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Abstract: The human jaw is a complex biomechanical system involving different anatomical compo-
nents and an articulated muscular system devoted to its dynamical activation. The numerous actions
exerted by the mandible, such as talking, eating or chewing, make its biomechanical comprehension
absolutely indispensable. To date, even if research on this topic has achieved interesting outcomes us-
ing in vitro testing, thanks to the development of new apparatus and methods capable of performing
more and more realistic experiments, theoretical modeling is still worthy of investigation. In light of
this, nowadays, the Finite Element Method (FEM) approach constitutes certainly the most common
tool adopted to investigate particular issues concerning stress–strain characterization of the human
jaw. In addition, kinematics analyses, both direct and inverse, are also diffuse and reported in the
literature. This manuscript aimed to propose a critical review of the most recurrent biomechanical
models of the human mandible to give readers a comprehensive overview on the topic. In light of
this, the numerical approaches, providing interesting outcomes, such as muscular activation profiles,
condylar forces and stress–strain fields for the human oral cavity, are mainly differentiated between
according to the joint degrees of freedom, the analytical descriptions of the muscular forces, the
boundary conditions imposed, the kind of task and mandible anatomical structure modeling.
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1. Introduction

Biomechanics is a discipline involving the study and analysis of the movement of
biological entities originating from external forces [1]. Hence, it consists of the application
of mechanical laws to determined biological systems such as hips [2], knees [3], ankles [4]
and so on. Biomechanics is a wide field including several subfields: biotribology [5–7];
computational biomechanics, in particular the Finite Element Method (FEM) [8–11]; nature
bio-inspired mechanisms and so on. In light of this, the mandible is a clear example
for which the relevance of investigations in this engineering area is paramount to the
longevity of any kind of prosthesis, such as dental implants [12] or more articulated
structures [13]. Indeed, the definition of the forces transmitted [14], the kinematics of the
entire biosystem and calculation of the efforts diffused in the coupling may help clinicians
and engineers to design and contribute to them designing sophisticated and customized
structures for patients, taking into account also the clinical conditions [15] with the aim of
the prosthesis’s long-term survival. To achieve this, the process of osseointegration [16,17]
is almost indispensable in terms of the correct and stable growth of the bone in proximity
to the medical structure. In this sense, it is widely accepted that the bone remolds itself
accordingly to the stress imposed. In fact, as confirmed by Wolff and Frost’s studies, there is
a direct relationship between the strain and the biological reaction [18]. Moreover, thanks to
technological development, interesting scenarios can be analyzed, such as as facial injuries
caused by ballistic impacts [19] and mandible reconstructions using plates, as indicated
by Bujtár et al. [20]. Indeed, one of the most critical issues is potential fracture of the
mandible, which requires specific medical treatments [21]. In any case, the human jaw is
basely a structure articulated with the left and right condyles, which plays a key role in
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common daily activities, both static, such as biting, and dynamic, such as eating, swallowing
and speaking. From a mechanical perspective, the temporomandibular joint (Figure 1)
is characterized by three degrees of freedom [22], indicated by anterior–posterior and
mediolateral translations, respectively, in the sagittal and transverse planes and rotation,
again in the sagittal plane (Figure 2). In further detail, this rotation is referred to as disk–
condyle coupling, whereas the disk–articular fossa translations correspond to the superior
joint cavity because the former is not tightly attached to the latter. Nevertheless, in several
simulations, it is modeled as a fixed constraint, blocking all possible translations and
rotations [23–25].
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It is coupled with diverse muscular activations, permitting five kinds of movements [26,27]
(Figure 3):

• Elevation, corresponding to the closing of the mouth
• Depression, corresponding to the opening of the mouth
• Protrusion, corresponding to the protraction of the chin
• Retraction, corresponding to the retraction of the chin
• Lateral motions (side to side)
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ways [32], which is the reason why they are not commonly understood as unique and 
independent units. However, the larger ones are supposed to produce more isometric 
forces than the smaller muscles [33], as confirmed by electromyography (EMG) [34,35]. 
Moreover, there is a clear asymmetry between the muscular forces acting on the working 
and balancing sides, which can be expressed analytically using scaling factors. The prod-
uct of these coefficients and of the muscular loads provides the force magnitude, expli-
cated in the three directions x, y, z using unit vectors successively integrated into the 
FEM’s boundary conditions, as undertaken by Saini et al. [36]. This approach is appropri-
ate on the condition that the muscle tissues studied are anchored to bone so that the mus-
cle forces can be generated [37]. Finally, the latter can be calculated experimentally or nu-
merically, as calculated by the duo Korioth and Hannam during mastication tasks [38,39].  
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The current state of art provides both experimental [40], through the use of strain 
gauges, photoelasticity or innovative approaches like image correlation, as proposed by 
Yachouh et al. [41], and numerical tests [42]. The clear advantages offered by the latter in 
terms of their non-invasive techniques, the simplicity ensured by high-performance soft-
ware and especially their good agreement with experiments [43] make them a valid and 
popular alternative, as confirmed by Knoell’s study [44]. The flow process involves a com-
puter tomography (CT) scan image of the jaw, solid conversion using 3D CAD tools and 

Figure 3. Human skull CAD files with mandible movements in their respective directions.

In particular, the muscles responsible for oral cavity movements are essentially
four [28,29]: the masseter, divided into deep and superficial parts; the temporalis, di-
vided into anterior, middle and posterior; the medial pterygoid and the lateral pterygoid
(Figure 4), although others are also influential, such as the digastric muscle [30] or the
suprahyoid muscles [31]. During a specific action, the muscles can activate and combine in
several ways [32], which is the reason why they are not commonly understood as unique
and independent units. However, the larger ones are supposed to produce more isometric
forces than the smaller muscles [33], as confirmed by electromyography (EMG) [34,35].
Moreover, there is a clear asymmetry between the muscular forces acting on the working
and balancing sides, which can be expressed analytically using scaling factors. The product
of these coefficients and of the muscular loads provides the force magnitude, explicated
in the three directions x, y, z using unit vectors successively integrated into the FEM’s
boundary conditions, as undertaken by Saini et al. [36]. This approach is appropriate on
the condition that the muscle tissues studied are anchored to bone so that the muscle forces
can be generated [37]. Finally, the latter can be calculated experimentally or numerically, as
calculated by the duo Korioth and Hannam during mastication tasks [38,39].
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(PT) in red, middle temporal (MT) in violet, anterior temporalis (AT) in pale blue, medial pterygoid
(MP) in ochre, superficial masseter (SM) in blue and deep masseter (DM) in orange.

The current state of art provides both experimental [40], through the use of strain
gauges, photoelasticity or innovative approaches like image correlation, as proposed by
Yachouh et al. [41], and numerical tests [42]. The clear advantages offered by the latter
in terms of their non-invasive techniques, the simplicity ensured by high-performance
software and especially their good agreement with experiments [43] make them a valid
and popular alternative, as confirmed by Knoell’s study [44]. The flow process involves a
computer tomography (CT) scan image of the jaw, solid conversion using 3D CAD tools
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and mesh construction [45]. Nevertheless, numerical models are usually based on exempli-
fying imposed hypotheses [46] such as the idea that the bone properties are intrinsically
anisotropic and not homogenous [47]. Consequently, their comparison with in vivo trials
is necessary to validate their results. In this regard, Craig et al. [48] evaluated experimen-
tally the biomechanical behavior of the mandible when the chin was loaded. The forces
and displacements were thus extrapolated, acting as the basis for computational models.
Alvarez-Arena et al. [49] investigated, via a computational approach, the biomechanics
of the jaw during three movements, middle and maximum opening and protrusion, at
different bone mineral densities, finding out that the latter determined the highest de-
formation, mostly corresponding to the mandibular angle. Meira et al. [50] proposed an
experimental setup for calculating the mandible’s stiffness without any constraints. In this
regard, a point of distinction is the physical nature of the jaw, which can be extrapolated
from human cadavers or be purely animal in origin, as with pigs or sheep. An alternative is
realization using additive manufacturing, as carried out by De Santis et al. [51] by adopting
a poly(methyl methacrylate) core and glass fiber reinforcement.

Overall, to our knowledge, the review manuscripts regarding mandible biomechanics
have essentially focused on the methods of reconstruction [52], edentulous conditions [53],
the stress patterns during mastication [54], or reference to peculiar zones, such as the
temporomandibular joint (TMJ) [55]. Wong et al. [56] proposed an overview of all the
biochemical models, both physical and computational. On the contrary, our aim is to
analyze and discuss from a more computational perspective the biomechanics of this
biological apparatus, accenting the roles of the muscular forces and the temporomandibular
joint and their interaction.

2. Materials and Methods

The mathematic modeling of mandible biomechanics is certainly an ongoing and
fascinating field of bioengineering. Indeed, it has captured the attention and the curiosity
of clinicians and engineers since 1970s [57] when the first experiments were performed.
Nowadays, the use of any kind of model is only investigative, with no applications to
diagnostic protocols [58], via cause–effect scenarios: the aim is to rapidly obtain the outputs
desired by varying the boundary conditions. In light of this, the evident complexity of the
human jaw should be taken into account in terms of its geometry, mechanical properties,
muscle activations and so on. Moreover, each patient has a specific conformation from
a morphological point of view, which can be described using only seven morphometric
measurements, as stated by Vallabh et al. [59]. Since the jaw shape is extremely intricate,
ascertaining its geometry is achieved using a CT scan, which is successively refined or
modified [60]. Secondly, the entire coupling, composed of muscles, ligaments and bone,
must be described according to its mechanical and physical properties. For instance, the
anisotropic property of bone has a great influence on the stress–strain regime [61] but
causes greater computation efforts. Hence, numerical models are based on the trade-off
between realistic behavior and the equation resolution time.

Muscle, joint and tendon modeling, instead, is essentially based on the multibody
theory, in which the joints are characterized using Equation (1):

{Φ(q, t)} = 0 (1)

This indicates the set of algebraical constraints on the generalized coordinate vector
q at the interval of time t. These can be divided into time-independent constraints like
anatomical ones or constraints as a function of time, such as the muscle length during the
performed action. The choice of the coordinates q depends on the specific investigation,
but they usually refer to the condyle process, muscle insertions and biting force origins.
Furthermore, the latter are referred to according to the x, y and z axes, outlining, respectively,
the anterior/posterior, lateral and inferior–superior directions [62].
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By amending Equation (1) twice with respect to the time, we obtain:[
Φq
](··

q
)
= [γ] (2)

where γ refers to the constraint’s quadratic velocity tensor, equal to:

γ = −
(

Φq
·
q
)

q

·
q − 2Φq,t

·
q − Φt,t (3)

in which Φq is the constraint’s Jacobian matrix;
·
q and

··
q are the first and second derivatives

of coordinate q, corresponding, respectively, to the velocity and acceleration vector of
the generalized coordinates; Φq,t is the constraint’s Jacobian matrix’s first partial time
derivative and Φt,t the constraint vector’s first partial time derivative. These relationships
are thus coupled with the motion laws (Equation (4)), providing an algebraic-differential
system of equations (DAE):

[M]
(··

q
)
=
(

Fi
)
+ (Fe) = F (4)

[
M ΦT

q
Φq 0

]{ ··
q
λ

}
=

{
F
γ

}
(5)

where [M] is the mass matrix, and Fi and Fe are vectors of all the internal (muscles, liga-
ments) and external forces (gravity, ground reaction). Finally, λ represents the Lagrange
multiplier vector, indicating the joint reaction forces. The mathematical system reported
in (5) can be approached using both forward and inverse analysis. The first technique is
adopted when the forces are determined using electromyography [63], and the position
vector must be evaluated:

··
q and λ are therefore solved in Equation (5) and successively

integrated to obtain the position and velocity vector. This procedure is repeated for all
the time steps imposed by the analysis. On the other hand, the inverse dynamics uses
jaw movements extrapolated experimentally via optical techniques [64] to calculate the
forces and time steps applied. Both the methodologies involve sets of equations whose
analytical solution is unique only if the number of equations is exactly the same as that
of the unknown variables. When the equality is not respected, an optimization problem
(Equation (6)) should be considered, characterized by an objective or cost function that may
be minimized or maximized according to the set of equality and inequality constraints.

min f (x)
Ax = b
A′x′ ≤ b′

 (6)

The function f (x) can measure the difference between numerical and experimental
results, individual muscular forces or stress [65]. The most common model for describing
muscular activities at the microscopic level is certainly Hill’s [66] and its variants [67],
for example, adopting a pennation angle between the tendon traction line and muscular
fibers [68] or the viscosity of the muscle [69]. According to his theory [70], a muscular unity
can be built as shown in Figure 5. The contractile element (CE) is the active component [71]
determined by the cross-bridges formed between the two proteins of the sarcomere unit,
myosin and actin [72]. Two non-linear springs are also introduced: the series element (SE)
directly connected to the CE, representing the tendon and the elasticity of the myofilament,
and the parallel element (PE), indicating the elasticity of connective tissues such as the
epimysium, perimysium and endomysium.
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For this configuration, the following relationships both for the forces (Equation (7))
and length L (Equation (8)) must be satisfied:{

F = F(PE) + F(SE)

F(CE) = F(SE)

}
(7)

{
L = L(CE) + L(SE)

L = L(PE)

}
(8)

The forces are a function of the deformed muscle length according to empirical con-
stants and of the peak isometric force. Moreover, the contractile force (F(CE)) depends
also on the muscle velocity and activation law. The latter (a(t)) is usually determined
experimentally [73] or by solving the first-order ordinary differential equation indicated
in (9):

da(t)
dt

=
1

τrise
(1 − a(t))u(t) +

1
τf all

(amin − a(t))(1 − u(t)) (9)

where τrise and τfall are the time constants, respectively, for the activation and deactivation
of the muscles, whereas u(t) is the neural excitation included in the range [0, 1]. The
activation function instead goes from amin to 1 [74]. The set of obtained equations is strictly
non-linear, inducing complications in their computational resolution. Nevertheless, in
hypothesizing a small strain, the governing relationships can be suitably linearized, as
applied to the biomechanics of the human tongue by Kajee et al. [75].

In conclusion, FEM modeling for the mechanical properties of soft tissues is somewhat
complex due to their nonlinear response. The definition of the muscle features signifi-
cantly influences the results [76], and it thus is indispensable for a complete and correct
description of the biomechanical behavior of the human jaw. To achieve this, the modeling
should mimic the human body structure as much as possible [77]. On the other hand, the
muscle properties are strictly variable and affected by their functional demands [78]. An
interesting procedure for calculating them was proposed by Silva et al. [79] using inverse
finite element analysis. The approach provided consistent results with the experimen-
tal trials conducted using dynamic magnetic resonance imaging, commonly used in the
dental field [80]. In this regard, hyperelastic theory [81], transversely isotropic [82,83] or
anisotropic [84–86], was found to be in a good agreement with the experiments, as con-
firmed by Ferreira et al. [87]. The hyperelasticity of a material is characterized by nonlinear
elastic behavior but also described by a strain energy function like the Mooney–Rivlin
model [88], which is usually adopted in numerical investigations, as done by Röhrle and
Pullan [89] and by Aoun et al. [90].

3. The Literature’s Main Results

The screening process (Figure 6) involved three databases, Scopus, Google Scholar
and PubMed, and was conducted using these keywords: modelling biomechanics [OR]
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multibody biomechanics [AND] maxilla [OR] mandible [OR] jaw. The number of papers
examined was 220, divided into 100 from Scopus, 70 from Google Scholar and 50 from
PubMed. From this list, 198 were excluded due to not matching the inclusion criteria
articulated according to four conditions: indexed papers (n◦3), works written in Native
English (n◦2), analyses of the human mandible (n◦50) and computational investigations
(n◦143). Finally, 22 works were analyzed and discussed. Table 1, beyond including the
authors and the titles, highlights the kind of analysis, the aim of the research and the year.
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Table 1. Human jaw biomechanics computational investigations in chronological order.

Number Authors Title Kind of Analysis Aim Year

1 Korioth and
Hannam [91]

Effect of bilateral asymmetric
tooth clenching on load

distribution at the mandibular
condyles

Dynamics analysis
Evaluation of

temporomandibular
reaction forces in clenching

1990

2 Ferrario and Sforza
[92]

Biomechanical model of the
human mandible in unilateral

clench: distribution of
temporomandibular joint reaction

forces between working and
balancing sides

Dynamics analysis

Calculation of
temporomandibular

reaction forces in unilateral
clenching

1994

3 Koolstra and
Eijden [93]

Dynamics of the human
masticatory muscles during a jaw

open-close movement
Dynamics model

Analysis of muscle length,
velocity and force during

mandible opening and
closing

1997

4 Langenbach and
Hannam [94]

The role of passive muscle
tensions in a three-dimensional

dynamic model of the human jaw

Dynamics
model

Forecast of active and
passive jaw muscles 1999



Appl. Sci. 2024, 14, 3813 8 of 20

Table 1. Cont.

Number Authors Title Kind of Analysis Aim Year

5 Peck et al. [95]
Dynamic simulation of muscle
and articular properties during

human wide jaw opening

Dynamics
model

Analysis of jaw dynamics
during a wide opening task 2000

6 Kuboki et al. [96]
Biomechanical calculation of

human TM joint loading with jaw
opening

Dynamics
model

Calculation of muscular and
TMJ forces during jaw

opening
2000

7 Koolstra and
Eijden [97]

Combined finite-element and
rigid-body analysis of human jaw

joint dynamics

Rigid-body and
finite element

analysis

Study of stress and
deformations of the jaw’s
cartilaginous structures

2005

8 Choi et al. [98]

Three-dimensional modelling and
finite element analysis of the

human mandible during
clenching

Finite element
analysis

Development of a 3D
mandible model 2005

9 Hannam et al. [99]
A dynamic model of jaw and
hyoid biomechanics during

chewing

Forward dynamics
analysis of jaw

Prediction of the activation
profiles of muscle forces, the
loads and the jaw gapes of

the condyles during
unilateral chewing

2008

10 Bonnet et al. [100]

Biomechanical study of mandible
bone supporting a four-implant

retained bridge
Finite element analysis of the

influence of bone anisotropy and
foodstuff position

Finite element
analysis

Investigation of the
biomechanical response of
an “All-on-Four” structure

2009

11 Tuijt et al. [101]
Differences in loading of the

temporomandibular joint during
opening and closing of the jaw

Dynamics analysis
Calculation of reaction

forces during opening and
closing of the jaw

2010

12 Xiangdong et al.
[102]

The influence of the closing and
opening muscle groups of jaw

condyle biomechanics after
mandible bilateral sagittal split

ramus osteotomy

Finite Element
Analysis

Study of the stress/strain
field to assess the impact of

jaw opening/closing
muscles

2012

13 Ahn et al. [103]

Analyzing center of rotation
during opening and closing

movements of the mandible using
computer simulations

Kinematics
analysis

Evaluation of the position of
the center of rotation 2015

14 Commisso et al.
[104]

Finite element analysis of the
human mastication cycle

Finite element
analysis

Analysis of stress in the TMJ
and of mandible movement

for different lateral
pterygoid activation

patterns

2015

15 Pinheiro and Alves
[105]

The feasibility of a custom-made
endoprosthesis in mandibular
reconstruction: Implant design

and finite element analysis

Finite element
analysis

Validation of a
custom-made

endoprosthesis
2015

16 Liu et al. [106]

An Investigation of Two Finite
Element Modeling Solutions
for Biomechanical Simulation

Using a Case Study of a
Mandibular Bone

Finite element
analysis

Comparison of two different
solutions for a mandible

stress–strain regime
2017

17 Andersen et al.
[107]

Introduction to Force-Dependent
Kinematics: Theory and
Application to Mandible

Modeling

Force-dependent
kinematics

Introduction to a novel
musculoskeletal modeling

approach
2017
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Table 1. Cont.

Number Authors Title Kind of Analysis Aim Year

18 Kober et al. [108]

Mandibular biomechanics after
marginal resection:

Correspondences of simulated
volumetric strain and skeletal

resorption

Finite element
analysis

Investigation of mandibular
biomechanics after marginal

mandibulectomy
2019

19 García et al. [109]

3D kinematic mandible model to
design mandibular advancement

devices for the treatment of
obstructive sleep apnea

3D kinematics
analysis

Study of kinematic behavior
of the mandible for

obstructive sleep apnea
issues

2020

20 Dutta et al. [110]
Load transfer across a mandible
during a mastication cycle: The
effects of odontogenic tumour

Finite element
analysis

Comparison of stress–strain
fields of healthy and
diseased mandibles

2020

21 Guo et al. [111]
EMG-assisted forward dynamics

simulation of subject-specific
mandible musculoskeletal system

Forward-inverse
dynamics analysis

Construction of a predictive
model of mandible

kinematics and dynamics
2022

22 Sagl et al. [112]

The effect of bolus properties on
muscle activation patterns and
TMJ loading during unilateral

chewing

Forward dynamics
analysis

Establishment of kinematics,
muscle activations and TMJ

stress
2024

4. Discussion

One of the first models of jaw mechanics was offered by the duo Korioth and Han-
nam [91] in 1990, concerning unilateral clenching on an acrylic shim and natural teeth.
Their approach was founded, during an isometric regime, on the equilibrium theory of both
translations and rotations among the muscular and reaction forces, explicated according to
the condyle and tooth resistances. The first followed the analytical relationship indicated in
(10), whereas the last two were the unknown variables.

FM = [XM · K] · EMGM (10)

in which XM is the cross-sectional diameter of the muscle and K [N/m2] a constant [113].
Their product provides the weighting factor, whereas EMGM represents the scaling factor,
indicating the ratio of muscle contraction with respect to its maximum response. They
noted that the two structures affected differently the load distribution, which was in the
range of 100–400 N, and that when the occlusal load moved toward it, the balancing
side suffered more than working side for natural teeth, with the opposite for the acrylic
resin shim.

Ferrario and Sforza [92] analyzed the mandible biomechanics according to dynamic
analysis with the aim of establishing the reaction forces at the condyle sites. To achieve this,
the model, explicated in the sagittal and coronal planes, was based again on the mechanical
equilibrium principle between the muscular and condylar forces on the working and
balancing sides and the biting forces involved in the vertical and rotation movements.
On the contrary, the former forces, involving the masseter, medial and superior lateral
pterygoid muscles and temporalis, were considered as a percentage of the biting forces.
Analogously, the reaction forces, conveniently scaled on the coronal and sagittal planes
using, respectively, asymmetry and activity indexes, were calculated as the percentage of
the bite force determined using electromyography. The results showed that the balancing-
side joint is not always loaded more than the corresponding working-side joint.

Koolstra and Eijden [93] studied the evolution of the muscular length, velocity and
force during the opening and the closing of the mouth. This actuation is determined by the
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sarcomere’s involvement, whose length (Ls(t)) was approximated by the authors using the
following law:

Ls(t) =
[

Lm(t)− (Lmi − L f i)
]
·
(

Lsi
L f i

)
(11)

where Lm(t) is the muscle length at the instant of time t, Lmi and Lfi the initial muscle and
fiber lengths and Lsi the initial sarcomere length. The force, therefore, can be obtained as a
cubic expression as follows:

FL = 0.4128Ls(t)
3 − 4.3957Ls(t)

2 + 14.8003Ls(t)− 15.0515 (12)

in which FL is the force–length factor representing the instantaneous isometric force as a
fraction of the maximum force.

On the other hand, the relationship with the sarcomere’s shortening velocity (Vs(t)) is
indicated in (13):

FV =


12.5−(Vs(t)/2.73)
12.5+(Vs(t)/0.49) Vs(t) ≥ 0

1.5 − 0.5 ·
{

12.5+Vs(t)/2.73
12.5−2(Vs(t)/0.49)

}
Vs(t) < 0

 (13)

In conclusion, the passive forces were evaluated using the passive factor FP with
respect again to the maximum force:

FP = 0.0014 exp
(

6 · Ls(t)− 2.73
2.73

)
(14)

They noted that the passive ones were produced to a larger extent by the jaw-closing
muscles (masseter, medial pterygoid, temporalis and superior lateral pterygoid) compared
to the opening ones (digastric, geniohyoid, mylohyoid, inferior lateral pterygoid). In
addition, they were higher during the opening task. The greatest isometric forces, instead,
were determined by the jaw-opening muscles. The previous authors were involved in
another study [97], in which rigid-body analysis and the FEM were coupled in a MADYMO
environment. The model was based on Hill’s theory for the superficial, deep anterior and
deep posterior masseter; anterior and posterior temporalis; medial pterygoid; superior
and inferior lateral pterygoid; digastric; geniohyoid and anterior and posterior mylohyoid
muscles. Their contributions were added to the food resistance in the central incisors and
right second molars. The joints were made of two deformable articular cartilage layers [114],
where the articular disk, connected to the condyle via pairs of inextensible wires, was free
to move. They observed that the reaction forces increased proportionally to the muscle
activation, significantly impacting the stressed area but not the peak values of the joint.
Moreover, the disk experienced more deformation, mainly due to shear stress, with the
maxima in the intermediate zone, than the corresponding cartilaginous layers.

Langenbach and Hannam [94] proposed a dynamic approach to evaluating active and
passive muscles during daily activities such as chewing. The model, entirely formulated in
the ADAMS package, considered the masseter, temporalis, medial and lateral pterygoid
and digastric muscles following Hill’s theory. Bite points were coupled also with the
resisting forces perpendicular to the occlusal plane, represented with the presence of a food
bolus, and the reaction loads in the TMJ, capable of performing five movements (three
rotations and two translations). The active and passive muscle profiles were thus extracted
and the compressive forces in the joint calculated. In this regard, the working and balancing
sides showed different responses with respect to the task: in unilateral chewing, the peaks
were on the working side, and the opposite was seen during the chopping cycle. The
authors, together with Peck [95], also analyzed the jaw dynamics during a wide opening
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task. The mechanical system adopted six degrees of freedom and passive (FP-Equation (15))
and active (Equation (16)) muscle tensions, solved again using the ADAMS tool.

FP =
(e(muscle length/max muscle length) exp − 1) · (Fmax · f actor)

(eexp − 1)
(15)

As a function of the muscle length, maximum passive force and scaling factor.

FA = F1 · t1 + F1 · t1 + . . . Fn · tn (16)

where F1 is the highest force lower than the maximum at an instant of time of actuator activ-
ity t1, and the others are the forces applied at successive time points. The examined active
and passive tensions were low, in the range of 1–18 N. Equally, a wide gap configuration
determined the greatest compressive TMJ forces.

Kuboki et al. [96], similar to in the previous studies, proposed a numerical approach
centered on the static equilibrium, explicated according to three components, x, y and z,
between 14 muscular forces (masseter, temporalis, medial and lateral pterygoid, digas-
tric), gravity and the reaction condyle forces at their corresponding time points. More
precisely, the former were calculated as the simple sum of the elastic part of the soft tissue
(Equation (17)) and the contractile contribution (Equation (18)).

EC =

(
dL
L0

)P
· Q · PCS (17)

in which dL and L0 are, respectively, the length at the opening and rest positions, Q the
elastic modulus, P a factor and PCS the physiological cross-section of the muscle.

CC =

(
IEMG

IEMGmax

)
· LTR · K · PCS (18)

where IEMG is the normalized integrated electromyography, and LTR and K are two factors
indicating the length–tension and muscle–cross-sectional area relations.

Choi et al. [98] constructed a 3D jaw model in which the masseter, temporalis, medial
and lateral pterygoid and digastric muscles [115–117] were applied to a precise area of
attachment. These loads, coupled with the biting ones, were assumed to be in equilibrium
with the reaction forces positioned at the center of the condyle and modeled as spring
elements. The stress values were in the range of 0.3–170 MPa, whereas the deformation was
in the range of 0.32–0.71 mm, with its peaks in the condylar region. After the simulations,
they observed that the compressive forces on the TMJ were in the range of 3–28 N when
the jaw was opened from 10 to 40 mm. In this displacement interval, the digastric muscle
reached the maximum activation percentage, whereas the medial temporalis showed the
highest elongation percentage.

Hannam et al. [99] modeled the cranium and the jaw using computer tomography
(CT), considering the temporomandibular joint as a single point positioned at its center
constrained by specific surface movements without friction and adopting Hill’s theory
for the muscle activations of the anterior, middle and posterior temporalis, superior and
inferior lateral pterygoid, deep and superficial masseter, medial pterygoid and anterior
digastric muscles. In conclusion, the ArtiSynth software (Version 2.0, 2005) was used for the
simulations and the fourth-order Runge–Kutta method for the resolution. The numerical
tests provided the muscle excitation profiles, with their peak during mouth opening in the
inferior lateral pterygoid and sternohyoid muscles, whereas it was during closing in all the
elevator muscles. The ipsilateral condyle, instead, presented the greatest reaction forces.

Bonnet et al. [100] studied the biomechanical behavior of “All-on-Four” treatment,
when the anisotropy of bone was taken into account. Equally, the structure was coupled
with a sphere simulating foodstuff in the molar, canine and incisor positions. The muscles
were modeled both using truss and membrane contractile elements, respectively, for the
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masseters, temporalis and lateral and medial pterygoids [118]. The main outcomes were
the profound influence of bone anisotropy, which cannot be neglected in FEM analyses,
and that the molar position significantly stressed the jaw.

Tuijt et al. [101] realized a three-dimensional mathematical model involving 24 Hill’s
muscles, indicated by the masseter, temporalis, medial and lateral pterygoid, anterior belly
digastric, mylohyoid and geniohyoid. In addition, soft tissues, according to their damping
coefficients [119]; gravity; bite forces, through the presence of a simplified dentition and
joint forces, using an exponential law, were considered. The numerical tests underlined
that the maximum reaction forces occurred during the opening (20–50 N) compared to the
closing (5–15 N) of the mouth.

Xiangdong et al. [102] evaluated the stress regime of the jaw in four configurations:
normal, protruding, after virtual surgery and after ostectomy. The muscle groups were
the masseter, temporalis, medial and lateral pterygoid, digastric, mylohyoid and geniohy-
oid [120]. The condyles, instead governed by only one degree of freedom, determined the
rotation around the sagittal plane. The stress distribution was strongly affected by the jaw
muscles, above all by the closing ones in all the scenarios, and it had asymmetrical results
concerning the condyles.

Ahn et al. [103] involved the following muscle contributions per side—the masseter
(deep and superficial), temporalis (anterior, middle and posterior), medial pterygoid,
lateral pterygoid (inferior and superior), digastric and mylohyoid (anterior and posterior)
—according to Hill’s theory [121]. Furthermore, the temporomandibular ligaments were
considered spring elements [122]. The center of rotation was thus estimated using ArtiSynth
software, determining that the motion was well described by pure rotation, although it
was variable during the opening and closing tasks mainly around the condyle and the
mandibular ramus.

Commisso et al. [104], adopting the same muscles as Tuijt et al. [101] and using Hill’s
theory for both active and passive forces [123], together with the viscoelastic behavior of the
articular disk [124], calculated the stress–strain field of the TMJ, noting that the most loaded
zone was the articular disk, which had the highest stress at the instant of the maximum
mastication force. Lastly, the activation pattern of the lateral pterygoid muscle strongly
influenced the biomechanical response of the mandible.

Pinheiro and Alves [105] validated a custom-made endoprosthesis made of Titanium
Grade V realized to correct mandibular defects. By fixing the condyles in all three directions
and by involving the muscular forces of the masseter, temporalis and lateral and medial
pterygoid and different biting loads in diverse tooth positions [125], they analyzed the
stress–strain regime of the coupling of the mandible–prosthesis. The great similarity of the
stress/strain field with respect to the intact mandible and strain values promoting bone
health confirmed the reliability of the apparatus.

Liu et al. [106] investigated two kinds of meshing surfaces, parametric and triangular
ones. A CT image was meshed according to these two techniques and successively imported
into FEM tools. In this environment, after the definition of the bone’s mechanical properties,
the constraints and loads were applied. In this analysis, the condyles were fixed in the three
directions of translation, whereas the muscle forces, referring to the masseter, temporal
(anterior and posterior), depressor and medial and lateral pterygoid, were represented as
springs with no resistance [126]. Overall, the authors stated that the best choice was the
triangular mesh due to the complexity of oral human apparatus.

Andersen et al. [107] introduced a novel musculoskeletal model in the AnyBody tool,
also contemplating the presence of kinematic joints, considering their degrees of freedom
(DOFs). In further detail, Equation (1) was rewritten as:{

Φ(q, t) = 0
ΦFDK(q, t)− αFDK(q, t) = 0

}
(19)

where αFDK represents the new DOFs whose dynamics can be neglected since their small
range of movement. Equally, the authors proposed a division between hard constraints,
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which must be solved, and soft constraints, which should be solved as much as possible.
This division arises from the greater number of experimentally measured DOFs with re-
spect to the modeled ones. This idea thus determines the definition of an optimization
problem for a specific scalar objective function (for example, the weighted least square).
Successively, the inverse dynamics can be analyzed, for which the muscular, joint and
residual forces FFDK are calculated. The algorithm, based on a Newton–Raphson-based
approach augmented with a golden section line, is stopped when the value of αFDK makes
these forces 0. In conclusion, the ligaments were also included as three non-linear line
elements. The comparison with the experimental data confirmed good agreement con-
cerning the kinematics but not for the joint forces, hence why this approach needs further
future improvements.

Kober et al. [108] evaluated the strain regime of a patient subjected to hemimandibulec-
tomy 2.5 years after their first resection. The study was conducted by applying rigid
constraints corresponding to the TMJ and muscular forces as distributed loads over the
attachments in proximity to the masseter (superficial and deep), temporal (frontal, middle
and posterior), medial and lateral pterygoid and digastric muscles and the right first molar
tooth. They found that the mandible biomechanics after resection is negatively influenced
by muscular activity, especially for subjects in good clinical condition.

Garcia et al. [109] evaluated the kinematics of the mandible in order to fix obstructive
sleep apnea. Starting with image analysis, achieved using a 3D Vicon system coupled with
four cameras, the jaw movements were recorded. By imposing five degrees of freedom,
divided into rigid assumptions for both condyles and the incisors (3) and the condyle
movements in the glenoid fossa (2), an iterative process was conducted to calculate the
position of any point on the human jaw. Finally, the realized 3D model provided more
reliable results compared to a 2D model.

Dutta et al. [110] considered the muscular forces of the masseter (deep and superficial),
temporalis (anterior, middle, posterior) and medial and inferior lateral pterygoid [127] in
three directions, localized in the patched areas on the outer surface of the cortical shell [128]
of the mandible. Moreover, the soft tissue layers in proximity to the articular condyle were
applied using two blocks, permitting displacements and rotations and providing support to
the apparatus at the same time. The simulations highlighted that, as expected, the presence
of a tumor induces higher stress and strains, likely causing pathological fractures during
daily activities, like eating.

Guo et al. [111] proposed an interesting model in 2022, combining both inverse and
forward dynamics: EMG activities and the maxillary plate landmarks acted as the input
variables to obtain the activation function and the position of any point on the jaw. Fur-
thermore, 24 muscles (temporalis, masseter, pterygoid and digastric) were considered in
accordance with Hill’s theory, whose insertion was achieved using a non-rigid iterative
closest point algorithm (NICP). Two proportional, integral, and derivative (PID) controllers
were applied in order to monitor the potential errors in the posterior temporalis and ptery-
goid muscles’ length and that of the jaw-opening muscles. In conclusion, inverse–forward
dynamics simulation was carried out (Equation (5)), taking into account also the effect of the
fibrous capsule and the TMJ ligaments. The simulations showed unintentional movements
of head–neck coupling, together with the activation profiles of the jaw-opening and lateral
pterygoid muscles.

Lastly, Sagl et al. [112] proposed an in silico model developed in the ArtiSynth environ-
ment taking into consideration the bones as rigid bodies; the muscles (masseter, temporalis,
pterygoid, mylohyoid, geniohyoid, digastric) as actuators, in accordance with Hill’s theory,
and the TMJ, composed of the articular disk and ligaments, as made up of elastic contact
layers [129]. Moreover, the algorithm satisfied following next equation:

min
a

(
wvϕv(a) +

wa

2
ata +

wd
2
|ai−1 − a|2

)
0 ≤ a ≤ 1 (20)
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Φv is the quadratic optimization function between a movement goal and the motion
activated by the muscles (motion tracking error). Wv, wa, wd represent specific weights
and a the vector of the muscle activations. The condyle displacement range on both the
chewing and non-chewing sides, with the von Mises stress in the order of 0.5–2 MPa, was
calculated for different bolus positions, sizes and stiffness values, noting that the latter had
a significant influence on the mandibular joint only in terms of its size and stiffness.

On the whole, the bond between medicine and engineering is more and more clear
in the dental field [130,131]. In light of this, biomechanics is a clear example for which a
mechanical theoretical background is applied to biological entities, with the aim of improv-
ing a patient’s clinical condition [132]. The human jaw is an articulated biosystem [133]
composed of several entities, such as muscles, ligaments and bones, which are inserted into
numerical models using analytical laws. Hence, studying the mandible’s biomechanics
is certainly a challenging [134] field of bioengineering. Indeed, the complex mechanical
behavior of the human jaw [135], such as the definition of the cartilage’s properties, the
numerical instabilities [136] and the complexities of anatomic tissue description [137], de-
termine the realization of models with variable grades of limitations [138]. Nevertheless,
the development of new technologies and software [139] in recent years has allowed for
much deeper investigations, with the aim of correlating rigorously the muscle forces and
human tasks such as eating, speaking and so on [140]. In light of this, purely muscular
factors like the muscle and fiber length and the pennation angle play a key role in the
correct execution of a specific action [141], hence why advanced algorithms capable of
modeling muscular and joint interactions have been proposed since the beginning of 21st
century [142,143]. For instance, a useful approach may be represented in the combination
of different tools, as carried out by Koolstra et al. [97], in terms of coupling multibody
analysis with the FEM [144]. On the other hand, computational modeling, essentially based
on Hill’s theory, requires, most of the time, experimental data as input in order to perform
numerical tests [145]. This confirms the requirement for both numerical and experimental
but also clinical trials to validate the results obtained. In conclusion, it is most evident that
further studies are absolutely required in order to strengthen the current knowledge in this
very fascinating field.

5. Conclusions

In this review, computational approaches were considered, mainly involving kine-
matics, forward and inverse and finite element analyses. Several models of muscular and
joint contributions were thus discussed, with their respective hypotheses. The scientific
progress made using numerical methodologies, coupled with their non-invasive character
and real-time response, confirmed their uncontested success. The current state of the art
proposes several different approaches for the estimation of the jaw’s muscular and condylar
forces in terms of the degrees of freedom involved, the type of analysis and boundary con-
ditions imposed, the mandible modeling, the kind of muscles considered and the specific
human activity, making comparison of the results a formidable task. Nevertheless, inter-
esting outcomes were clearly reported in the literature, such as the activation profiles and
stress–strain regime explicated in the oral cavity. Moreover, numerical simulations have
highlighted the asymmetry between the working and balancing sides and that the presence
of any disease, like tumors, induces more stress in the human jaw. Overall, mandible
biomechanics is, at the moment, still an open field, with many questions to answer and
issues to resolve.
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