝ wi

t−1

P
(

Zt

∣∣∣Xi
t

)
P
(

Xi
t

∣∣∣Xi
t−1

)
q
(

Xi
t

∣∣∣Xi
t−1,Zt

) (15)

The SIS algorithm has a problem where the variance in the weights w increases with
multiple iterations, and it is even possible for one weight to approach 1 while the others
tend toward 0, a phenomenon known as particle degeneracy. This leads to a substantial
waste of computational time on the majority of particles with excessively small weights.
An effective method to mitigate particle degeneracy is through resampling [32], which
involves randomly replicating particles with higher weights and eliminating those with
lower weights, thereby focusing the computation as much as possible on particles that
have a greater impact on the posterior probability density. In addition, the initial state Xi

0 is
sampled from the joint prior distribution of the state variables, and the initial weight wi

0
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of each particle is 1/N. The pseudocode for the standard particle filter algorithm flow is
as follows:

(1) Particle set initialization, T = 0:

For i = 1, 2, . . ., N. Generate sampling particle
{

xi
0
}N

i=1 from prior p(x0).

(2) For T = 1, 2, . . ., t. Cycle through the following steps:

1⃝ Importance sampling for i = 1, 2, . . ., N. The sampling particle
{

xi
t
}N

i=1 is
generated from the importance probability density; the particle weight wi

t is
calculated and normalized.

2⃝ Resample: Resample the particle set
{

xi
t, wi

t
}

. The resampled particle set is{
x̃i

t, 1/N
}

. The conversion weight w̃t is recorded as
N
∑

i=1
w̃i

tx
i
t =

N
∑

i=1
x̃i

t.

3⃝ Output: calculate the state estimation value at time t,x̂t =
N
∑

i=1
x̃i

t.

The process of multiple resamplings tends to replicate particles with higher weights
excessively, culminating in a final collection largely made up of identical particles. Such a
reduction in the diversity of particles can lead to diminished predictive accuracy, a scenario
referred to as particle impoverishment. The conventional approach to mitigate this involves
augmenting the initial pool of particles and incorporating new particles throughout the
filtering process. However, an increase in the initial particle count significantly escalates
computational load, adversely affecting time efficiency. Additionally, the indiscriminate
introduction of new particles can infuse the model with fresh uncertainties, impairing
its convergence. To address these issues, this study introduces an adaptive strategy for
the inclusion of new particles. This strategy leverages the Monte Carlo method to inter-
sperse new particles in every filtering iteration, thereby preserving the diversity of the
particle ensemble.

2.4. Dynamic Bayesian Network for Fatigue Crack Growth

Figure 4 shows the structure of a Bayesian network for one time step. The nodes in
the figure are all random nodes, indicating that the variable is random given the value of
the parent node; therefore, the arrow pointing to it represents the conditional probability
distribution (CPD). The variable names and value ranges of the node symbols in Figure 4
are shown in Table 1. Diamond nodes are function nodes, which means that the variable
is a deterministic formula calculation result given the value of the parent node; therefore,
the arrow pointing to it represents a deterministic function. In addition, elliptical nodes
represent continuous variables. Rectangular nodes represent observed variables (such as
load and crack length), where Θ refers to all uncertain material fatigue parameter variables
considered in the crack propagation formula.
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For ease of calculation, all uncertain factors above, except for the initial prior val-
ues of fracture toughness, tensile strength, and damage initiation displacement, are as-
sumed to be normal distribution continuous nodes. Usually, load P and crack length a are
observable nodes.

Table 1. Bayesian network node variables.

Value Parameter

Θ Crack propagation parameters Θ
∆a Crack increment
∆σ Equivalent stress amplitude
P Real load

Pobs Observed load
a Real crack length
a0 Crack length before current time step

aobs Observed crack length
F Crack shape factor

2.5. Particle Filter (PF) Equation for Crack Propagation
2.5.1. PF State Equation

The final predicted residual life in the crack propagation model is obtained by the
cyclic time at which the crack with initial length a0 reaches the critical length ac, which
can be regarded as a function of a. Therefore, the goal of particle filtering is to correct the
theoretical value of the accumulated crack length output by the crack propagation formula
with experimental data aobs. The estimated crack length in the model is the theoretical
length obtained by the crack propagation formula, and Θ refers to all parameters of the
crack propagation formula. The process error is denoted as va, which is zero-mean Gaussian
noise from model error. The formula for the state equation can be expressed as follows:

at = f (Θ) + va (16)

This error va is added after each theoretical crack length at output by the crack
propagation formula.

2.5.2. PF Measurement Equation

The uncertainty of crack observation data depends on the instrument error of the
crack observation and the influence of the simplified conversion of irregular crack shape.
It is assumed that the measurement error is zero-mean Gaussian white noise, that is,
εa ∼ N

(
0, σ2

a
)
. The observation data can also be written as aobs = a + N

(
0, σ2

a
)
, which can

prove the following:

p(aobs|a ) = p(a|aobs ) =
1

σa
√

2π
exp

(
− (a − aobs)

2

2σ2
a

)
(17)

Equation (17) is equivalent to

p(aobs|a )p(a) ∝ p(a|aobs ) (18)

Among them, a is the real length of the crack, which is an unknown value. This error
is included in the crack measurement data, that is, the real length of the crack a = aobs − εa.

εa is the measurement error of the crack observation data, which reflects the error
between the true value and the measured value of the crack. va is the model error of
the crack propagation formula, which reflects the error between the true value and the
simulated value of the crack. Particle filtering selects whether to rely more on measurement
data or model data based on their magnitude.
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The crack length data are obtained from fiber optic data and experimental annotations,
which brings two sources of uncertainty: measurement error and data sparsity. Similar
to the uncertainty of the load, the measurement error in the crack length data depends
on the accuracy of the annotation and the processing of the non-uniform crack equivalent
length on the layered surface, usually assumed to have a zero-mean Gaussian distribution
εa ∼ N

(
0, σ2

a
)
. This method can also handle other measurement error distributions. Since

crack observation requires manual collection by instruments, crack length data are rarely
applicable for every time step. Even if a data point is obtained after each observation and
applied to the DBN for diagnosis and prediction, data sparsity introduces data uncertainty.

2.6. Adaptive Particle Filter Correction Method Based on DBN Reasoning

In traditional filtering processes, state equations are often invariant. However, when
there is a substantial error between the state equation and the actual state, the predictive
accuracy and convergence speed of the filtering may not be ideal. This difference becomes
minimal with continuous experimental data input, but in the absence of such data, predic-
tions still exhibit a certain level of deviation. This deviation is particularly noticeable when
experimental data are scarce. Additionally, traditional filtering fails to derive correction
coefficients for the theoretical formulas associated with the filtering outcomes. To ensure
the state equation is continuously updated during the filtering process, it is essential to
adjust the parameters of the state equation using the filtering results from each time step.
Moreover, to overcome the issue of particle depletion seen in traditional particle filtering,
an adaptive sampling approach is introduced.

Assuming the use of Paris’ law, the specific state evolution Equation (9) and observa-
tion Equation (10) in Section 2.3.1’s particle filtering formula can be respectively represented
as follows:

at = at−1 + C(∆K)m · ∆N + vt
a (19)

aobs
t = at + εt

a (20)

where at represents the calculated crack length at time t, and aobs
t is the observed crack

length at number of cycles t. vt
a and εt

a denote the model error and measurement error at
number of cycles t, respectively.

Then, through the SIS sampling and resampling described in Section 2.3.3, we can

obtain the posterior estimate of the crack length at number of cycles t as ât =
N
∑

i=1
w̃i

ta
i
t,

where ai
t represents the sample values from particle filtering and w̃i

t denotes the resample
weights of the samples. Similarly, we can obtain the posterior estimate of the parameter Θ̂t

as Θ̂t =
N
∑

i=1
w̃i

tΘ
i
t, where Θi

t is the parameter corresponding to the particle filtering crack

length samples ai
t.

Utilizing the kernel density estimation approach enables us to derive the probability
distributions of the posterior estimates for ât and Θ̂t, thus facilitating the DBN model’s
update. Following this, the refreshed posterior parameters Θ̂t will act as the preceding
parameters Θt+1 for the forthcoming DBN filtering stage in the crack propagation equation.
In accordance with their probability distribution, new samples for the time t + 1 are
recreated using the Monte Carlo method, paving the way for subsequent updates to
the model.

f (·) represents the crack propagation formula. The whole process is shown in Figure 5:
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2.7. DBN Whole Frame

This paper proposes an adaptive DBN particle filter, which uses a crack propagation
formula as the system state equation of particle filtering and uses material parameters,
observed cracks, and loads as input continuous node random variables. The steps of the
DBN can be represented as follows:

Step 1. Through the examination of accessible materials (for instance, simulations of
identical structures or fatigue expansion formulas), extensive prior data on lifespan under
diverse conditions of load, stress ratio, and fracture toughness among other parameters
are acquired. These data act as the preliminary parameters Θ0 for the crack propagation
equation. Subsequently, initial particles are generated from the prior probability distribu-
tion P(Θ) associated with these parameters by employing the Monte Carlo method, which
initiates the values for each node within the DBN.

Step 2. Once the monitoring of crack propagation in structures commences, the equiva-
lent stress ∆σ at the crack tip is determined from the observed load Pt

obs. This value, together
with additional prior parameters Θt, is incorporated into the crack propagation equation
to derive the theoretical crack length at present, at. Subsequently, this theoretical figure
and the observed experimental data also serve as the basis for the state and measurement
equations in particle filtering. Employing the adaptive particle filtering technique outlined
in Section 2.6, particle filtering facilitates the acquisition of the posterior estimates for the
current crack extension length ât and the parameters Θ̂t.

Step 3. Following the acquisition of posterior parameter samples Θ̂t at moment t,
the probability distribution of Θ̂t undergoes sampling via kernel density estimation. This
process inputs the derived samples into crack propagation, serving as the prior update for
the crack length particles at the forthcoming moment t + 1. This step facilitates the retrieval
of the next posterior filtering values at+1.

The structure of the overall DBN is shown in Figure 6. The uncertainties mentioned
above in the DBN are represented by the nodes in the figure. Nodes are connected by arrows
representing conditional probability distributions or deterministic functional relationships.
The subscript t − 1 or t represents the time step.

In this section, the DBN model for crack propagation is validated using both single
and multiple adaptive variable datasets. Section 3.1 describes the DBN model for crack
propagation with a single adaptive variable. In contrast, Section 3.2 presents the DBN
model for crack propagation incorporating multiple adaptive variables.
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3. Fatigue Crack Propagation Experiment Verification
3.1. Single Adaptive Variable DBN Model

To validate the feasibility of the proposed method, three-point bending fatigue experi-
ments were conducted using three specimens, as shown in Figure 7a. The dimensions of
the specimens are 120 × 30 × 15 mm3, 160 × 40 × 15 mm3, and 240 × 60 × 15 mm3, with
the support span S being L-0.4×W. The material of the specimens is AL6061 aluminum
alloy, with an elastic modulus, E, and Poisson’s ratio, v, of 69.6 GPa and 0.33, respectively.
The bending fatigue limit of the material is around 100 MPa. The initial crack length,
a0, is 10 mm, where the length of the prefabricated notch is 9 mm, and the crack length
initiated by cyclic loadings, according to ASTM E1820, is 1 mm. According to ASTM E399
standards [33], the material’s fracture toughness KIC was measured to be 34 MPa. The stress
ratio R is 0.2, with maximum loads of 4500 N, 6000 N, and 9000 N. The load magnitudes
make the maximum stresses at the lower sides of the specimens (without considering the
crack) nearly equal (around 54 MPa).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 22 
 

 

 
(a) (b) 

 
(c) 

Figure 7. (a) Specimen dimensions; (b) picture of the actual specimens; (c) picture of three-point 
bending fatigue experiment. 

3.1.1. Data Analysis 
The crack propagation a-N curves [34] for the three specimens are shown in Figure 

8. According to ASTM E399, the stress intensity factor, K, for three-point bending speci-
mens is calculated using 

( )( )
( )( )

2

32
2

1 2.151.99 3.93 2.3
2 1 2 1

7PSK a
BW

ξ ξ ξ ξ

ξ ξ

−

+

− +

−

−
=  (21)

where ξ = a/W with a as the crack length; P is the load amplitude. Letting K = KIC, the 
critical crack lengths, aC, of the three specimens were calculated as 20.6, 26.2, and 36.3 mm, 
respectively. And the measured values of aC are 20.5, 25.9, and 36 mm. It can be seen that 
the measured critical crack lengths in Figure 8 are highly consistent with those calculated 
theoretically. 

 
Figure 8. Three-point bending fatigue a-N curve. 

Figure 7. (a) Specimen dimensions; (b) picture of the actual specimens; (c) picture of three-point
bending fatigue experiment.



Appl. Sci. 2024, 14, 3808 13 of 21

3.1.1. Data Analysis

The crack propagation a-N curves [34] for the three specimens are shown in Figure 8.
According to ASTM E399, the stress intensity factor, K, for three-point bending specimens
is calculated using

K =
3PS

2BW2

√
a

1.99 − ξ(1 − ξ)
(
2.15 − 3.93ξ + 2.7ξ2)

(1 + 2ξ)(1 − ξ)
3
2

(21)

where ξ = a/W with a as the crack length; P is the load amplitude. Letting K = KIC,
the critical crack lengths, aC, of the three specimens were calculated as 20.6, 26.2, and
36.3 mm, respectively. And the measured values of aC are 20.5, 25.9, and 36 mm. It can be
seen that the measured critical crack lengths in Figure 8 are highly consistent with those
calculated theoretically.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 22 
 

 

 
(a) (b) 

 
(c) 

Figure 7. (a) Specimen dimensions; (b) picture of the actual specimens; (c) picture of three-point 
bending fatigue experiment. 

3.1.1. Data Analysis 
The crack propagation a-N curves [34] for the three specimens are shown in Figure 

8. According to ASTM E399, the stress intensity factor, K, for three-point bending speci-
mens is calculated using 

( )( )
( )( )

2

32
2

1 2.151.99 3.93 2.3
2 1 2 1

7PSK a
BW

ξ ξ ξ ξ

ξ ξ

−

+

− +

−

−
=  (21)

where ξ = a/W with a as the crack length; P is the load amplitude. Letting K = KIC, the 
critical crack lengths, aC, of the three specimens were calculated as 20.6, 26.2, and 36.3 mm, 
respectively. And the measured values of aC are 20.5, 25.9, and 36 mm. It can be seen that 
the measured critical crack lengths in Figure 8 are highly consistent with those calculated 
theoretically. 

 
Figure 8. Three-point bending fatigue a-N curve. Figure 8. Three-point bending fatigue a-N curve.

In addition, fractographs were taken of the fracture sections of the three specimens
and are shown in Figure 9a–c. The areas indicating the stages of steady crack propagation
and sudden specimen fracture can be well distinguished from the figures, and the regions
with the distance of ac from the lower edge of the specimens exactly locate the transition
between these two stages.
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Paris’ law was used as the state equation for particle filtering. Based on the exper-
imental data, the parameters of Paris’ law were obtained based on data fitting. Specifi-
cally, the value of m in Paris’ law is approximately 3.34, and C ranges from 5 × 10−11 to
7 × 10−11. Within the context of the DBN, the logarithmic of parameter C is treated as a
variable subject to uncertainty. For particle filtering purposes, it is initially represented by a
set of uniformly distributed particles. These particles are then subject to passive, adaptive
updates in sync with the revisions of the DBN model. To verify the correction ability of the
method, observation was started after several cycles and DBN tracking instead of starting
from scratch.

3.1.2. Uncertainty Sources Considerations

In the DBN, the error analysis of crack propagation is focused on two primary aspects:
model errors and measurement errors. The model errors, particularly those arising from the
limitations of Paris’ law, are identified as the core of the analysis. This includes the intrinsic
limitations of the formula and the effects of structural defects on the accuracy of material
parameter estimations and equivalent stress calculations, which together lead to deviations
in performance evaluation. The measurement errors, such as noise from measuring instru-
ments, irregularities in crack paths and shapes, and non-standard operations during the
loading process, also significantly impact the accuracy of the assessment. To address these
challenges, the DBN in this study considers the following main uncertainty factors:

1. Equivalent stress at crack tip.

The equivalent stress is obtained from the calculation of alternating load, and there are
errors in the selection of stress intensity criteria, structural defects, and load observation
noise. According to experience, it is assumed that the variance of this error is within 10%,
so the normal distribution of 10% variance is taken in this paper.

2. The error of the parameter m for Paris’ law.

The parameter m in Paris’ law is influenced by geometric defects in the structure and
material properties, leading to significant variability even within the same material and
structure [35]. Therefore, in this study, based on the variability observed in experiments,
the initial values of several specimens were averaged and subjected to a Gaussian distribu-
tion [36]. Subsequently, after applying filtering and DBN inference, the distribution range
of the modified samples was determined through kernel density estimation.

3. Uncertainty of crack length.

The length of the crack mainly exists in the measurement error of the crack increment
in the experiment and the numerical calculation error caused by the non-uniform crack
length on the left and right sides as well as the internal crack length. This error is fitted to
the binary curve in line with its own trend according to the data, and the fitting variance of
the measured data points is taken as 4.6% [37].

The parameter m, serving as a parameter variable within the DBN, undergoes adap-
tive updates following each round of filtering, whereas other uncertain elements remain
unchanged, manifesting merely as errors within the particle filtering process. An initial
measurement error is presumed to be 10%. Due to the incremental growth of the crack per
cycle being considerably minor in comparison to the initial crack, each subsequent crack
increment incorporates an additional 5% measurement error and system process error.

3.1.3. Model Results and Data Graphs

The first 90% of the cycle times are taken as the observation data of this method,
and the last 10% are taken as the verification of accuracy. The change in the uncertainty
parameters obtained according to DBN reasoning after filtering is shown in Figure 10. The
notation “log(·)” denotes an operation using the natural logarithm.
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As can be observed from Figure 10, the uncertainty range of parameter C is quickly
narrowed after the first filtering. This demonstrates the efficacy of the DBN in facilitating
node adjustment. With the model being updated step by step, the uncertainty range of C
steadily decreased, converging after approximately 4–5 iterations. The updated value was
very close to the measured data.
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The final crack propagation prediction of the DBN particle filter is shown in Figure 11.
Due to the scarcity of crack observation data, if there is no observation value in the current
time step, the prediction value will be used instead.
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Figure 11. Prediction results of fatigue crack propagation for the spcimens with dimensions of
(a) 120 × 30 × 15 mm3, (b) 160 × 40 × 15 mm3 and (c) 240 × 60 × 15 mm3.

As shown in Figures 11 and 12, due to the lack of observational data, the fatigue
crack growth and remaining life were significantly underestimated in the first 2–3 filtering
processes, with prediction errors reaching as high as 20% to 30%. With the continuous
collection of observational data, the uncertainty in the DBN was updated, thereby grad-
ually improving the prediction accuracy. Especially when the filtering process exceeded
six iterations, the prediction error for the residual life of specimens could be maintained
below 5%, which has practical implications for the safety assessment and maintenance
of structures.
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3.2. Multiple Adaptive Variables DBN Model

To provide additional evidence regarding the effectiveness of the DBN particle filter,
experiments from Zheng [38] were utilized to continue the validation process.

The single-edge crack growth test material is domestically sourced commercial galva-
nized high-strength steel wire, with a diameter of 7 mm.

For finite-width, equal-thickness strip specimens with unilateral cracks, the calculation
formula for the crack form factor F can be obtained from the Stress Intensity Factor Manual,
as shown below:

F = 1.12 − 0.234
( a

b

)
+ 10.55

( a
b

)2
− 21.72

( a
b

)3
+ 30.39

( a
b

)4
(22)

where a is the crack length and b is the specimen width.
Zheng adopts the Walker law as the prediction formula for crack propagation [27].

da
dN

= C
[
(1 − R)α∆K

]m (23)

The experiment collected separate data on crack propagation at stress ratios R = 0.1,
R = 0.5, and R = 0.7. The parameter m of Paris’ law is 3.3. The crack propagation data under
a 220 MPa load were utilized as the validation dataset for the DBN model, as depicted
in Figure 13. The author performed a parameter fitting process to determine the values
of parameters C and α; the obtained values were approximately 7 × 10−13 and −0.3,
respectively, with a survival rate of 95%.
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The parameters in Table 2 are utilized as sources of uncertainty for the DBN particle
filter. The parameters C and m are adaptively updated in the DBN model update. The
mean and variance of sampling for other uncertain variables remain unchanged.

Table 2. DBN uncertain variables.

Parameters Initial Value Standard Deviation Meaning

Log(C) −27 1 The logarithm of parameter C
α −0.3 0.01 Stress ratio coefficient
a0 0.001 0.0001 Prefabricated crack error (mm)

aobs 0.001 0.0001 Measurement error εa

The prediction results of the DBN particle filter are shown in Figure 14.
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Figure 15 demonstrates that the adaptive DBN model is equally capable of accurately
forecasting the actual progression of crack expansion across varying stress ratios. In compar-
ison to the three-point bend model examined in Section 3.1, there are less observational data
available for this section’s single-edge crack model. Additionally, the uncertain variable
parameter Θ within the Walker law is not linear but includes a power exponent variable,
which magnifies the errors. When utilizing the initial model to predict crack expansion
reliability, the overlapping uncertainties of various model parameters Θ lead to a wider
range of predicted crack intervals. This range only narrows, adopting a “trumpet” shape,
after incorporating the next batch of observational data, which prompt an update in the
model’s state. Following this update, the precision of crack predictions improves, and the
uncertainty interval diminishes, demonstrating that the update enables the particles to
more closely mimic the true probability distribution between two observational points. As
predictions advance, the estimates increasingly diverge from the actual conditions, and
the uncertainty interval expands accordingly. This expansion results from the model’s
uncertainty propagation, which continually escalates the prediction errors, highlighting
the importance of ongoing crack monitoring and frequent updates to the model’s state.

Figures 16 and 17 showcase the variations in the probability distribution of Walker
model parameters.
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As depicted in Figure 16, the values of C predicted by the DBN and given in [38] are
slightly different, where the predicted values are lower at R = 0.5 and 0.7 and higher at
R = 0.1. This is because the C value in [38] was averaged among three experiments with
different stress ratios, whereas the predicted values based on the DBN are obtained based
on each individual experiment. The deviation in C is mainly attributed to the dispersion in
material properties. In general, the average of the predicted values is consistent with that
in [38]. For α, the predicted value is basically consistent with that in [38], as can be seen in
Figure 17.

4. Discussion

This paper presents a crack propagation prediction model using a DBN, suitable for
effective tracking of damage evolution in aerospace structures. The method is validated
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using experimental data from three-point bending and single-edge crack tension tests.
The results show that through DBN particle filtering, the uncertainty interval for crack
propagation in the three-point bending specimen decreased from 24% to 6%, as shown in
Figure 11, and the prediction error for the lifespan was also reduced from over 30% to lower
than 5%, as shown in Figure 12. In the single-edge crack experiment, although multi-source
uncertain variables increased the uncertainty interval of crack propagation, the error range
of the filtered uncertainty interval gradually decreased, and the prediction error for the
uncertain variables, Θ, also exhibited the trend of gradual decrease and convergence. This
indicates that the DBN filtering can track and correct time-dependent variables (crack
length) and reduce the uncertainty of time-independent variables (parameter Θ).

By comparing the single adaptive variables and multiple adaptive variables in the two
examples, it is evident that the convergence of the variables in particle filtering decreases
along with the enlarged dimension of the uncertain variable space. One potential reason
for this is that the interdependence and nonlinear effects among parameters increase the
complexity of the system. With multiple parameters involved, the update of each parameter
depends not only on its own observed data but may also be influenced by the states of
other parameters. This leads to multiple possible solutions within the parameter space.
A possible solution includes the improvement method of marginalizing some uncertain
variables (such as the Rao-Blackwellized particle filtering method), which is a direction for
future research.

As the model is continuously updated, both the parameter variables and the predicted
cracks will gradually converge. However, when new uncertainties suddenly emerge,
causing significant changes in the prediction outcomes, the variation in parameter means
and uncertainty intervals will increase sharply until the new factors stabilize. Subsequently,
the uncertainty interval gradually decreases to a new state of convergence.

5. Conclusions

This study introduces a probabilistic approach for health diagnosis and prognosis
through an adaptive DBN framework. This framework employs DBNs to predict health
conditions and is characterized by its capability to adaptively update parameter probability
distributions and regenerate new particle samples, while integrating various sources of
inference and cognitive uncertainty. It is suitable for structural health diagnosis and
fatigue crack growth prediction under uncertain conditions. The particle filtering algorithm
is utilized within the DBN for Bayesian inference to calibrate the physical model. The
proposed method has been validated through two experimental data examples, confirming
its advantages: (1) It can track the evolution of time-related state variables and reduce
uncertainty variables in time-independent states (diagnosis). (2) It allows for the self-
calibration of parameter probability distributions and prediction structures through real-
time updates, forecasting fatigue crack growth and residual life probabilistically (prognosis),
demonstrating excellent stability and robustness. (3) Adaptive updating and regeneration
of particles prevent particle depletion, rendering the model’s outcomes more realistic
compared to traditional particle filtering results.

In addition, the current model also has some limitations for future enhancement.
Firstly, the model’s capability is limited to tracking single crack damage, overlooking the
interaction and combined effects of multiple crack damages. Secondly, the experimental
scenarios used in the model are relatively simple. In contrast, the operational environ-
ment of aerospace structures is evidently more complex, posing challenges for accurate
simulation and prediction.
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