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Abstract: Under the background of “double carbon”, building carbon emission reduction is ur-
gent, and improving energy efficiency through short-term building heat load forecasting is an
efficient means of building carbon emission reduction. Aiming at the characteristics of the de-
composed short-term building heat load data, such as complex trend changes, significant seasonal
changes, and randomness, a single-step short-term building heat load prediction method driven by
the multi-component fusion LSTM Ridge Regression Ensemble Model (ST-LSTM-RR) is designed
and implemented. First, the trend and seasonal components of the heat load are decomposed
by the STL seasonal decomposition algorithm, which are fused into the original data to construct
three diversified datasets; second, three basic models, namely, the trend LSTM, the seasonal LSTM,
and the original LSTM, are trained; and then, the ridge regression model is trained to fuse the
predicted values of the three basic models to obtain the final predicted values. Finally, the method
of this paper is applied to the heat load prediction of eight groups in a large mountain hotel park,
and the root mean square error (RMSE) and mean absolute error (MAE) are used as the evaluation
indexes. The experimental results show that the average RMSE and average MAE of the prediction
results of the proposed method in this paper are minimized on the eight groups.

Keywords: building heat load prediction; ensemble deep learning; seasonal and trend decomposition
using LOESS; long short-term memory neural network; ridge regression

1. Introduction

On 22 September 2020, President Xi clearly stated at the United Nations General
Assembly that “China’s carbon dioxide emissions should peak by 2030 and strive to
complete carbon neutrality by 2060”. The building industry, as a major pillar of the
economy and industry, is one of the main sources of carbon emissions [1]. The total
annual carbon emissions of the building industry in 2022 will be 5.08 billion tons of CO2,
accounting for 50.9% of the national carbon emissions [2]. Carbon reduction in buildings is
imminent. In the field of building heating, to reduce carbon emissions, we can not only
use renewable energy sources such as solar photovoltaics and wind energy to generate
electricity and utilize this electricity to power electric heating systems like ground source
heat pumps, but we can also enhance the energy utilization efficiency during the heating
process to reduce energy consumption and further decrease carbon emissions. Integrating
Internet of Things-enabled systems with big data and artificial intelligence technologies
significantly enhances the dynamic response capabilities of heating equipment, improves
energy efficiency, implements on-demand heating, and reduces overall energy consumption.
For example, in the study by Kent et al. [3], IoT-enabled smart environmental sensors
rapidly collect high-resolution temporal and spatial big data (such as temperature and
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lighting). This data are then applied to machine learning models for predictive analysis,
which in turn reduces energy consumption and enhances thermal comfort. The building
heat load can guide the operation and regulation of the heating system, which is an
important data basis for ensuring the stable and low-consumption operation of the heating
system. If the heat load of a building can be predicted in advance, accurate heating can be
realized. Building heat load forecasts can be categorized into ultra-short-term, short-term,
medium-term, and long-term load forecasts according to the time granularity. Short-term
building heat load forecasting is to forecast the heat load of a building for the next 1 h to
24 h or several days. According to the number of prediction steps, the short-term building
heat load prediction can be further divided into single-step prediction and multi-step
prediction, where single-step prediction refers to the prediction of the heat load in the
next 1 h only, and multi-step prediction refers to the prediction of the heat load of the next
multiple hours at one time by the model. In this paper, we study the single-step prediction
method for short-term building heat loads. Short-term heat load data are characterized
by seasonality, trends, randomness, volatility, and non-stationarity, which leads to an
extremely complex pattern of change and a high difficulty in prediction. Therefore, the
establishment of an accurate and stable prediction model becomes the key to solving the
problem. With the continuous development of various Internet of Things (IoT), big data,
and cloud computing technologies, it has become more convenient to obtain and store
heating system operation data. This provides rich historical data for the establishment
of data-driven models and satisfies the database required for data analysis and model
training. Therefore, data-driven models are highly favored in the field of building heat
load prediction at a national and international level and are gaining more research and
application opportunities.

Data-driven models fall into four main categories: statistical models, machine learning
models, deep learning models, and hybrid models [4,5]. Statistical models utilize mathe-
matical and statistical knowledge to construct a model and produce predictions directly
from the input data and the model. Because of its simple structure, it has a significant ad-
vantage in terms of time overhead [6]. Common statistical models include Autoregressive
Moving Averages (ARMA) [7], Autoregressive Composite Moving Average (ARIMA) [8],
Exponential smoothing [9], Multiple Nonlinear Regression (MNR) [10], Recursive Least
Squares (RLS) [11], and the classic Box–Jenkins methodology models [12]. Although these
statistical models can consider the temporal relationship of the data, it is difficult to capture
the nonlinear pattern of heat load data and the nonlinear relationship with other relevant
influencing factors, which leads to the prediction accuracy being insufficient to meet the ac-
tual work requirements. With the progress of computer hardware technology and artificial
intelligence technology, artificial intelligence models based on machine learning and deep
learning are gradually popularized and applied [13].

The most common machine learning models are Decision Trees (DT) [14], Random
Forest (RF) [15], Support Vector Machine (SVM) [16], Extreme Gradient Boost (XGBoost) [17]
and so on. These machine learning models can be used for regression prediction and are
capable of effectively forecasting the patterns of change in building heat load data. However,
it is difficult to take into account the time dependence of data, and feature engineering is
more complicated. The deep learning model is an end-to-end model and does not need to
carry out complex feature engineering. It can not only predict the nonlinear pattern of heat
load data but also consider the time dependence of the data and capture the relationship
between different influencing factors and the heat load so as to reduce the impact of the
randomness of the heat load.

Among the deep learning models suitable for time-series prediction are Deep Neural
Networks (DNNs) [18], Recurrent Neural Networks (RNNs) [19], Long Short-Term Memory
Neural Networks (LSTMs) [20,21], Gated Recurrent Units (GRUs) [22], Convolutional
Neural Networks (CNNs) [23,24], Transfer Learning [25,26], Reinforcement Learning [27],
and so on. LSTM is a variant of RNN that optimizes the issues of vanishing and exploding
gradients in RNNs, making it the preferred model for sequence prediction. Li et al. [28]
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developed a Bayesian optimization-based LSTM model for short-term heat load forecasting.
This model is trained and tested using real-time data from the heat exchange stations in
Changchun City, and its predictive performance is verified through multiple evaluation
metrics. The results indicate that this model surpasses other methods in terms of prediction
accuracy, especially in the 72 h forecast step. Jung et al. [29] proposed a multi-layer GRU
model based on an attention mechanism, which performs excellently in multi-step short-
term load forecasting, particularly in dealing with long input sequences. It can effectively
focus on important variables, thereby improving the model’s predictive performance.

However, single deep learning models have certain limitations in terms of prediction
accuracy and robustness. Hybrid models, which combine multiple base models, aim
to leverage their strengths comprehensively to enhance predictive performance. Hybrid
modeling has gradually been widely studied and applied by scholars. Jiawang Sun et al. [30]
proposed a novel hybrid deep reinforcement learning integrated optimization model,
aimed at effectively predicting the heat load in District Heating Systems (DHS). This model
integrates a similar sample selection method, a short-term prediction model pool, and a
deep reinforcement learning integration strategy, and it has been validated using a dataset
from a heat exchange station in Tianjin. The experimental results show that the model
can accurately predict heat load variations, achieving energy savings of 5.33%, 5.31%, and
5.07% across different prediction periods. Pachauri et al. [31] developed a novel regression
tree ensemble model in their study, which combines decision trees with the LS-boosting
algorithm and is optimized by the SFLA algorithm. This model effectively predicted the
heating and cooling loads of residential buildings. The experimental results indicate that the
model surpasses other methods in terms of accuracy and efficiency. Moradzadeh et al. [32]
proposed a novel hybrid machine learning model called GSVR (Group Support Vector
Regression) for predicting the heating and cooling loads of residential buildings. This
model combines the GMDH (Group Method of Data Handling) and SVR (Support Vector
Regression) models. The study validated the model using datasets of 12 different building
shapes simulated in Ecotect software. The experimental results show that the GSVR
model can accurately predict heating and cooling loads, demonstrating high correlation
coefficients and low statistical errors. Zherui Ma et al. [33] proposed a decomposition-
integration prediction model combining VMD (Variational Mode Decomposition) and
GRU (Gated Recurrent Unit) to accurately predict building thermal loads in the absence
of meteorological parameters. The model operates through four steps: data cleaning,
modal decomposition, GRU prediction, and result integration, proving its superiority
over traditional models. The main advantage of the model is its ability to make effective
predictions without meteorological data.

Through analyzing the current trends in building heat load research, it has been ob-
served that an increasing number of scholars are adopting machine learning, deep learning,
various decomposition algorithms, and optimization algorithms for hybrid modeling to
forecast short-term building heat loads. However, few researchers start from the data
itself to analyze the inherent time series characteristics of heat load data, such as trends,
periodicity, seasonality, randomness, volatility, and stationarity. These characteristics add to
the complexity of the data. Choosing appropriate data processing methods and forecasting
models based on the data’s characteristics can further enhance the accuracy of predictions.
This article conducts a thorough investigation into this subject. By analyzing the char-
acteristics of the heat load data, it is found to exhibit complex trend changes, significant
seasonal variations, and randomness. To accommodate these characteristics, this paper
designs and implements a multi-component fusion LSTM Ridge Regression Ensemble
Model (ST-LSTM-RR) for the short-term single-step prediction of the building heat load.
First, the STL seasonal decomposition algorithm is used to extract the trend and seasonal
components of the heat load, which are then integrated into the original data to construct
three diverse datasets. Second, the original LSTM is trained for basic prediction, the trend
LSTM is employed to capture peak changes in the heat load, and the seasonal LSTM is
used to capture cyclic variations. Lastly, a Ridge Regression model is trained to integrate
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the predictive values of the three basic models, thereby enhancing the overall model’s
prediction accuracy and stability and reducing the impact of randomness on the prediction
results. The experimental results show that the proposed method achieves the smallest
average RMSE and average MAE across eight groups.

2. Methodology

This article designs and implements a single-step prediction method for a short-term
building heat load driven by a Multicomponent Fusion LSTM Ridge Regression Ensemble
Model (abbreviated as ST-LSTM-RR). The overall system framework consists of two main
parts: data analysis and processing and model training and prediction, with the overall
system framework illustrated below in Figure 1.
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Figure 1. Overall system framework diagram.

The data analysis and processing part includes three major steps: Data Acquisition,
Data Analysis, and Data Processing. In Data Acquisition, different features within the data
are obtained through various means, including indoor factors, outdoor factors, and the
heat load. In Data Analysis, the time series characteristics of the heat load are analyzed,
and features for the input model are selected based on Pearson correlation coefficients.
Time series analysis allows us to understand the intrinsic patterns of variation in the heat
load. Correlation analysis helps identify the correlation coefficients between different
features and the heat load, enabling the selection of features that significantly impact heat
load variations. In Data Processing, the main task is to process the experimental data
into a format suitable for model training and prediction. Notably, using the STL seasonal
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decomposition algorithm to decompose the heat load is an important step in constructing
the ST-LSTM-RR. This part will be detailed in Section 2.1.

The model training and prediction parts encompass Basic Model Training, Metamodel
Selection, and how to use the final ensemble deep learning model for forecasting. The
theoretical content of this section will be elaborated on in Sections 2.2 and 2.3, while the
experimental part will be described in Section 3.

2.1. Data Analysis and Processing
2.1.1. Data Acquisition and Correlation Analysis

The original data were obtained from eight different building groups within a large
mountainous resort hotel complex over a one-year period, with each data point including a
time step at 1 h intervals. The basic information of each group is shown in Table 1. The
residential group is abbreviated as Rg and the office group is abbreviated as Og. The data
features for each group are divided into indoor factors, outdoor factors, and the historical
heat load. Outdoor factors include the dry bulb temperature, relative humidity, solar
radiation, wind speed, wind direction, atmospheric pressure, and rainfall. Indoor factors
consist of the personnel occupancy rate (the ratio of the actual number of people present
in a room to the maximum occupancy of that room), housing occupancy rate (the ratio of
the number of rented rooms to the total number of rooms in a hotel), indoor set maximum
temperature, and indoor set minimum temperature. The historical load is the actual load
value for a period prior to the forecasted time step. All feature values of the data were
obtained through various means. Outdoor factors were obtained from weather stations;
the personnel occupancy rate was obtained through millimeter wave sensors; the room
occupancy rate was directly exported from the hotel’s business system; the indoor set
maximum and minimum temperatures were measured by indoor return air temperature
sensors; and the heat load was collected by the heat meter of each group.

Table 1. Basic information of the heating floor.

Group Name Heating Area (m2)
Number of

Aboveground Floors
Number of

Underground Floors

Rg1 11,407 4 /
Rg2 9570 3 1
Rg3 9637 4 /
Rg4 6268 5 1
Rg5 7104 5 1
Rg6 8831 5 2
Og1 5235 2 /
Og2 18,402 4 2

After data acquisition, we need to select indoor and outdoor influencing factors that
have a strong correlation with the building heat load as input features for training the
model. We use the Pearson correlation coefficient method for the correlation analysis,
which measures the strength and direction of the linear relationship between two variables.
The degree of correlation between features can be judged based on the absolute value of
the coefficient. The formula for calculating the Pearson correlation coefficient is as follows:

r =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
(1)

where r represents the Pearson correlation coefficient, xi and yi represent the values of
the two features for the i-th sample, and x and y, respectively, represent the means of the
two features.
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The absolute value of the Pearson correlation coefficient being between 0.8 and 1.0
indicates a very strong correlation, it being between 0.6 and 0.8 indicates a strong correlation,
it being between 0.4 and 0.6 indicates a moderate correlation, it being between 0.2 and 0.4
indicates a weak correlation, and it being between 0 and 0.2 indicates a very weak or no
correlation. The results of the analysis using the Pearson correlation coefficient method are
shown in Figure 2.
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Figure 2. Correlation Analysis Results.

As observed, the absolute values of the correlation coefficients for the dry bulb temper-
ature and solar radiation are the highest, ranging between 0.6 and 0.8, indicating a strong
correlation with the heat load. The relative humidity and wind speed have correlation
coefficients between 0.3 and 0.4, showing a weak correlation with the heat load. However,
since the data are derived from a mountain hotel, these two factors should not be directly
disregarded and can be considered as secondary influencing factors. The wind direction,
atmospheric pressure, and rainfall have very weak correlations with the heat load and
can be ignored. The correlation coefficients for the minimum and maximum indoor set
temperatures range from 0.2 to 0.3, indicating a weak correlation. The personnel occupancy
rate and housing occupancy rate have correlation coefficients between 0.5 and 0.6, showing
a moderate correlation with the heat load.

Ultimately, outdoor weather factors such as the dry bulb temperature and solar radia-
tion are selected as the primary influencing factors, while the relative humidity and wind
speed are considered secondary influencing factors. For indoor factors, the hotel’s housing
occupancy rate and personnel occupancy rate are chosen as the primary influencing factors.
These influencing factors, along with the historical heat load data, are then used as input
features for the model.

2.1.2. Data Analysis

Short-term building heat load data are among the key datasets reflecting changes in
building energy consumption. Essentially, building heat load data are a type of time series
data. Observing the heat load distribution changes of the eight groups in Figure 3, it is
evident that the patterns of change are extremely complex. Time series analysis can reveal
changes in trends, seasonality, randomness, and other characteristics. These analytical
results can guide data preprocessing and the construction of predictive model structures,
thereby improving model prediction outcomes and providing data support for energy-
saving measures. Therefore, analyzing the time series characteristics of short-term building
heat load data, such as trends, seasonality, and randomness, plays a crucial role.
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A trend refers to the direction of change in data over time. Trends can be upward,
downward, or stable, and they can be linear or nonlinear, among other characteristics. In
this paper, the trends of each group are separated using seasonal decomposition, as shown
in Figure 4. Upon observation, it is evident that the trends of the various groups exhibit
nonlinear changes, generally rising before falling. This pattern of an increase followed by a
decrease is also present in local areas, making the trend change patterns complex.

2. Seasonal Analysis
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Seasonality refers to the fixed changes present in time series data, often related to
the weather, holidays, and other seasonal factors. These changes recur annually, monthly,
weekly, or daily with relatively stable patterns—for example, an increase in the heating
demand during winter, the changing of seasons throughout the year, weekends off, sunrises
and sunsets, etc. Methods for identifying seasonality include seasonal decomposition, the
seasonal index method, and the time series graphical method, among others. This paper
identifies seasonality through seasonal decomposition, with the decomposition results
shown in Figure 5. It is evident that each group exhibits a fixed daily heat load change
pattern, characterized by a distinct 24 h seasonal variation.

3. Randomness Analysis
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Randomness refers to the random fluctuations and uncertainties in the data. The
residuals of the heat load data can be decomposed by the seasonal decomposition method,
and these residuals are random, which can reflect the randomness of the heat load to a
certain extent, as shown in Figure 6. This randomness makes the time series data present
irregular and unpredictable characteristics. There are many reasons for the randomness
of short-term heat load data, including external factors, internal factors, data acquisition
errors, and other unknown factors. We need to analyze the various reasons and find
corresponding countermeasures to minimize the influence of randomness.

For external factors, such as weather and climate changes, you can analyze the cor-
relation between the weather data and the heat load, find the weather factors that have
a large correlation coefficient with the heat load, and integrate them with the heat load
data. For internal factors, such as the structure of the building itself, the use of the building,
the activities of the people inside, etc., which also need to be taken into account, some
quantifiable factors can be integrated with the heat load data. For the missing or abnormal
data caused by data acquisition errors, the data can be supplemented or smoothed by data
preprocessing. When choosing to build a prediction model, we should choose to build a
model with better stability, and instead of using a single model, we can use a hybrid model
to increase the robustness of the model.

In summary, through the analysis of the time series characteristics of heat load data,
we found that the building heat load data in this study exhibit complex trend variations,
significant 24 h seasonal changes, and random changes, making their patterns of change
extremely complex. This requires the models we choose and construct not only to capture
the trend and seasonal variations of the heat load data but also to provide stable predictions
and mitigate the impacts of random changes, thereby adapting to the complex changes in
the heat load data.
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2.1.3. Data Processing

In the data processing section, experimental data need to be subjected to STL seasonal
decomposition, dataset division, normalization, and sliding window operations.

1. STL Seasonal Decomposition:

In this step, the original data are decomposed into a trend component, a seasonal
component, and a residual component, which is discarded directly because it is diffi-
cult to predict the residual component. Then, the trend component and seasonal com-
ponent are integrated into the original dataset to form the trend dataset and seasonal
dataset, respectively.

2. Dataset Division

The data from the eight groups in the park are divided into training, validation, and
test sets at a ratio of 6:2:2. The division ratio has a great impact on the training effect and
generalization of the model. To ensure the model is evaluated on completely unseen data,
thus preventing data leakage, the datasets should be split before data normalization.

3. Normalization

The normalization process stabilizes the scale of the data values, which is particularly
beneficial in speeding up the gradient descent during model training. By normalizing the
data before prediction, we ensure that the test set and the training set are on a consistent
scale. In this paper, we use the maximum–minimum normalization method to scale the
original data to between [0, 1], and the calculation formula is as follows:

x′ =
x−min(x)

max(x)−min(x)
(2)

where x is the original data, min(x) and max(x) are the minimum and maximum values
in each column, and x′ is the original data mapped to values in the range [0, 1].

4. Sliding window

The learning method of ST-LSTM-RR is supervised learning; each data sample should
consist of input X and output y. The data should be transformed into the form of feature
label pairs. Therefore, it is necessary to transform the building heat load data into the form
of feature-label pair data for the supervised problem first. In this paper, a sliding window
is used to transform the heat load data into feature label pair data.
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2.1.4. Evaluation Indicators

Building heat load prediction belongs to regression prediction, and regression predic-
tion cannot be measured by the accuracy rate. The effect of model prediction is generally
evaluated by the error assessment. In this paper, the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) are used as the error evaluation indexes to quantitatively
analyze the prediction effect of the model. The smaller the value of both error indicators,
the better the prediction effect is. RMSE is sensitive to outliers and can test the effect of
outliers, while MAE is closer to reality. Through the situation of these two error values, the
effect of the model prediction can be measured. The specific formula is as follows:

RMSE =

√
1
n

n

∑
i=1

(y− y′)2 (3)

MAE =
1
n

n

∑
i=1

∣∣y− y′
∣∣ (4)

In the above equation, n denotes the number of predicted samples, y denotes the real
value, and y′ denotes the predicted value.

2.2. Relevant Basic Theories
2.2.1. Seasonal Decomposition STL Algorithm

The STL algorithm is a locally weighted linear regression (LOESS)-based seasonal
decomposition algorithm proposed by Cleveland et al. [34], which uses an additive model
to decompose the time series data Yt into a trend component Tt, a seasonal component St,
and a residual component Rt.

Yt = Tt + St + Rt, t = 1, 2, 3, · · · , n (5)

The STL decomposition method is widely used in time series analysis and seasonal
adjustment, especially for data with nonlinear trends and seasonal patterns. In the data
analysis, this paper identifies that the data from the eight building groups involved in the
study exhibit complex trend variations and pronounced 24 h seasonal changes. Therefore,
using the STL algorithm will effectively extract the trend and seasonal components of the
building heat load. The decomposition principle is divided into two parts, the inner loop
and the outer loop; the inner loop is mainly for fitting the trend and calculating the seasonal
components, and the outer loop is mainly for calculating and updating the robustness
weights of each sample point.

Mark Tk
t , Sk

t as the trend component and seasonal component at the end of the k-1st
time of the inner cycle, T0

t = 0 at the first trial. Denote the number of inner cycles as ni, the
number of outer cycles as no, and the period as np.

The inner cycle is divided into the following six steps:

1. Detrending. The time series Yt is de-trended from the last iteration Tk
t to obtain a

new Yt ← Yt − Tk
t , where, initially, T0

t = 0.
2. Cyclic subsequence smoothing. Each subsequence in step (1) is processed using

LOESS regression, extending one cycle each before and after, with the smoothing
parameter ns, and obtaining a smoothing result denoted as Ck+1

t .
3. Low flux filtering of subsequences. The smoothing result Ck+1

t in (2) is sequentially
subjected to a sliding average of lengths np, np, 3 and then a LOESS regression with
parameter nl is performed to obtain a sequence Lk+1

t of length N.
4. Removing seasonal trends. Obtain the seasonal component Sk+1

t = Ck+1
t − Lk+1

t .
5. De-seasonalization. The seasonal component of de-seasonalization is Yt − Sk+1

t .
6. Trend smoothing. The series obtained in step (5) is subjected to LOESS regression

to obtain the trend component Tk+1
t . Determine if there is convergence; if there is

convergence, output the result; otherwise, return to (1).
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The outer loop is mainly used to adjust the robust weight ρt in the LOESS regression
to minimize the effect of outliers on the regression values.

ρt =
B(|Rt|)

h
(6)

where h is:
h = 6 ∗median(|Rt|) (7)

B(x) is the weight function, defined as follows:

B(x) =

{(
1− x2)2, 0 ≤ x < 1

0, x > 1
(8)

2.2.2. Long Short-Term Memory Network

A Long Short-Term Memory Neural Network (LSTM) is a variant of Recurrent Neural
Networks (RNNs) designed to process sequential data, addressing the long-term depen-
dency problem found in traditional RNNs. Due to its exceptional ability to capture long-
term dependencies within sequential data, it can learn non-linear temporal patterns in data,
enabling future data prediction. It introduces three gates: the input gate It, forget gate Ft,
and output gate Ot, which are defined as follows:

It = σ(XtWxi + Ht−1Whi + bi) (9)

Ft = σ
(

XtWx f + Ht−1Wh f + b f

)
(10)

Ot = σ(XtWxo + Ht−1Who + bo) (11)

Among them, Wxi, Whi, Wx f , Wh f , Wxo, and Who represent the parameter, matrix bi, b f , bo is
the bias term, and σ is the Sigmoid activation function. Additionally, a candidate
state C̃t and a cell state Ct are introduced, defined as follows:

C̃t = tanh(XtWxc + Ht−1Whc + bc) (12)

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (13)

wherein Wxc, Whc represents the parameter matrix, bc is the bias term, ⊙ denotes the
Hadamard product, indicating element-wise multiplication, and tanh is the activation
function. The cell state Ct stores long-term memory, which can mitigate the vanishing
gradient issue. Finally, the hidden state Ht stores short-term memory, defined as follows:

Ht = Ot ⊙ tanh(Ct) (14)

2.2.3. Ridge Regression

Ridge Regression (RR) is an extension of linear regression. The advantage of ridge
regression lies in its unbiased estimation, which tends more towards shrinking some coeffi-
cients towards zero. This characteristic makes it suitable for dealing with multicollinearity
and overfitting problems [35]. In traditional linear regression, a high correlation among
independent variables leads to increased variance in parameter estimates. This results
in model instability. Ridge regression addresses these issues by adding a regularization
term to the loss function, effectively mitigating these problems. The loss function of ridge
regression can be expressed as follows:

L =
n
∑

i=1
(yi − ŷi)

2 + λ
p
∑

j=1
β2

j

=
n
∑

i=1
(yi − ŷi)

2 + λ∥β∥2
(15)
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In the formula, L denotes the loss function, yi refers to the actual value of the ith
observation, ŷi indicates the predicted value of the ith observation, β j represents the
regression coefficient for the jth feature, p stands for the number of features, λ is the
regularization parameter in ridge regression, which governs the effect of the regularization
term on the model, and λ∥β∥2 signifies the L2 norm of regularization.

In ridge regression, our goal is to minimize the loss function. The regularization
term λ∥β∥2 acts as a penalty on the regression coefficients, constraining their magnitudes
and thus reducing model complexity. The choice of the parameter λ is crucial, as it
determines the strength of the regularization term. A larger λ results in smaller regression
coefficients, thereby lowering model complexity and reducing the risk of overfitting. Ridge
regression is typically solved using a variant of the Ordinary Least Squares (OLS) method,
known as Ridge Estimation, which has a closed-form solution:

β̂ = (XTX + λI)
−1

XTy (16)

In the equation, X represents the design matrix, containing all the independent
variables, y is the vector of the target variable, and I is the identity matrix.

2.2.4. Ensemble Deep Learning

Ensemble deep learning aims to better capture complex data distributions and improve
model generalization performance by combining the outputs of multiple deep learning
models, thereby diminishing the impact of random changes. The success factors of ensemble
learning can be categorized into the following aspects [36,37]:

1. Data sample techniques used in training: Enhancing data quality by introducing other
data features or using different data sampling techniques, such as bootstrapping and
cross-validation, thereby increasing the robustness and generalization performance of
the ensemble.

2. Types of basic models: Selecting different types of basic models can increase the
diversity of the ensemble and improve overall performance—for example, models
like decision trees, support vector machines, and neural networks.

3. Diversity of basic models: Ensuring differences among basic models to avoid overfit-
ting. This can be achieved by adjusting model parameters, selecting different feature
subsets, or using different training algorithms to increase model diversity.

4. Methods of combining basic models: This includes voting methods and meta-learning
approaches. The main ensemble learning methods include Bagging, Boosting, Stack-
ing, and Ensemble Pruning. This paper employs the Stacking approach, which
involves multiple basic models and a meta-model. Through parallel ensemble tech-
niques for generating basic learners, it fully leverages the strengths of different models
and obtains the final result through a meta-learning fusion method.

The ensemble deep learning strategy employed in this paper involves training different
configurations of the same basic model with a variety of data samples. This approach is
unique to ensemble deep learning and allows for the training of the same basic model
with different structures on diverse data samples, combining the advantages of different
configurations. This method can enhance the predictive performance and robustness of
the model.

2.3. Proposed ST-LSTM-RR Ensemble Deep Learning Model

To address the problem of the single-step prediction of a short-term building heat load,
this paper proposes and implements a multi-component fusion LSTM Ridge Regression
Ensemble Model (hereafter referred to as the ST-LSTM-RR model). This ensemble model
is a type of ensemble deep learning model that employs parallel ensemble technology.
The integration strategy involves training different structures of the same basic model
with datasets containing various features, thereby introducing diversity into the basic
model. According to the results of the data analysis, the heat load dataset used in the
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study exhibits clear trends, seasonality, and randomness, making the pattern of data
changes extremely complex. The proposed ensemble model cleverly incorporates trend
and seasonal components to allow the LSTM model to better capture the patterns of heat
load changes; by integrating three diverse LSTM models, it further enhances the overall
predictive performance and stability of the model, enabling it to counteract the randomness
of heat load changes to a certain extent. The ST-LSTM-RR model structure is divided into
three main parts, with the specific structure and principles illustrated in Figure 7.
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The first part involves decomposing to construct diverse datasets. Using the additive
mode of the STL seasonal decomposition algorithm, the original building heat load val-
ues Y are decomposed into three components: the trend Tt, seasonality St, and residual Rt.
Since the residual component is difficult to predict, it is discarded, and only the seasonal
and trend components are added as features to the original data features. This process
creates a trend dataset DT and a seasonal dataset Ds, plus the original dataset DO, resulting
in three diverse datasets. These datasets are independent of each other, with each being
used to train a separate basic model.

DT = {X1, . . . , Xn, Tt, Y} (17)

DS = {X1, . . . , Xn, St, Y} (18)

DO = {X1, . . . , Xn, Y} (19)

where Xi represents the features, the trend Tt and seasonality St are also considered as
features, and n is the number of features in the original dataset, excluding the heat load.

The second part involves training diverse basic models. The basic model employed is
the LSTM model, which is the preferred model for predicting time series data, and building
heat load data also fall into the category of time series data. Parallel training is utilized,
employing the trend dataset, seasonal dataset, and original dataset to train the Trend LSTM
(abbreviated as TLSTM), Seasonal LSTM (abbreviated as SLSTM), and Original LSTM
(abbreviated as OLSTM) models, respectively. These three models are independent of
each other, possessing different structures and parameters. The Original LSTM provides
the basic prediction, the Trend LSTM is better at predicting changes in peaks, and the
Seasonal LSTM excels at capturing cyclical variations. This part ultimately produces three
diverse basic models. After training is completed, a validation set (val) is input into the
three models to obtain the prediction values Pt, Ps, and Po, which will be used to train the
metamodel.

PS = SLSTM(val) (20)

PT = TLSTM(val) (21)
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PO = OLSTM(val) (22)

The third part involves the training and prediction of the meta-model. When training
deep learning models, if only a single model is used, it can take a considerable amount
of time to adjust parameters to find the optimal model for a given dataset. However,
a meta-model, which learns based on the experience of basic models, can integrate the
prediction results of multiple basic models, reducing the overall model tuning time and
offering better stability.

Since all three basic models are trained based on the LSTM model, their prediction
values will exhibit certain multicollinearity issues. The Ridge Regression model (RR) is
capable of addressing this issue. Therefore, the ST-LSTM-RR model selects ridge regression
as the meta-model to integrate the prediction values of the basic models. The three predic-
tion values are used as features to train the ridge regression meta-model, and the prediction
result of the meta-model serves as the final prediction value y′ of the ST-LSTM-RR model.

y′ = RR(PT , PS, PO) (23)

3. Results
3.1. Experimental Environment and Parameter Settings

The detailed configuration of the experimental environment for the proposed model
is presented in Table 2.

Table 2. Experimental environment configuration.

Experimental Environment Configuration

Hardware

Operating System Windows 10
CPU Intel(R) Core(TM) i7-9750H
GPU NVIDIA GeForce RTX 2060

Memory 32G

Software

Programming Language Python 3.7, ipython 7.31.1

Development Tools Pycharm 2020, Anaconda 3,
Jupyter Notebook 7.3.5

Deep Learning Framework Tensorflow 2.1, Keras 1.0.8

Software Packages Matplotlib 3.4.3, Numpy 1.19.2, Pandas 1.3.2,
Sklearn 0.0, Statsmodels 0.13.0

During the training process of the ensemble model, the STL decomposition algorithm
is implemented using the STL function from the Statsmodels package. The basic model
uses the ReLU activation function, the Mean Absolute Error (MAE) as the loss function, and
Adam as the optimizer, which adaptively adjusts the learning rate. The training involves
300 iterations, with a batch size of 64 for inputting data to the model. The network has
a dropout rate of 0.3 and consists of three layers, with neuron counts of 140, 140, and 80,
respectively, in each layer. The meta-model employs a ridge regression model, implemented
by calling the model from the Sklearn package.

3.2. Basic Model Training

The process of training a model is essentially the search for the optimal hyperparam-
eters, which typically include the learning rate, number of network layers, number of
neurons, loss function, optimization algorithm, batch size, activation function, number
of iterations, dropout rate, and ratio of dataset division. In the basic LSTM used in this
paper, the setting of the time step length is also included. During the process of training
the model presented in this paper, it was found that the dataset division ratio and the
selection of the time step length have a more significant impact on the performance and
generalization ability of the LSTM model. Appropriate choices of the dataset division ratio
and time step length can help the model better learn the patterns and rules of the data,
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thereby improving the predictive effect and stability of the model. Therefore, detailed
experimental explanations for these two hyperparameters are provided.

3.2.1. Dataset Division

Before starting model training, dividing the dataset into training, validation, and test
sets is a crucial step. Common division ratios include 8:1:1, 7:1.5:1.5, and 6:2:2. To find the
most suitable dataset division ratio for the basic model of the proposed model, experiments
were conducted on the datasets of office group one and residential group four. In these
experiments, RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) were used
as evaluation metrics, and the model’s predictive results were recorded, as shown in Table 3.
Through observation and analysis of the experimental results, it was found that among all
the experimental groups, the smallest error results were obtained when the dataset was
divided according to a 6:2:2 ratio. Therefore, the best predictive performance of the model
is achieved when the experimental dataset is divided using a 6:2:2 ratio.

Table 3. Experimental results of the dataset division ratio.

Dataset Division Ratio RMSE MAE

Office Group 1
8:1:1 22.108 8.532

7:1.5:1.5 13.380 8.572
6:2:2 13.287 6.982

Residential Group 4
8:1:1 34.381 25.224

7:1.5:1.5 29.730 23.174
6:2:2 27.232 22.149

3.2.2. Time-Step Selection

In time series forecasting, the time step length for each sample input into the model,
that is, how many past timestamps there are whose data are used, is crucial for the model
to unearth patterns in the time series. The data from office group one and residential group
four are easily predictable and can more clearly demonstrate the impact of the time step
length on the model prediction error. Therefore, these two groups’ data were selected as
benchmarks for conducting time step length experiments. Experiments were carried out
with time steps of 72 h, 48 h, 24 h, 12 h, 6 h, 3 h, and 1 h, with specific experimental results
presented in Table 4.

Table 4. Experimental results of selecting the time step.

Dataset Time Step RMSE MAE

Office Group 1

1 h 114.624 35.112
3 h 114.158 35.021
6 h 106.223 26.599

12 h 26.273 16.013
24 h 13.287 6.982
48 h 6.142 4.105
72 h 17.809 12.120

Residential Group 4

1 h 49.946 35.363
3 h 44.805 30.101
6 h 37.849 27.433

12 h 33.277 26.455
24 h 27.232 22.149
48 h 24.697 20.195
72 h 35.663 29.567

It is evident that for both office group one and residential group four, the worst
predictions occurred with a time step length of 1 h, while the best predictions occurred
with a time step length of 48 h. Moreover, as the time step length increased, the error values
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of RMSE and MAE progressively decreased, reaching their optimum at 48 h. When the
time step length was set to 72 h, the model’s prediction results began to decline from their
optimum, indicating that although increasing the model’s input time step length can reduce
the prediction error, too long a time step length can also increase the error. The optimal
time step length for this model is 48 h, meaning that when the past two days’ data are used
as a single input sample for the model, the predictive performance is optimal, effectively
utilizing the data’s correlations and time dependencies.

3.3. Metamodel Selection

In ensemble deep models, the meta-model is a higher-level model that uses the
predictions of basic models as features for training, rather than directly using the original
data. By learning from the predictions of the basic models, the meta-model can integrate
the strengths of multiple basic models to achieve more accurate and robust predictions,
potentially reducing the risk of overfitting and improving the model’s generalization ability.
Meta models typically choose simpler models, which are easier to understand and interpret,
helping to reveal the underlying patterns and mechanisms of the data. To find the most
suitable meta-model for the ensemble model proposed in this paper, one to two models
were selected from linear models, machine learning models, and neural network models
for experimentation. Linear models included the commonly used Ridge Regression and
Lasso Regression models; machine learning models included the Support Vector Machine
Regression model (SVR) and Random Forest model; and neural network models selected
the Deep Neural Network model (DNN). The specific experimental results are presented
in Table 5.

Table 5. Metamodel prediction error table.

Dataset Metamodel RMSE MAE

Office Group 1

Ridge Regression 3.809 2.655
Lasso 6.392 4.905

Random Forest 6.883 3.012
SVR 4.317 2.978

DNN 5.755 3.938

Residential Group 4

Ridge Regression 17.907 14.688
Lasso 19.940 15.794

Random Forest 20.775 16.316
SVR 19.595 14.228

DNN 19.593 14.981

In office group one, the Ridge Regression model had an RMSE of 3.809 and an MAE of
2.655, performing the best among all meta-models. The performance of SVR was slightly
inferior to that of Ridge Regression, while Random Forest and Lasso performed worse.
In residential group four, the Ridge Regression model also performed the best among all
meta-models, with an RMSE of 17.907 and an MAE of 14.688. SVR and DNN slightly lagged
behind Ridge Regression, and Random Forest and Lasso showed poorer performances. In
both groups, the Ridge Regression model demonstrated a relatively better performance,
with lower RMSE and MAE values, indicating its better generalization ability and stability
in the predictive tasks of these two groups. Although Ridge Regression is a linear model, it
achieved the best results. This may be because the basic models were all based on LSTM
models, which likely presented multicollinearity in their predictions, with high correlations
among them. Ridge Regression can effectively handle such multicollinearity, enhancing the
predictive performance and stability of the ensemble model.
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3.4. Model Comparison Experiment

This section primarily conducts comparative experiments between basic models and
the ensemble model, as well as comparisons with other different models, to further demon-
strate the superiority of the proposed model.

3.4.1. Comparative Experiments between the Basic Model and Ensemble Model

To demonstrate the effect of incorporating trend and seasonal components for the
predictions of the LSTM model, and to show that the three models are diverse yet effective
in different ways, we further argue that the ensemble model can integrate the strengths of
each basic model. This integration leads to improved prediction accuracy and enhanced
stability. A comparison experiment between the basic models and the ensemble model
was conducted, with the experimental results shown in Table 6. The best model for each
group is indicated in bold. The residential group is abbreviated as Rg and the office group
is abbreviated as Og.

Table 6. Comparison between the Basic Model and Ensemble Model.

Error Model Rg1 Rg2 Rg3 Rg4 Rg5 Rg6 Og1 Og2

RMSE

OLSTM 53.804 39.272 44.810 24.697 22.045 29.088 6.142 33.878
TLSTM 40.623 30.734 35.349 18.896 24.564 19.172 6.950 21.329
SLSTM 50.138 26.680 36.116 22.139 23.056 24.636 4.428 36.639

Proposed model 40.935 25.533 34.790 17.907 20.843 24.739 3.809 13.397

MAE

OLSTM 42.111 30.632 34.958 20.195 16.919 22.549 4.105 21.672
TLSTM 29.958 20.310 27.741 15.150 17.173 24.330 4.907 10.883
SLSTM 41.020 22.047 29.496 17.149 17.497 18.063 3.020 26.009

Proposed model 30.924 20.638 26.792 14.688 15.058 19.172 2.655 8.328

To highlight the differences between models, the RMSE and MAE values of the model
predictions are visualized as bar charts, as seen in Figures 8 and 9.
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Observing Figures 8 and 9, the Original LSTM model generally performs poorly
across most groups, with its predictions exhibiting relatively large errors. However, in
residential group five, the Original LSTM’s predictions slightly surpass those of LSTM
models incorporating trend or seasonal feature components, performing just below the
proposed ensemble model. This indicates the necessity of including the Original LSTM
model among the basic models.

From the RMSE metric, the Trend LSTM shows the best predictions in residential
groups one and six compared to the other models, even outperforming the proposed model
in some cases, and it ranks second to the proposed model in residential groups three and
four but overall performs better than the Original LSTM model. From the MAE metric,
the Trend LSTM achieves the best predictions in residential groups one and two, again
outperforming the proposed model in some cases, and it is second only to the proposed
model in residential groups three and four and office group two but overall performs better
than the Original LSTM model. This demonstrates that incorporating the trend component
improves LSTM model predictions, indicating the trend component’s influence on LSTM
prediction outcomes.

From the RMSE metric, the Seasonal LSTM outperforms the Original LSTM in all
groups and exceeds the Trend LSTM in residential groups two and five and office group one,
slightly behind the performance of the proposed ensemble model. From the MAE metric,
the Seasonal LSTM also surpasses the Original LSTM in all groups, and in residential group
six, it even outperforms the proposed ensemble model. This shows that the introduction of
seasonal components also impacts LSTM predictions, further reducing the prediction error
for the LSTM model.

The proposed ST-LSTM-RR ensemble model exhibits an excellent performance in most
groups, particularly in residential groups two, three, four, and five and office groups one
and two, achieving the best results. This indicates that the proposed ensemble model can
integrate the strengths of each model to achieve more stable predictive outcomes.

In summary, introducing trend or seasonal components can enhance the predictive
performance of LSTM models, and the proposed ensemble model offers better predictive
outcomes and more stable results.

From Table 6, it is clear that each basic model has its strengths in different groups. To
visually verify the diversity of the basic models, line graphs of the predictive results of the
three basic models in residential group four and office group one were plotted, as seen
in Figures 10 and 11. Figure 10 shows that in the first five days, the predictive results of
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the three basic models are quite close and perform very well, but in predicting the turning
points on the sixth and seventh days, OLSTM’s predictions differ from the actual values
by more than 100, indicating a significant error, whereas TLSTM and SLSTM continue to
predict the turning points accurately. The data’s pattern of change in residential group four
is complex. Observing Figure 11, the three basic models demonstrate their strengths at
different time points, making better predictions.
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This illustrates the diversity of the three models, capable of making accurate pre-
dictions at different times, laying a solid foundation for the success of the ensemble
learning model.

3.4.2. Comparative Experiments with Different Models

To verify the superiority of the ensemble model proposed in this paper, it was com-
pared with the TCN (Temporal Convolutional Network) and ConvLSTM (Convolutional
LSTM) models through comparative experiments. These two models are extensively used
and studied in the field of time series prediction, particularly excelling in modeling se-
quential data. TCN is renowned for its parallelism and capability in modeling long-term
dependencies [38,39]. ConvLSTM combines the strengths of CNN (Convolutional Neural
Network) and LSTM (Long Short-Term Memory), making it well suited for time series
prediction tasks [40,41]. Since the prediction of a building heat load is also a time series
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prediction task, these two models can be considered as appropriate benchmark models.
The RMSE and MAE values of each model’s predictive results across the eight groups
are shown in Table 7. The residential group is abbreviated as Rg and the office group is
abbreviated as Og.

Table 7. Comparison results of different models.

Error Model Rg1 Rg2 Rg3 Rg4 Rg5 Rg6 Og1 Og2

RMSE
ConvLSTM 64.419 48.049 53.009 38.214 35.013 44.749 6.238 21.651

TCN 58.189 37.044 39.808 27.939 30.347 38.851 15.582 32.418
Proposed model 40.935 25.533 34.790 17.907 20.843 24.739 3.809 13.397

MAE
ConvLSTM 54.764 41.755 43.825 29.303 26.798 37.101 2.985 9.522

TCN 45.521 30.418 29.702 23.554 24.415 32.130 12.438 18.090
Proposed model 30.924 20.638 26.792 14.688 15.058 19.172 2.655 8.328

By observing and analyzing Table 7, it can be seen that the ConvLSTM model performs
the worst among all residential groups, but its performance is relatively acceptable in office
groups, even better than the TCN model. Particularly in office group one, the ConvLSTM
model’s performance is slightly inferior to that of the proposed model. In contrast, the
TCN model performs better than ConvLSTM in residential groups but still falls short of
the proposed model in most groups. The proposed model’s predictive results, in terms
of RMSE and MAE, are superior to both TCN and ConvLSTM across all eight groups. In
residential groups, the model performs best in group four, while in office groups, the best
performance is observed in group one.

The average RMSE of the ConvLSTM model is 38.918, with an average MAE of 30.757.
For the TCN model, the average RMSE is 35.022, with an average MAE of 27.034. In
comparison, the proposed model has an average RMSE of 22.744 and an average MAE
of 17.282. This indicates a reduction in the average RMSE and MAE by 35.1% and 36.1%,
respectively, compared to TCN, and a reduction by 41.6% and 43.8%, respectively, com-
pared to ConvLSTM. This outcome underscores the significant advantage of the proposed
ensemble model in predictive performance. This superiority may stem from the model’s
ability to effectively integrate the strengths of different models and accurately capture the
complex temporal patterns of the heat load.

In summary, the proposed ensemble model demonstrates outstanding performances
across various aspects, providing an effective and robust solution for short-term building
heat load single-step prediction problems.

4. Conclusions

In this paper, a single-step prediction method for short-term building heat loads,
driven by a multi-component fusion LSTM Ridge Regression Ensemble Model (ST-LSTM-
RR), is designed and implemented. This method is applied to the single-step prediction
of short-term building heat loads for eight groups in a large mountain hotel park. The
experimental results show that the introduction of trend and seasonal components has an
effect on the LSTM prediction results; the three basic models of the proposed ST-LSTM-
RR model are diverse yet effective in different ways; the overall prediction results of
the ST-LSTM-RR model are better and more stable than those of the comparison models.
The prediction results of the proposed method can be used to guide energy deployment,
improve energy efficiency, and then reduce the carbon emissions of buildings.
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