
Citation: Gullu, E.; Bora, S.; Beynek, B.

Exploiting Image Processing and

Artificial Intelligence Techniques for

the Determination of Antimicrobial

Susceptibility. Appl. Sci. 2024, 14, 3950.

https://doi.org/10.3390/app14093950

Received: 8 March 2024

Revised: 22 April 2024

Accepted: 29 April 2024

Published: 6 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Exploiting Image Processing and Artificial Intelligence Techniques
for the Determination of Antimicrobial Susceptibility
Emrah Gullu, Sebnem Bora and Burak Beynek *

Department of Computer Engineering, Ege University, 35100 Izmir, Turkey; emrah.gullu@deu.edu.tr (E.G.);
sebnem.bora@ege.edu.tr (S.B.)
* Correspondence: burakbeynek@klu.edu.tr

Abstract: Antimicrobial susceptibility tests, achieved through the use of antibiotic-impregnated disks
in a suitable laboratory environment, are conducted to determine which antibiotics are effective
against the bacteria present in the body of an infected patient. The Kirby–Bauer method, a type of disk
diffusion antimicrobial susceptibility test, is currently widely applied in microbiology laboratories
due to its proven effectiveness. In our study, we developed an algorithm that utilizes image processing
techniques to detect the inhibition zones of bacteria. A certain color depth acts as the threshold for
the inhibition zone, with its radius determined according to the size of the reference object. This
approach facilitates the measurement of inhibition zones and employs machine learning and deep
learning to categorize antibiograms, followed by determination of whether a bacterium on the disk is
sensitive or resistant to the antibiotics applied. The focus of this research is creating an automated
interpretation system for antimicrobial susceptibility testing using the disk diffusion technique, thus
simplifying the measurement and interpretation of inhibition zone sizes.

Keywords: antimicrobial susceptibility test; disk diffusion test; artificial intelligence; image processing;
machine learning; deep learning; transfer learning

1. Introduction

Antimicrobial susceptibility testing (AST), conducted in a laboratory setting or under
artificial conditions, aims to determine the susceptibility of bacteria from samples taken
from a living organism to specific drugs and their concentrations during an infection. The
agar dilution, broth microdilution, and disk diffusion methods are currently widely used
in antimicrobial susceptibility tests. The disk diffusion method (DDT) is preferred in micro-
biology laboratories for its simplicity, repeatability, and cost-effectiveness in determining
antibiotic sensitivity [1].

In the DDT method, bacteria at a specific concentration are spread on a culture medium,
and disks soaked in antibiotics are placed on top. An inhibition zone (a circular area
where bacteria do not proliferate) is formed around the disk. Judgments regarding the
sensitivity of the microorganism are made by measuring the inhibition areas formed
around the disk [1–3]. The measurement of zone diameters is conducted using a caliper or
ruler. However, this method poses a risk of contamination for the person performing the
measurement and may lead to user-related errors.

At present, antimicrobial susceptibility testing through image processing is performed
in many laboratories, using biomedical devices or manual measurement. The images
formed after incubation are analyzed 20–24 h after the culture is placed in the prepared
setup [4]. In the field of microbiology, image processing is mostly used to modify, analyze,
or improve existing images. In the reviewed studies, the detection of antibiotic disks
with image processing methods was mostly performed using the OPENCV-Hough Circle
Transform method. After determining the position of the antibiotics in the inhibition zone
measurements, the images were subjected to pixel processing by passing them through
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various filters. The determination of antibiotic types was achieved through various text
identification and model comparison methods [5].

While manual examinations by physicians have yielded antibiogram analyses, auto-
mated antibiogram image processing has not yet achieved routine clinical use. Further
research is required to develop image processing methods associated with artificial in-
telligence for a combined approach utilizing both manual and automated antibiogram
analyses. Our study aimed to evaluate antibiograms through implementing an efficient
image processing algorithm, using a machine learning method to determine the growth
inhibition zones from plate images, and identifying the types of antibiograms utilizing
convolutional neural networks (CNNs), a deep learning technique. With this methodology,
it is possible to precisely determine the diameters of the inhibition zones and antibiograms
using image processing and classification libraries.

In this study, we minimize contamination problems through performing automatic
diameter measurement according to a reference object, guaranteeing a faster and more
efficient measurement process through automation of the diameter measurements. Then,
we use a machine learning algorithm to determine the types of antibiograms. Thus, we aim
to bring an innovative perspective for the identification of antibiotic disks, which are coded
with letters or numbers to provide new data with the help of artificial intelligence.

The AST is a clinical test that detects the susceptibility of a microorganism to antibi-
otics. The examination of antibiogram tests is usually undertaken manually, which can lead
to human error and lengthy procedures. In order to read and explicate the antibiograms,
some effort has been put into the development of automated devices; however, it is often
costly to operate these medical devices in different locations. Therefore, automated com-
puterized image processing has been identified as an effective method for the detection
and interpretation of antibiograms. This study aims to provide new solutions to overcome
the identified problems through developing processes for the automatic reading of antibi-
ograms, which could be much faster and more accurate than laboratory measurements.
Automated measurements are expected to enable the commencement of new clinical trials
and increase awareness in this research area. The remaining sections of this paper are
organized as follows. Section 2 explores a range of related works, Section 3 provides an
account of the image processing methods used to measure the diameter of inhibition and
the application of deep learning methods to detect the types of disk antibiograms, and
Section 5 comprises a summary of this study.

2. Related Works

Microbiologists can utilize antibiogram disk diffusion assays to ascertain an organism’s
susceptibility to specific antibiotics [6]. Antibiograms are employed for a variety of reasons,
but their most popular usage is supporting the clinical trials of novel therapies for suspected
infections in a clinical setting [7]. Variations in conditions can cause antibiograms to differ
in consistency when used for this purpose. To improve treatment success rates, more
precise test reports are needed. Despite the fact that the medical microbiology laboratory
has been the site of several investigations, the most effective way to analyze and convey
data in this context has not yet been decided.

Okowat et al. aimed to develop an automated interpretation of antimicrobial suscepti-
bility testing based on image processing [8]. In their system, they adopted the Kirby–Bauer
AST disk diffusion susceptibility method. The test was able to automatically detect and
quantify zones of inhibition and automatically detect the letter and text codes of antibiotic
disks on the plate. One of the major advantages of automated susceptibility methodologies
is the reduction of labor. Another advantage is that these systems enable faster reporting of
susceptibility results and, therefore, potentially earlier initiation of appropriate antibiotic
therapy. Automated antimicrobial susceptibility testing based on the disk diffusion method
has the advantages of standardization, reduction in measured variation and human error,
more precise results, reduced analysis and reporting time, and improved hospital informa-
tion management. To estimate the direction of the antibiogram, the method of placing an
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ellipse on each letter was used. Then, the bubble sorting algorithm was used to estimate the
rotating angle of the antibiotic disk drug. Each letter was cropped for segmentation, and
then represented through binary image transformation by applying adaptive thresholding
methods. As a result, only the images of antibiograms were taken with traditional OpenCV
methods, and binary image transformation was performed. Only some of the phases of
antibiogram type identification were implemented. In particular, the text recognition phase
was not included in their study, and no information on the detection and measurement of
inhibition zones was given.

Alonso et al. [9] aimed to minimize user and measurement errors by designing a
software tool that semi-automated the process of capturing images of disk diffusion tests.
They developed AntibiogramJ as a Java application, which included the OpenCV library,
and a library applied in bioinformatics called ImageJ, providing functionality for image
processing. These two libraries were combined and examined using the IJ-OpenCV li-
brary (http://joheras.github.io/IJ-OpenCV/, accessed on 15 April 2023). In addition, an
embedded database provided by AntibiogramJ—the JavaDB library—was used. In this
work, the reduction in manual work processes, the shortcomings of the architecture of
the AntibiogramJ library, the need for an open architecture, and the increased mobility of
a mobile application were noted. As AntibiogramJ does not distinguish which devices
and conditions were used to capture plate images, there is variability in these images.
Therefore, it is necessary to modify the quality of the images using the functionality offered
by AntibiogramJ. First, the user can perform image selection manually or automatically
to obtain plate images only. Automatic area selection was performed using the OpenCV
library and the Hough circle transform [10]. Moreover, it is possible to adjust the brightness
and contrast of the plate images both manually and automatically with the use of ImageJ.
The benefits of automation offered by these systems include enhanced standardization,
leading to greater accuracy, improved data management, with a simultaneous decrease
in transcription errors, quicker availability of results, and reduced risk of exposure to
cultivated pathogens. Archived images of culture plates have increased staff productivity,
enabling more comprehensive quality reviews and the creation of real-world training sets.
Moreover, it is possible to use the image library as a training tool [9].

The growth of E. coli bacteria was observed by analyzing images during 24 h of
incubation [11]. Changes in the disk inhibition zones over time represented positive results
in terms of preventing contamination in environments where microbiological processes
are carried out manually with image processing techniques. With this method, zone
measurements were carried out according to the reference disk diameter (6 mm), but
no information on antibiogram types was given. In addition, Fidan et al. have noted
that the study by Ferrari et al. [12], which used convolutional neural networks (CNNs)
to count colonies, reported 92.8% accuracy counts. Utilizing their developed method,
quantitative data were obtained, and contamination problems were prevented. However,
it was emphasized that the study should be repeated for different types of bacteria and
antibiotics [11].

Various AI approaches have been developed that have had success in microbiology. Lv
et al. [13] briefly explained how AI could address antimicrobial resistance (AMR) through
predictive modeling, smart antibiotic use, and the exploration of antimicrobial peptides
and antibiotic combinations. In [14], Weis et al. systematically searched for studies that use
machine learning algorithms to improve species identification and susceptibility testing
based on MALDI-TOF mass spectra [15]. A total of thirty-six studies were identified that
utilized various machine learning algorithms to identify species and support antimicrobial
resistance profiling. There was a significant overlap in the pathogens studied and the types
of machine learning algorithms used. However, a quality assessment revealed several
shortcomings in current machine learning implementations, which need to be addressed
before routine diagnostic use can be considered.

Pascucci et al. [16] developed an offline mobile application technology which analyzed
disk diffusion ASTs and presented interpreted results to users. The methodology of this
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study was described as combining machine learning (ML) and traditional image processing
algorithms for automated AST analysis using a mobile application. The OPENCV library
from C++ libraries was used to detect the inhibition zones and the Tensor Flow library
from ML libraries was used for antibiogram detection. In the experimental section, sev-
eral problematic images were detected in the datasets, due to damaged plates and low
contrast. The difficulty of isolating some inhibition zones, even by eye, was mentioned.
In comparison, the combined effect of bacterial pigmentation and ambient illumination
introduced a significant degree of variability in the bacterial inhibition intensity contrast.
In the experiments, images with low contrast gave worse results. Consequently, for each
of the two tests, a neural network model was trained to categorize the images as positive
or negative. Accuracy rates of 99.7% and 98% were achieved with models identifying
clindamycin-inducible resistance and extended-spectrum beta-lactamases (ESBLs), respec-
tively. However, the models exhibited suboptimal performance across a diverse range
of images, including variations in plate layout and bacterial texture. Given the potential
seriousness of classification errors in interpreting antibiotic susceptibility testing (AST) and
subsequent patient treatment, the developed methods incorporated a user confirmation
step within the automatic detection of the resistance mechanism. Thus, the recommended
strategy involved integrating models of the resistance mechanism into the application
and training them using supervised machine learning methods to enhance the overall
functionality. Consequently, the current version of the mobile application includes an
automatic detection procedure grounded in machine learning, a subset of AI.

Unfortunately, AI approaches still have several limitations. Existing AI models strug-
gle to accurately predict high-dimensional features due to data constraints, leading to
reduced accuracy. To overcome this challenge, exploring the automatic annotation of un-
labeled data through unsupervised learning appears promising for future research. This
approach could enhance the capabilities of AI models by leveraging larger datasets without
requiring extensive manual labeling.

Furthermore, current AI applications are often constrained to processing datasets with
similar distributions, which highlights their insufficient generalizability. Consequently,
techniques such as transfer learning and few-shot learning are expected to become increas-
ingly applicable in addressing complex issues such as antimicrobial resistance in the long
term [13].

In previous studies, challenges emerged in identifying antibiotic types due to a reliance
on traditional text recognition methods, as exemplified in the study by Thitikarn Okowat
et al. [8]. Our research, while not offering additional insights beyond the work of Pascucci
et al. [16], identified specific challenges with low-contrast, noisy, or unevenly distributed
inhibition zone images, resulting in ineffective diameter measurements, consistent with the
existing literature.

To address these challenges, we advocate for refining clustering methods using artifi-
cial intelligence techniques to enhance the inhibition zone measurement accuracy. Specifi-
cally, our study highlights the shortcomings of the K-Means algorithm in detecting pixel
grayscale transitions within certain low-contrast and noisy inhibition zone images, leading
to inaccuracies in measurements. This underscores the ongoing need for the exploration
and application of advanced artificial intelligence methods in this field, with the aim of
enriching the research available and inspiring further investigation among researchers.

3. Materials and Methods

Various methods are employed for antibiogram tests, with the disk diffusion method
(Kirby–Bauer method) being a significant example. This method offers the advantage of
easy interpretation, although it has slightly lower sensitivity compared to other methods.
In this approach, antibiotic-impregnated disks are placed at specific doses, and sensitivity
or resistance is determined by examining the zone around the disk after incubation.

To test antibiotic sensitivity, a suitable solid culture medium is prepared and inoculated
with a turbid liquid microbial culture. The process ensures an even distribution across the
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Petri dish. Antibiotic disks are then placed, and the dishes are incubated at the required
temperature and time. After incubation, the inhibition zones around the disks are measured
in millimeters and compared to standard values to determine sensitivity or resistance.

In this section, we describe the image processing methods used to measure the diame-
ter of the inhibition zone, as well as the application of deep learning methods to detect the
types of disk antibiograms. Python3 and some libraries of Python3 were used as the pro-
gramming language. These libraries included pandas, cv2 (open cv), os, numpy, matplotlib,
tensorflow, and keras. Online platforms such as roboflow, Google Colab, and GitHUB were
also utilized.

3.1. Detection of Antibiotics on the Culture Disk

It is possible to extract features from antibiogram Petri dish images through exploiting
information derived from computerized image processing. Consequently, culture disk
analysis makes extensive use of images in the tiff, jpeg, png, and bmp formats. The
dataset used to identify antibiotics on the culture disks was obtained from Marco Pascucc’s
“AST-image-processing” project, which was made public on GitHUB [17].

In this study, there were five image analysis steps: inputting data, image preprocessing,
filtering, reading the regions, extracting the original digital features, and analyzing and
determining the boundaries. The processing steps, including the image processing sections
through the OPENCV open-source library, were as follows:

1. All the accessed original antibiogram plaque images were saved in JPEG format.
Image sizes of 3096 × 4128 × 3 were given as input to the program. These image sizes
were from a fixed camera and the background color was a dark fixed background,
enabling the algorithm to achieve better results. An example of the culture disk is
shown in RGB format in Figure 1.

2. RGB raw images were given in a 3D matrix. There was no need to use a color-related
property for the antibiogram images. Thus, all raw original antibiogram images were
transformed to grayscale images. Any details were removed in order to extract the
numerical features relevant to the antibiogram images, other than the Petri dishes,
since Petri dish images were the main focus of our processing.

3. A median filtering technique approach was applied to remove noise from the im-
ages. This type of noise removal is a traditional pre-processing step used for better
results in post-processing. The median filter aimed to remove the small-scale image
contamination present in the images [18].

4. The Circular Hough Transform (CHT) method was employed to detect the circles.
CHT is commonly used in conjunction with its library in OpenCV [19]. To detect the
circles, we required the specific parameters of a circle, which in the circle equation
(x − x0)2 + (y − y0)2 = r2 consist of the parameters x0, y0, and the radii representing
the center. To find the sample image of the object in the positive class, circular shape
centers were detected by means of the Circular Hough Transform. This method was
applied to the images of the circles to be found, indicating the range of radii. In an
image with a resolution of 3096 × 4128 pixels, the fixed diameter of the antibiotic disks
was taken as 6 mm. This meant that setting the radius as a parameter ranging from 50
to 80 was a more efficient method. The “Sensitivity” feature was chosen as 0.95. These
parameters were set for the detection of the antibiogram images after experimentation.
After applying the Circular Hough Transform, three outputs were obtained: the matrix
of the centers of the circles with the x and y coordinates (called “centers”), the radius
matrix of the circles, and the metric showing how close the circle was. Then, the
circles in Figure 2 were drawn on the circular images, represented in green, using the
“centers,” “radii,” and “EdgeColor” parameters. In addition, the circled antibiotics
were represented in blue and numbered (Figure 2). These procedures made it possible
to accurately identify the antibiotics on the disk.

5. For each x, y, and r (radius) value, a frame image of the antibiotic disk was taken
and provided as input to another function. These cut antibiotic images (Figure 3)
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were presented as input to the machine learning layer. Here, the antibiotic type
was detected.
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First, for the x, y, and r values in the sample images, the formula (x − r, y − r, x + r,
y + r, x + r) was used to find the coordinates X1, Y1 by subtracting r from the x, y values of
the circled images, and X2, Y2 by adding r. These four coordinates were obtained by using
the OPENCV image cutting function to obtain the images, as shown in Figure 3.

The statistical results of this study with the Hough circle method are shown in Table 1.
Then, the antibiotic disk images could be compared using CNNs, and antibiotic type
prediction was carried out in the last phase of our study.

Table 1. Antibiotic disk detection rates of the test plates.

Input Image Method Applied Number of Antibiotics
on the Petri Dish

Number of Antibiotics
Detected Percentage of Success Percentage of Success

test_1.jpg Hough circle 16 16 %100

test_2.jpg Hough circle 13 13 %100

test_3.jpg Hough circle 13 13 %100

test_4.jpg Hough circle 16 16 %100

test_5.jpg Hough circle 16 16 %100

test_6.jpg Hough circle 5 5 %100

Total Percent Success: %100

3.2. Measurement of Inhibition Zone Diameters on the Culture Disk

Median blur has been shown to be an effective method for removing small noise.
Using the median blur method, we successfully minimized small noise in our study. The
comparison of the sample image with the median blur (17) filter is shown in Figure 4.
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In order to detect the inhibition zones, the median blur feature was used to remove
some of the small particle noise around the antibiotic disks from the image samples in our
culture dish, as shown in Figure 4. The coordinates and radii of the previously detected
antibiotic disks on the image are given in Section 3.1 in Step 4. Here, keeping the Y-axis
fixed and taking the coordinates as input, all 8-bit (0–255) pixel values between the X1–X2
coordinates were taken as a maximum of 3 × R (i.e., 6 × r of the antibiotic disk). This value
was translated by X1 + r in order to start from the outer arc of the antibiogram disk at
position X1.

We fixed the pixel cluster with a predefined parameter cluster of two. Through two
clusters, it effectively classified the inhibition zones. The K-Means algorithm operates in
iterative fashion, assigning each data point to one of the K groups according to specified
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parameters. Clustering of data points occurs by grouping them based on similarities
in features.

Thus, by keeping the Y1 coordinate constant and moving linearly through the X[n1
. . . n2] coordinates, the antibiogram detected the region changes with different numerical
values in the areas outside the disk. This cluster change of pixel values was as follows:

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

With the K-Means algorithm, the change point of the dataset clustered as two was
calculated. By taking the index information of this calculated value through a loop, the
change point of the inhibition zone diameter was calculated in pixels. Then, the X1, X2,
and index values of this antibiotic disk were taken as r, and the zone of inhibition was
determined by drawing a circle with these parameters. The fixed size of 6 mm of an
antibiotic disk with r = 55 px was taken as a reference. For the example with an inhibition
zone value of 49 px, the calculation was as follows:

Radius = [(Reference object + Detected zone)/Reference object] × 6 mm
= [(55 + 49)/55] × 6 mm = 11.345 mm.

In this section, the method of measuring the inhibition zones is explained. Figure 5
shows the circled zones of inhibition. The 8-bit grayscale color distributions of (f) test_6.jpg
image are given in Figure 6.

When reading these inhibition zone regions, the desired result could not be obtained
for low-contrast materials in regions where there was no uniform and symmetrical distri-
bution, and in zone images that went beyond the plate. These measurements are also given
in Table 2. In the background of Test_6.jpg, the circular zone RGB values exhibiting weak
contrast and a lack of uniform distribution in the frictional part of the disk led to misleading
results when converted to grayscale. This can deceive the K-Means pixel clustering algo-
rithm, resulting in inaccurate outcomes. To overcome this challenge, images in regions with
low-contrast inhibition zones and irregularly distributed feeding sites can be trained using
artificial intelligence methods, in order to develop more accurate clustering algorithms.
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Table 2. Inhibition zone measurements evaluations.

Input Image Pixel Algorithm
Applied

Number of Inhibition
Zones

Number of Correctly Detected
Inhibition Zones Success Percentage

test_1.jpg K-Means 16 14 87.5%

test_2.jpg K-Means 13 11 84.6%

test_3.jpg K-Means 13 13 100%

test_4.jpg K-Means 16 15 93.7%

test_5.jpg K-Means 16 16 100%

test_6.jpg K-Means 5 3 60%

Total Success Rate: 87.6%

Comparing Manual Measurement with the Proposed Method

At present, antibiotic susceptibility tests (ASTs) are performed in many laboratories
using biomedical devices or through manual measurement. In traditional methods, the zone
of inhibition is manually measured using a ruler, which can lead to measurement errors.
In many microbiology laboratories today, measurements are still conducted manually
with a ruler. This study automated the measurement of the inhibition zone diameter on a
1600 × 1200 px disk, as shown in Figure 7. Both manual measurement (with a ruler) and
automatic measurement using the method proposed in this study are shown.
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806 px = 296 px. The inhibition zone’s diameter [mm] is (r inhibition zone)/(r antibiotic) ×
6 mm, which results in (296)/(56) × 6 mm = 31.714 mm.

3.3. Disk Antibiotic Image Dataset

In this study, antibiotic-impregnated disks and their images were downloaded from an
open-source website (https://github.com/mpascucci/AST-image-processing/tree/master,
accessed on 15 April 2023). The downloaded AST set A1 and A2 data were collected
routinely in the microbiology laboratory of the University Hospital in Creteil, France.
Samples were taken from patients at the hospital. The preparation and analysis of AST was
not primarily designed for this study; instead, normal hospital procedures were followed.
The AST set A3 consisted of eight Petri dishes prepared at Medecins Sans Frontieres
Hospital in Amman, Jordan. The plates of this set were inoculated with microorganisms
provided by the American Type Culture Collection, which are regularly used for quality
control. These strains are among the most commonly utilized pathogens and have known
diameters of inhibition against several antibiotics. Pascucci et al. defined all data acquisition
processes and methods in [16].

Our dataset consisted of 9770 images of 23 different antibiotic classes in total. An
example of the antibiotic disk image dataset is given in Figure 9. The dataset was taken,
and the augmentation process was applied on the Roboflow online platform, yielding
antibiotic disk images of 23 different classes. The class names of the antibiotics used were
as follows: [‘AK30’, ‘AMP10’, ‘ATM30’, ‘AUG30’, ‘C30’, ‘CAZ10’, ‘CD2’, ‘CIP5’, ‘CN10’,
‘CRO30’, ‘CTX5’, ‘E15’, ‘ETP10’, ‘FC10’, ‘FEP30’, ‘FOX30’, ‘NOR10’, ‘P1’, ‘RD5’, ‘SXT25’,
‘TC75’, ‘TOB10’, ‘TZP36’].
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3.4. Deep Learning and Convolutional Neural Network Model

Deep learning is an extended subset of the machine learning (ML) family and provides
more efficient ways to implement ML. The “deep” part of deep learning is a technical
term, which refers to the number of layers or sections in the “network” part of “neural
networks.” Deep learning has played a critical role in the development of highly automated
systems, such as autonomous vehicles and natural language recognition and understanding.
Convolutional neural networks [20] are one of the most widely known and used types of
deep learning models. They have achieved significant success and innovation in computer
vision and image processing. The basic architecture of a CNN is shown in Figure 10. A
CNN consists of multiple layers, including the input layer, convolutional layer, pooling
layer, and fully connected layer. The input layer’s role is to take the pixel values of the
image as input. The next convolutional layer is responsible for producing output based
on kernels or specific filter values. The output obtained from a convolution operation and

https://github.com/mpascucci/AST-image-processing/tree/master
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the pooling layer are used to reduce the representation size and accelerate computation. In
the fully connected layer, the image—which has gone through several convolutional layers
and pooling layers and is in matrix form—is flattened into a single vector.
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In our study, we used the “Roboflow” online platform to develop a deep learning
model for our dataset of 9770 images [21]. The dataset was also subjected to pre-processing
for color depths and augmentation. These processes were applied as an auto-orientation of
pixel data (with EXIF-orientation stripping) and grayscale (CRT phosphor), respectively.

The data, belonging to 23 classes in our dataset, were read from a file and classified by
means of sub-file divisions. Of the 9770 images classified, 1954 images, corresponding to
20% of the data, were used as test data. As the images in the datasets were approximately
120 × 120 pixels in size, the height of the image was taken as 150 and the width as 150.
A value of 32 was given as the batch value. A label dictionary was created to retrieve
class names against the label indices used to train the model. After the training dataset
preparation stages were completed, a CNN model was created to train the image datasets.
The first layer of our CNN model was defined as the input layer. The dimensions of the
input data were parametrically input to the system with the relevant input command set
of the Keras library. The size input of our dataset was set to 120 × 120 with the input
shape parameter. The “sequential” model was used in model selection. This model is
defined as a class object in artificial neural networks. The “add” command allowed us to
sequentially add model layers to this “sequential” model. Our first layer was the Conv2D
filter layer. This layer was configured with a kernel size of (5, 5) and a total of 128 filtering
parameters. The input size was parametrically defined as the pixel value equivalent to
the width and length of our dataset. The second layer, following the convolutional layer,
was the activation (“relu”) layer. The rationale behind selecting this layer was that RELU
activation functions, which are only active for positive values, do not activate a potential
negative output in the intermediate layers of the neural network. Consequently, it will
not be able to designate all neurons as active simultaneously. This is effective in terms
of performance, enabling the system to operate faster and more efficiently. Subsequently,
MaxPooling2D (2 × 2) was utilized with the pool size parameter to diminish the spatial
dimensions of the output volume. The pooling layer transformed the matrix inputs from
the activation (‘relu’) layer into 2 × 2 matrices with max pooling. These matrices were
maximized and output to the subsequent layer. Then, owing to batch normalization, the
layers in the network did not have to wait for the preceding layer to learn, facilitating
simultaneous learning. This accelerated our training. These layer structures were reiterated,
commencing with the Conv2D filters = 64, kernel size = 3 × 3 option. At the subsequent
level, the steps were repeated with Conv2D filters = 32, kernel size = 3 × 3. Finally, a fully
connected layer was designed, and the flatten layer was applied. The role of this layer is to
prepare the input data for the last and most crucial fully connected layer. This layer is tasked
with converting the matrix from the other layers into one dimension. Dropout (0.5) was
applied to the output of the flatten layer. This layer was utilized after the fully connected
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layers. In our model, dropout was used to sever the connections in the fully connected
layers. Thus, the nodes possessed less information about each other. Consequently, the
nodes were less influenced by each other’s weight alterations. Therefore, we achieved a
more consistent model with the dropout method. The last layer in our model was dense
(units = 23, activation = “softmax”). Since we had 23 classification categories, we set this
parameter to efficiently predict these classes in the last layer. We also used the softmax
function to perform the classification tasks. Before compiling our model, we set the optimize
parameter to “adam” in the optimize option. The visualization and the summary of our
sequential model are illustrated in Figures 11 and 12, respectively.
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3.5. Transfer Learning CNN Model

Transfer learning, a technique in machine learning, involves repurposing or fine-tuning
a model trained on one task for another related task. In convolutional neural networks
(CNNs), this method utilizes a pre-trained CNN as a starting point for tasks like image
classification, object detection, or image segmentation. The underlying concept is that
the pre-trained CNN already comprehends relevant features, such as edges, textures, and
shapes, crucial to the new task. Leveraging these pre-trained weights accelerates learning
on the new task, requiring fewer training examples compared to training a new model
from scratch. Our study employed the same CNN model illustrated in Figures 11 and 12,
except for the initial layer. Instead of the first layer, we utilized the DenseNet201 and
VGG16 models as base models. DenseNet201, a variant within the DenseNet family, is
a deep neural network architecture introduced by Huang et al. in 2017 [22]. This specific
configuration comprises 201 layers and has been trained on the ImageNet dataset, designed
for efficient image classification tasks. It incorporates 20,242,984 pre-trained parameters.
VGG16, introduced by Karen Simonyan and Andrew Zisserman in 2014, is a widely
adopted deep neural network architecture for image classification [23]. Comprising twenty
convolutional layers and three fully connected layers, it extracts features from input images
through convolutional layers and conducts classification using fully connected layers. This
network employs a total of 138,357,544 parameters, making it relatively larger than other
contemporary models for computer vision tasks.
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4. Results and Discussion

To determine the success of the models following training, their performance in the
assigned tasks was assessed by evaluating quantitative performance metrics including the
accuracy, precision, sensitivity, F1-score, and loss. Additionally, the duration of the training
sessions was subjected to analysis.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (1)

Precision =
TP

TP + FP
× 100 (2)

Recall =
TP

TP + FN
× 100 (3)

F1 =
TP

TP + 1/2(FP + FN)
× 100 (4)

The definition of parameters used in (1), (2), (3), and (4) are given as follows:
TP (True Positive): Correctly identifying something as true. When a known true value

is correctly labeled as true.
FP (False Positive): Incorrectly identifying something as true. When a known false

value is incorrectly labeled as true.
TN (True Negative): Correctly identifying something as false. When a known false

value is correctly labeled as false.
FN (False Negative): Incorrectly identifying something as false. When a known true

value is incorrectly labeled as false. The size of the confusion matrix depends on the number
of classes in the examples being considered.

The value obtained from the loss function measures how different the model’s predic-
tions are from the actual values. High loss values suggest inaccurate predictions, while low
values indicate accurate predictions.

We used the N-fold cross-validation method to score our CNN model’s success. We
chose N = 5, which means we split the training set into five randomly selected equal parts
and used each part N-1 times for training and one time for validation. The 5-fold method
allowed us to test our CNN against overfitting and selection bias. Our model was fitted
with 75 epochs (cycles) in each fold, and the best results obtained are shown in Figure 13.
When the Training score: Epochs graph in Figure 13a is examined, it can be seen that our
model learned regularly as the number of epochs increased. The training score, expressed
by the blue dotted line, increased continuously, and became horizontal as it approached
75 epochs. The validation score, represented by the orange dotted lines, was significantly
different from the training score at times. This was due to the inconsistent number of
datapoints in the antibiogram disk classes in our dataset. To avoid this inconsistency, it
would be appropriate to remove some classes from the dataset. After the 50th cycle, the
training score and the validation score remained proportional.

The error matrix in Figure 14 shows quite large values in the classification rates of our
classes. This was because these data were based on our best resulting fold. To determine the
real success rate of our model, we summarized all five cross-validation results; statistical
information from this is given in Table 3.

We trained the VGG16 and DenseNet201 models on the same dataset with 100 epochs
each. The other parameters were the same as for our CNN model. Tables 4 and 5 show
the results of both transfer learning models. The DenseNet201 model had a 0.89 success
rate, and VGG16 had a 0.91 success rate. Our CNN model worked slightly better on
averaged data.
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Table 3. Average values of the CNN model’s 5-fold cross-validation.

Classes Precision Recall f1-Score Support

AK30 0.992 0.958 0.976 106

AMP10 0.966 0.968 0.966 54

AMP2 0.992 0.96 0.974 66

ATM30 0.962 0.992 0.978 72

Aug-30 0.776 0.86 0.818 42

C30 0.946 0.968 0.954 67

CAZ10 0.784 0.94 0.854 29

CD2 0.916 0.906 0.91 100

CIP5 0.978 0.912 0.946 103

CN10 0.952 1 0.976 62

CN30 0.926 0.892 0.91 58

CRO30 0.994 0.988 0.994 38

CTX5 0.922 0.974 0.946 63

E15 0.85 0.898 0.876 33

ETP10 0.856 0.966 0.906 72

FC10 0.938 0.862 0.898 90

FEP30 0.824 0.556 0.654 14

FOX30 0.936 1 0.968 23

IMI10 0.73 0.634 0.68 40
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Table 3. Cont.

Classes Precision Recall f1-Score Support

LEV5 0.93 0.862 0.896 96

MRP10 0.884 0.846 0.864 47

NOR10 0.91 0.966 0.938 110

P1 0.856 0.84 0.848 45

Accuracy 0.92 1430

Macro avg. 0.90 0.90 0.90 1430

Weighted avg. 0.92 0.92 0.92 1430
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Table 4. Success rate of DenseNet201.

Precision Recall f1-Score Support

Accuracy 0.89 1430

Macro avg. 0.88 0.89 0.89 1430

Weighted avg. 0.90 0.89 0.89 1430

Table 5. Success rate of VGG16.

Precision Recall f1-Score Support

Accuracy 0.91 1430

Macro avg. 0.90 0.90 0.90 1430

Weighted avg. 0.92 0.91 0.91 1430

The experimental studies and visualizations indicated that higher success rates can
be achieved in the field of classification of antibiotic disks coded with different shapes
and codes through using the correct model approach, the correct number of epochs, and
avoiding overfitting. Classification success was achieved by our CNN model with a
precision rate of 0.9, an f1 score of 0.9, and an accuracy rate of 0.92 for the 23 classes in
our dataset.

5. Conclusions

In test applications of antibiograms, human error can occur when measuring the
antibiotic inhibition zone. Despite this, manual measurement methods are still in use.
This study aimed to enhance the efficacy of antibiogram susceptibility test measurements
through minimizing human factor errors occurring during these measurements.

In this study, inhibition zone measurements of the antibiogram susceptibility test were
performed by means of automatic identification methods and an artificial intelligence-based
clustering model. The deep learning CNN model was then used to classify the antibiotic
types. The first of the three steps of our study involved determining the threshold value
within a certain coefficient range used for identifying antibiotics, and successfully detecting
the antibiotic disk image using the “Hough Circle” method, due to its high contrast value
relative to the Petri dish. The antibiotic disks in six test Petri dishes were fully detected.
In this step, the success of our method was 100%. Fidan et al. utilized antibiotic disk
diameters of 6 mm in their studies and indicated that this corresponded to 55 pixels using
pixel measurement techniques. In their research, they reported detecting antibiotics by
passing them through different filters, including a blurring filter [11].

In step 2, despite utilizing various noise removal methods in the zone measurement,
some zones were not accurately detected. Pascucci et al. discussed the challenges of de-
tecting zones in digital images with damaged plates and extremely poor contrast between
bacteria and the inhibition zone [16]. They developed and trained two machine learning
models for identifying resistance mechanisms in images. While the accuracy results were
promising, they were concerned about overfitting due to the small size of their training
datasets, especially for the mobile application’s requirements. However, the integrated
Expert System managed these situations by prompting the user to confirm or exclude the
presence of the shapes when they were likely to occur. Their application’s fully automated
measurement procedure demonstrates a 90% agreement in susceptibility categorization
compared to a hospital-standard automatic system. Fidan et al. described the preliminary
steps of image processing through a closed setup in zone measurements and suggested
that problems encountered in image preprocessing can be significantly reduced by utiliz-
ing the homogeneous illumination technique [11]. Additionally, they found that image
quality improved without glare and reflection when the light intensity was homogeneously
distributed in a closed environment using plexiglass and vinyl material. In our study,
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the success of the diameter calculation of inhibition zones was measured at 87.6%. Better
results can be achieved through adopting a combined method with different parameters,
such as lighting, different coloring of the Petri dish background, and image processing
filters with different parameters when measuring inhibition zones. Future studies should
consider that different combined methods could contribute to the literature.

The final phase of our study was conducted using the CNN machine learning tech-
nique. The “amman_atb_data” dataset, consisting of 9770 images and 23 classes, was
utilized. With this dataset, a 92% antibiotic disk classification success was achieved. The
dataset could be organized more effectively by gathering fewer images of some classes.
Moreover, performing more image augmentation could further enhance the success rate.

Antibiogram susceptibility tests have been automated, and commercial applications
have been realized in this field; Biomik V3 (US-based) [24] and VITEC 2 (US-based) [25]
are the most widely used at present. The advantages of these devices include improved
standardization, as well as greater accuracy and fewer errors. However, these computerized
automated systems are too costly for clinical laboratories.

Furthermore, in many countries, legal procedures and permissions are required for the
practical implementation of automatic interpretation systems in microbiology laboratories.
While standardizing testing procedures can enhance quality and efficiency, they remain
impractical for settings with limited resources due to cost and infrastructure requirements.
Additionally, performing such a study requires both human resources and time with
a software team. Future studies will contribute to the current study through further
developing inhibition zone measurement techniques and finding a more effective method
for low-contrast inhibition zones. This study may be the beginning of the development of
device-based domestic antibiogram susceptibility tests.
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