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Abstract: The present meta-analysis summarizes brain activation for social cognition and emotion-
processing tasks in borderline personality disorder (BPD). We carried out two meta-analyses to
elaborate on commonalities and potential differences between the two types of tasks. In the first meta-
analysis, we implemented a more liberal strategy for task selection (including social and emotional
content). The results confirmed previously reported hyperactivations in patients with BPD in the
bilateral amygdala and prefrontal cortex and hypoactivations in bilateral inferior frontal gyri. When
applying a stricter approach to task selection, focusing narrowly on social cognition tasks, we only
found activation in prefrontal areas, particularly in the anterior cingulate and ventromedial prefrontal
cortex. We review the role of these areas in social cognition in healthy adults, suggesting that the
observed BPD hyperactivations may reflect an overreliance on self-related thought in social cognition.

Keywords: fMRI; neuroimaging; meta-analysis; borderline personality disorder; social cognition;
mentalizing; empathy; emotion processing; self–other distinction

1. Introduction

Borderline personality disorder (BPD) is a severe mental health condition with a
prevalence of around 10%, which negatively affects multiple areas of life [1–3]. Patients
typically show symptoms concerning their emotionality and social interactions: variable
affect and pronounced impulsivity, emotional dysregulation, unstable patterns of inter-
personal relationships and self-image [4]. Emotional disturbances have been one topical
focus (e.g., [5–7]) in BPD research. Based on mounting evidence on the subject, literature
reviews and meta-analyses [6–10] have broadly linked aberrant emotion processing to two
neural abnormalities: the hyperactivation of the amygdalae, reflecting excessive emotional
responding, and hypoactivation in prefrontal areas linked to impaired emotion regulation.
Recently, two large-scale clinical meta-analyses [11,12] found that these aberrant patterns
of emotion processing and cognitive control in the brain are a common characteristic of
multiple psychiatric disorders, including, for example, depression, anxiety, substance use
disorder, and schizophrenia. In addition to disturbed emotion, outstanding characteristics
of borderline personality are problems that manifest in social life and interpersonal rela-
tionships (e.g., [1,2,13–18]). In clinical and behavioral assessments, patients with BPD show
impairments in the ability to correctly infer the mental states of other people (for review,
see [19–21]; for psychotherapy studies, see [22,23]). It has been suggested [21,24–26] that
patients with BPD strongly rely on fast and automatic forms of mentalizing in combination
with problems in controlled and cognitive mentalizing. However, the study of brain abnor-
malities linked to social cognition and mentalizing has received comparably little attention
in meta-analyses of borderline personality disorder.
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Concerning the neural correlates of social cognition in healthy adults, meta-analyses
have produced an increasingly detailed picture of evidence over the past decade, thanks
to the continuing increase in published studies (see [27–33]). In the present study, we
seek to build on these insights by selecting studies on borderline personality disorder that
involve social processes. In particular, we build upon a model of social cognition, which
we developed in a previous meta-analysis [32]. In this systematic literature synthesis,
we clarified the interrelations between diverse forms of social cognition in terms of their
neural basis. We carried out a meta-analysis of two central forms of social cognitive
processes. The first form was empathy, generally referring to an affective route for making
sense of others (e.g., [34,35]). The second form was mentalizing, also referred to as theory
of mind (ToM), which denotes understanding others’ mental states via more cognitive
processes (e.g., [36–39]). By clustering brain activation maps for different tasks measuring
the two different social abilities, we could show that a considerable amount of processes
engaged by empathy and mentalizing rely on common brain networks. In the second
step, we reviewed other meta-analyses and empirical studies on related forms of social
cognition. The inspection of maps showed multiple overlaps among processes, which could
be summarized by two overarching networks linked to more sensory–affective versus more
abstract and decoupled representations of others’ mental states. We also observed that
several forms of social cognition recruited the sensory–affective and cognitive–abstract
networks conjointly. Together, the two identified brain networks featured component
processes not only implicated in empathy and mentalizing (see [32], p. 20) but also in action
observation [40], emotion processing [41], experiencing social exclusion [42], and social
interactions (e.g., [43]; see also [32], p. 23).

The present meta-analysis aims to further specify brain abnormalities for processing
emotional and social stimuli in borderline personality disorder by selecting studies based
on tasks and stimuli that connect with our integrative model of social cognition [32]. Our
study contributes new meta-analytic evidence on the neural correlates for social cognition
in borderline personality disorder, a question receiving limited attention in existing meta-
analyses [8–10].

2. Materials and Methods
2.1. Literature Search

Our method follows the guidelines for a neuroimaging meta-analysis with SDM-
PSI [44] and additional recommendations from the PRISMA guidelines [45]. We searched
for eligible studies on all databases and all collections of the Web of Science platform
(www.webofscience.com (accessed on 14 April 2024)), with a search date of 31 January 2023.
To identify neuroimaging studies, we used the keyword combination “functional magnetic
resonance imaging” or “positron emission tomography” or (“functional” and “magnetic”
and “resonance” and “imaging”). To specify the clinical topic of our meta-analysis, we
used the keyword combination (“borderline” and “personality”) or “borderline personality
disorder” or “bpd”. We excluded documents of the type “review article” from the list
of retrieved documents, resulting in 748 identified items. In addition, we studied the
samples of recently published neuroimaging meta-analyses on BPD [9,10] and added all
items that were not already on our list. After screening abstracts, 128 studies were retained,
and the corresponding full-text manuscripts were assessed for eligibility (see Figure 1).
Studies had to fulfill standard selection criteria for a meta-analysis (see [46]). These criteria
were assessed independently by the first and second authors (M.S. and J.-P.B.) and, if
necessary, reviewed and discussed until those authors reached an agreement. Concretely,
manuscripts had to report results from a task-based neuroimaging (fMRI or PET) study,
analyzed with a GLM approach at the whole-brain level, which used a consistent statistical
threshold throughout the brain. This criterion excludes studies using Region of Interest
(ROI) or small-volume correction approaches. Reported coordinates had to conform to
standard space (MNI or TAL). If a study reported brain activation for multiple contrasts,
we prioritized comparisons against a well-matched control condition (not baseline) and the
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comparisons/conditions that best corresponded to the other contrasts in the sample. To
achieve a sufficiently large sample of studies, we also included eight studies that did not
use a well-matched control condition (see Table 1, studies marked with an asterisk).
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Figure 1. The PRISMA flow diagram, describing the literature selection process. We identified
748 items from a database search in the Web of Science platform (all collections). After the abstract
screening, 128 manuscripts were assessed for eligibility. From those, we identified 29 studies for our
meta-analysis on social cognition in borderline personality disorder.

2.2. Task Selection

Our assessment of manuscripts found 59 eligible task-based neuroimaging studies,
from which we selected tasks based on our integrative model of social cognition [32]. As
described in the Introduction, the integrative model tied together different forms of so-
cial cognition by highlighting their overlap in the brain and proposing two overarching
networks implicated across stimuli and tasks. From the sample of 59 eligible borderline
personality disorder studies, we identified 19 studies linked to our model (see Table 1).
Five studies featured emotion observation tasks [47–51]. Such tasks correspond to the
“observing emotion” task type of our previous meta-analysis [32]. This kind of task can
be considered a building block of empathy (e.g., [52,53]) or even a form of affect sharing
(see, e.g., [54,55]). Three additional studies presented faces and asked for a mental state
judgment [56–58], and therefore correspond to mentalizing tasks, such as the well-known
Reading the Mind in the Eyes paradigm [59]. One task [60] presented an abstract–cognitive
mentalizing task to patients, corresponding to the task group “trait judgments” from our
previous meta-analysis [32]. Finally, ten tasks of the present literature sample featured a
social interaction in the form of social exclusion (i.e., cyberball tasks [61–64]), social feed-
back [65–67], or an imagined social encounter [68–70]. Social interactions are considered
a particularly ecologically valid way of measuring social cognition in the brain (see [43]),
and neuroimaging studies found interaction-related brain activation to comprise multiple
networks of our model of social cognition (see [32], pp. 20 and 23; see also [71]).

In addition to the 19 identified social tasks, we also found ten studies [72–80] that
presented emotional (negative) pictures from the International Affective Picture System
(IAPS, [81]) to participants. The IAPS features a variety of contents. Some images promi-
nently feature facial expressions or social interactions and, therefore, are highly relevant for
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our meta-analysis. Other negative pictures are more non-social or physical, for example,
depictions of dangerous animals, violence and death, or catastrophic events. For several
studies, we could not find information regarding which IAPS pictures were selected for
presentation and whether they showed socially relevant content (but see [75]). We therefore
decided to carry out two meta-analyses, one time without and one time with IAPS studies.
We will refer to these two instances as (i) meta-analyses for a narrow task selection and
(ii) for an extended task selection (including IAPS tasks, n = 29, see Table 1 for details).

Table 1. Characteristics of included studies: Number of participants, description of tasks and stimuli.

Study n1 n2 Task Contrast

Narrow task selection (n = 19)
Beeney [60] 17 21 Judging traits for self and other Avg. activation for all judgments *
Bertsch [65] 48 28 Social Threat Aggression Paradigm Aggressive > neutral cues in interaction
Cullen [47] 12 12 Viewing faces, implicit task Covert fear > neutral faces

Guit.-M. [48] 10 10 Discriminating emotions/orientations Fearful faces > neutral figures
Doell [66] 21 24 Monetary/social reward feedback task Social feedback > non-social feedback

Domsalla [61] 20 20 Virtual ball-tossing game (cyberball) Exclusion > obligatory inclusion
Fertuck [56] 16 17 Rating faces for trustworthiness or fear Trustw.-to-untrustw. > fearful-to-neutral
Fertuck [62] 23 22 Virtual ball-tossing game (cyberball) High > low rejection distress

Frick [57] 21 20 Reading Mind in the Eyes (RMET) task Neg. > neutral emo. (affective mentalizing)
Goettlich [68] 19 22 Read scenarios and imagine taking part Guilt scenarios (social content) > neutral
Herpertz [69] 33 30 Listen to script, imagine the scene Avg. activation for interpersonal rejection *
Lamers [49] 20 20 Viewing movie sequences showing faces Negative > neutral faces

Mier [58] 13 13 Judge intentions from emotional faces Avg. activation for all judgments *
Nicol [50] 20 16 View faces and judge gender Negative > neutral faces
Olie [63] 20 23 Virtual ball-tossing game (cyberball) Exclusion > inclusion

Peters [70] 13 16 Directed Rumination Task Content previous provocation > neutral
v. Schie [67] 26 32 Receiving feedback about an interview Negative > positive feedback
Wrege [64] 39 29 Virtual ball-tossing game (cyberball) Exclusion > inclusion
Wrege [51] 39 25 View faces and judge gender Negative > neutral faces

Additional tasks for extended task selection (combined n = 29)
Hazlett [72] 33 32 Judging valence of repeated IAPS pict. Repeated unpleasant pictures *

Herpertz [73] 6 6 Passive viewing of IAPS pictures Negative > neutral IAPS pictures
Koenigsb. [74] 18 16 Rating own emotion for IAPS pictures Negative > neutral IAPS pictures
Koenigsb. [75] 19 17 Passive viewing of IAPS pictures Negative IAPS > resting baseline *
Koenigsb. [82] 19 25 Viewing IAPS and Empathy 1 Pictures Avg. activ. negative pictures *
Niedtfeld [76] 20 23 Passive viewing of IAPS pictures Avg. activation for negative pictures *
Scherpiet [77] 18 18 Passive viewing of IAPS pictures Negative > neutral IAPS pictures
Schnell [78] 14 14 Passive viewing of IAPS pictures Avg. activation for negative pictures *
Schulze [79] 15 15 Passive viewing of IAPS pictures Negative > neutral IAPS pictures

v. Zutph. [80] 55 42 Passive viewing of IAPS pictures Negative > neutral IAPS pictures

* Marks studies that did not employ a high-level control condition. 1 Empathy Picture System (EPS, [83]). A more
comprehensive version of this table is given in Supplementary Table S1.

2.3. Meta-Analysis Methods

We implemented a voxel-wise effect-size-based meta-analysis using Seed-based d
Mapping with Permutation of Subject Images (SDM-PSI) software, version 6.21 ([44,84],
www.sdmproject.com (accessed on 14 April 2024)). In brief (see [85]), we collected standard
space coordinates and t- or z-values from study tables, based on which SDM-PSI estimates
brain activity maps (voxel-wise effect sizes). Multiple imputations of the estimated effect
sizes are employed to generate numerous image-based meta-analyses. The results of these
analyses are then combined using Rubin’s rules. Note that SDM-PSI also implements
measures to address potential methodological bias by adjusting for the sample size and the
statistical threshold applied in the original analysis for each study. As a further measure to
counteract risk of bias due to missing non-significant study results, SDM-PSI is capable of
incorporating null findings (“no peaks” coordinate sets) in the analysis. Concretely, from
the 29 studies included in our meta-analysis (see Table 1), 2 studies reported no significant
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group differences. For the present meta-analysis, we used SDM’s default preprocessing
settings, employing a voxel size of 2 mm, smoothing with a full-width half maximum
(FWHM) of 20 mm, and an anisotropic (α = 1.0) Gaussian kernel. We report results
at a statistical voxel-level threshold of p < 0.05 family-wise error (FWE) corrected. For
exploratory purposes, we additionally report results at an uncorrected voxel-level threshold
of p < 0.005. We applied a minimum cluster extent of 10 voxels in all analyses. All results
are reported in the MNI space. For completeness, we note that our meta-analyses were
not preregistered.

We carried out two separate meta-analyses for the narrow and the extended task
selection, each including the mean age and sex ratio of study participants averaged across
patients and controls as covariates of no interest (see Supplementary Table S1 for details). In
addition, we used SDM’s linear model function to contrast the narrow versus the extended
task selection (i.e., non-IAPS versus IAPS tasks). Furthermore, we prepared a sub-group
analysis for our narrow task selection meta-analysis, distinguishing between concrete and
sensory-based versus abstract and transmodal stimuli. This distinction is based on [86],
which identified a principal concrete-vs.-abstract gradient of functional brain organiza-
tion. Our previous meta-analysis [32] found that this principal dimension of functional
brain organization parsimoniously explains major aspects of brain activity patterns for
social cognition.

We implemented additional analyses to assess our results’ robustness and potential
bias. For the narrow task selection meta-analysis, we implemented a jack-knife sensitivity
analysis (leave-one-out) to evaluate the robustness of results against the influence of
individual studies. For the extended task selection, we implemented a subsampling
approach to assess robustness and consider the difference in size between the narrow
(n = 19) and the extended sample (n = 29). Across 100 repeats, we sampled 19 out of the
29 tasks in the extended selection, consisting of a fixed part containing all 10 IAPS tasks
plus 9 additional tasks randomly drawn from the remaining studies. Based on this strategy,
we estimated which results found for the extended task sample at full size (n = 29) would
also be found for a smaller sample size comparable to that of the narrow task sample
(n = 19). We also adapted the subsampling approach to match sample sizes in our linear
model contrast analysis (n = 10 tasks from narrow selection vs. n = 10 IAPS tasks).

For the peak coordinates of our result maps, we computed heterogeneity statistics (I2

giving the relative amount of variance in study estimates attributable to heterogeneity rather
than sampling error) and assessed publication bias with Egger’s test [87]. Following [10],
we considered p values < 0.10 for Egger’s test to indicate publication bias.

3. Results

We found no activations at a statistically corrected threshold of p < 0.05 (FWE corrected)
for both meta-analyses using narrow and extended task selections. Figure 2 and Table 2
show the results we found for our exploratory threshold of p < 0.005 uncorrected and a
minimum extent of 10 voxels. For the narrow task selection, we found hyperactivations
for patients in the anterior cingulate and medial prefrontal cortex. We found no areas of
reduced activation.

For our extended task selection (including IAPS tasks), we found the largest cluster
of hyperactivation in the right parahippocampal gyrus and adjacent amygdala. Further
clusters of hyperactivation were found in the right anterior cingulate cortex, medial pre-
frontal cortex (left superior frontal gyrus), right medial cingulate cortex, and right superior
temporal gyrus (again see Figure 2 and Table 2). Additional smaller clusters of hyperactiva-
tion were found in the left precentral gyrus, left temporal pole, and left cuneus. In addition,
we found functional hypoactivations for patients relative to controls in bilateral inferior
frontal gyri and a small cluster in the right temporal pole. Table 2 (lower part) reports the
percentage of permutation-based sub-samples of the extended task selection (i.e., reducing
from n = 29 to n = 19) for which we found significant activation for the corresponding
peak voxel at p < 0.005 uncorrected. Convergence for permutation-based sub-samples was
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highest for hyperactivations in the right amygdala (100/100 repeats) and right superior
temporal gyrus (98/100), as well as for hypoactivations in the left inferior frontal gyrus
(84/100).
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Figure 2. (A) Brain activation differences between patients with borderline personality disorder
(BPD) and healthy controls (HCs) for the meta-analysis of our narrow selection of social cognition
tasks (n = 19). Hyperactivations in patients with BPD are shown in red, and hypoactivations in blue.
(B) Brain activation differences for our extended selection of social cognition tasks (including IAPS
tasks, n = 29). All results are shown at an exploratory threshold of p < 0.005 uncorrected and minimum
cluster size of 10 voxels.

Table 2. Locations of activation for narrow and extended task selection meta-analyses.

Cluster Peak Sub-Peaks

Label x y z z-Val jk/Perm. vx x y z Label

Narrow task selection (n = 19)
Borderline personality disorder > healthy controls

R ant. cing. g. 8 38 0 3.10 17/19 30 12 46 2 R ant. cing. g.
L sup. front. g. −8 58 10 3.23 17/19 13
L ant. cing. g. −12 46 8 3.31 17/19 12

Healthy controls > borderline personality disorder

Extended task selection (including IAPS tasks, n = 29)
Borderline personality disorder > healthy controls

R parahipp. g. 22 0 −26 3.43 100 246 26 −4 −24 R parahipp. g.
22 −3 −16 R amygdala

R ant. cing. g. 12 44 4 3.94 29 118 10 38 −2 R ant. cing. g.
R sup. temp. g. 64 −32 12 3.25 98 93 64 −38 4 R mid. temp. g.
L sup. front. g. −8 60 12 3.75 28 72
R med. cing. g. 8 −16 50 3.41 78 44

L prec. g. −42 2 28 3.03 8 16
L cuneus −8 −62 22 2.78 21 14

L temp. pole −46 4 −16 2.74 31 14
Healthy controls > borderline personality disorder

R inf. front. g. 46 18 2 3.55 69 212 42 24 −2 R insula
50 30 2 R inf. front. g.

L inf. front. g. −48 20 4 3.25 84 60 −40 18 0 L insula
R temp. pole 48 6 −22 2.92 31 16

Results are reported at an exploratory threshold of p < 0.005 uncorrected and a minimum cluster size of 10 voxels.
jk gives the number of leave-one-out jack-knife repeats (out of 19) for which we found significant activation at
the given peak voxel for the exploratory statistical threshold. Perm. gives the percentage (i.e., n out of 100) of
permutation-based sub-samples reducing the extended task selection to n = 19 (keeping all IAPS tasks), for which
we found significant activation at the given peak voxel for the exploratory statistical threshold.
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A linear contrast analysis found no significant differences when comparing the narrow
task selection versus the sample of IAPS tasks (n = 19 vs. n = 10). For the subsampling approach
matching sample sizes (n = 10 narrow task selection vs. n = 10 IAPS tasks), initial results
across 50 repeats found no activation differences (i.e., differences were found in 0/50 repeats).
Moreover, we did not run our additionally planned linear contrast analysis comparing abstract
versus concrete tasks, as our coding of studies (see Table 1) revealed a large imbalance and too
few studies for the abstract category (n = 14 concrete, n = 5 abstract tasks).

We also assessed publication bias for all cluster peaks of the narrow task selection
meta-analysis and for all peaks of clusters of >20 voxels for the extended task selection.
Egger’s test [87] indicated no significant publication bias for any of the peak coordinates
(see Supplementary Table S2 for details).

4. Discussion

The present study aimed to clarify the neural bases of impaired social cognition in bor-
derline personality disorder. As neuroimaging studies on borderline personality disorder
have been increasing in numbers, we sought the opportunity to meta-analyze consistencies
in neural abnormalities across a subset of tasks and experiments involving social cognition.
Our study builds on previous meta-analyses, which explored brain abnormalities in border-
line personality disorder across all tasks [9,10] or selectively studied emotion-processing
tasks [8–10,88]. In contrast to these previous meta-analyses, we sought to distinguish
tasks focusing on emotion processing from those involving social cognition. Therefore,
we filtered borderline personality studies based on the task used, following the model
of social cognition we have proposed previously [32]. Concretely, we included emotion
observation tasks (faces), mental state judgment tasks, social exclusion tasks, and social
interaction tasks. To select all social-cognition-related tasks, we ultimately carried out
two meta-analyses using a narrow and an extended task sample. The difference between
those samples concerns the inclusion of tasks presenting stimuli from the International
Affective Picture System (IAPS). The IAPS contains diverse images; some images promi-
nently feature facial expressions or social interactions and, therefore, are highly relevant for
our meta-analysis. Other negative pictures are more non-social or physical, for example,
depictions of dangerous animals, violence and death, or catastrophic events. Not all studies
provided details on selecting IAPS pictures presented to participants, so we only included
these stimuli in our extended task selection.

4.1. Meta-Analysis of the Extended Task Selection

Our extended social task sample (including IAPS tasks) partially converges with
task samples from previous meta-analyses on emotion processing in BPD [8–10]. How-
ever, while many of the studies in our samples feature emotional content, the tasks we
selected had to engage participants in social cognition (as defined by our previous meta-
analysis [32]). This implies that we removed tasks featuring unrelated processes from our
analysis. Concretely, we removed cognitive tasks featuring emotional distractors (e.g.,
flanker tasks) and tasks embedding emotional stimuli in cognitive tasks (e.g., emotional
working memory). In addition, we removed tasks presenting emotion words in the present
meta-analysis since single words are not related to a specific person (self or other). This
task selection strategy differs from several previous meta-analyses [8,9,88], which aimed to
capture a broad range of emotion-processing tasks for a robust summary.

The results of our extended task selection meta-analysis show limited overlap with
previous findings. At an exploratory threshold of p < 0.005 uncorrected, we found the
largest cluster of hyperactivation for patients with BPD in the right parahippocampal
gyrus and adjacent amygdala. In proximity to our peak coordinates, activation was also
found in [9,10] (proximity denotes a Euclidean distance <20 mm, which corresponds to the
smoothing kernel of our meta-analysis). We did not find activation in the left amygdala
but in a small cluster of the left temporal pole (although anatomically distinct, Euclidean
distance was <20 mm compared to the left amygdala coordinates of [8,9]). We further
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found hyperactivation in medial prefrontal areas, partially overlapping with findings of
other meta-analyses. Specifically, [8] reported activation in proximity to our vmPFC peak
(MNI coordinates x = −8, y = 60, z = 12), and [10] reported activation near our ACC peak
(MNI coordinates x = 12, y = 44, z = 4). Further correspondences regarding nearby peak
coordinates were found with [10] for the right superior temporal gyrus and [8] for the left
precentral gyrus and cuneus. In terms of hypoactivations for patients relative to controls,
our meta-analysis mainly found activation differences in bilateral inferior frontal gyri.
This finding was only partially reflected by one other meta-analysis [8], where activation
coordinates were reported in the left precentral gyrus and right insula (at a more substantial
distance compared to our peaks; Euclidean distances were between 20 and 30 mm).

Taken together, the comparison between meta-analyses identifies the right amygdala
and vmPFC/ACC as the most convergent loci of hyperactivation and bilateral inferior
frontal areas as potential loci of hypoactivation (although less support is found for the latter
areas). This pattern of findings has also been mentioned in previous meta-analyses [8,9] and
literature reviews [6,7,15,89]. Several authors have linked prefrontal–limbic abnormalities
to emotion dysregulation in BPD [3,6,7,90]. For example, Linehan’s biosocial developmen-
tal model assumes that BPD is primarily a disorder of emotion dysregulation, which is
based on a heritable component that becomes amplified by environmental influences [3,90].
Relatedly, in our previous studies [15,17] and related work [89], we and others have pro-
posed specific functional roles of the amygdala and vmPFC, as well as bilateral inferior
frontal gyri, in emotion processing in BPD (and how these processes could be implicated
in social interactions). Specifically, previous works [15,17,89] have linked functional in-
terpretations of the amygdala and vmPFC in terms of encoding the expected valence of
stimuli (see, e.g., [91,92]) to the rigid interpretation of interpersonal situations in BPD and
resulting impulsive behavior. For the left inferior frontal gyrus, we [93] and others [94]
have discussed potential roles for controlled semantic elaboration. While the meta-analysis
of the extended task selection largely supports these previous interpretations, the present
study sought to work out a novel and distinct research question, namely specifying the
neural correlates of aberrant social cognition in BPD.

4.2. Meta-Analysis of the Narrow Task Selection

Our narrow task selection is of central interest for our study’s aim to specify brain
abnormalities for social cognition in borderline personality disorder. Note that another
recent study [10] also carried out a meta-analysis segregating different task types (as a
supplementary analysis), sorting out both emotion tasks and social cognition tasks. As
reviewed in the previous section, we found overlapping activation in the right amygdala
between this emotion task meta-analysis [10] and our extended task selection meta-analysis.
Due to sample size limitations and a different research question (comparing brain activation
for BPD versus ADHD), that study [10] did not carry out a separate meta-analysis for social
cognition tasks in patients with BPD (see [10] Supplementary Materials p. 60).

In the present meta-analysis, we laid a focus on social cognition tasks in BPD by
applying a narrow (i.e., strict) task selection strategy to the literature. For this meta-analytic
approach, we only found group differences in terms of hyperactivation for patients with
borderline personality disorder. All three activation clusters found were located in the me-
dial prefrontal cortex (superior frontal gyrus, BA 10) and adjacent anterior cingulate cortex
(BA 32). Mapping the peak coordinates of these three clusters (see Table 2, upper section)
based on an atlas of resting-state fMRI networks [95] showed that all were located in the
default mode network. To further characterize the medial prefrontal hyperactivations we
found, we compared the location of peak coordinates to overarching social cognition brain
networks in healthy adults, which we found in a meta-analysis [32]. The main result of our
previous work was generated by meta-analytic clustering, showing three main patterns
of brain activation for social cognition. One distinctive pattern (cluster 1, “cognitive pro-
cesses”) was centered on areas of the default mode network and linked to social cognition
tasks, which involve forming more abstract and decoupled representations of others’ mental
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states. Another individual pattern (cluster 3, “affective processes”) comprised areas of the
ventral attention (salience) and somatosensory networks and was linked to tasks involving
shared emotional, motor, and somatosensory representations of others’ affective states.
Finally, we found several social cognition tasks that consistently co-recruit cognitive and
affective processes (cluster 2, “combined processes”), i.e., a pattern of activation combining
parts of clusters 1 and 3. Comparing the three overarching networks characterizing social
cognition to our results, we found that all hyperactivations found for patients with BPD
(medial prefrontal and anterior cingulate) were localized within the cognitive processing
network (cluster 1). In [32], we discussed stimuli and tasks that were found to activate
the cognitive processing network in healthy adults and extended this perspective with
neurosynth functional decoding [96]. Concerning social topics, neurosynth decoding found
the strongest associations with the terms “theory of mind”, “mentalizing”, and related
concepts. For non-social topics, we found the strongest associations with “default”, “self-
referential”, and “autobiographical”. These results supported functional interpretations
in terms of self-generated cognition [97], emphasizing the role of the default mode net-
work for understanding others (see [29,32,98–103]). This functional perspective on medial
prefrontal/anterior cingulate hyperactivations in borderline personality disorder can be
reconciled with previous research (e.g., [104,105]). In clinical and behavioral assessments,
patients with BPD show impairments in the ability to correctly infer the mental states
of other people (for review, see [19–21]). Previous work suggests [21,24,26] that patients
with BPD strongly rely on fast and automatic forms of mentalizing in combination with
problems in controlled and cognitive mentalizing. Concerning this imbalance in processes
for understanding others, it was noted that patients with BPD tend to conflate mental states
of the self and others [21] and are impaired in drawing the “self–other distinction” (e.g.,
shifting between self and other representations according to task demands; see [19]). In
light of these deficits, the medial prefrontal/anterior cingulate hyperactivations observed
in our meta-analysis could signify an overreliance on self-projection in patients with BPD.
According to an extensive meta-analysis of neuroimaging studies in healthy adults [28], me-
dial prefrontal areas implicated in social cognition can be divided into dorsal versus ventral
aspects, with an approximate boundary between the parts at z = 20. Correspondingly, the
peak coordinates of hyperactivations found in our meta-analysis fell in the ventral part of
the medial prefrontal/anterior cingulate areas, with z-axis coordinates of 0, +8, and +10 for
the three cluster peaks (see Table 2, upper section). Several studies have pointed out a promi-
nent role of the ventromedial prefrontal cortex in self-projection, using knowledge about
one’s own thoughts, feelings, and preferences as a guide to understanding others [106–108].
For example, studies found that brain activation in the ventral (but not dorsal) mPFC was
higher for mentalizing about similar compared to dissimilar others [107,109] and that the
agreement between one’s own choices and the predicted choices for other people was
stronger when activation in the ventral mPFC was high during prediction [108]. In contrast,
studies focusing on the ability to successfully draw a “self–other distinction” found that the
temporo-parietal junction—rather than the medial prefrontal cortex—plays a central role
in promoting this capacity (see, e.g., [19,110–112]). Taken together, these findings on the
functional role of vmFPC suggest that BPD hyperactivations may reflect an overreliance on
self-related thought to understand the mental states of others.

From a brain network perspective, previous functional accounts (e.g., [8,15,89]) con-
sidering the vmPFC’s role in BPD beyond the social context are broadly consistent with the
present interpretation. Correspondingly, previous accounts are aligned with the default
mode network’s overarching role in mediating self-referential cognition and autobiographi-
cal thought. A previous meta-analysis of negative emotion-processing studies in BPD [8]
interpreted observed hyperactivations in default mode areas in terms of an increased self-
related interpretation of negative stimuli that may trigger more ruminative thoughts and
autobiographical content. Moreover, theoretical models of change in psychotherapy [15]
and of emotion regulation [89] discuss related concepts. These models assume that seman-
tic representations that are based on autobiographic experiences are foundational for the
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understanding of the self, others, and relationships between past experiences and current
interpersonal situations. These representations function as schemas or mental structures
that organize and interpret the emotional significance of our daily experiences. With respect
to social cognition and interpersonal relationships, attachment theory highlights an impor-
tant role of early caregiver experiences as an important source for inner working models,
i.e., autobiographically mediated mental schemas (see, e.g., [14,113–117]). This notion offers
a theoretical link between the presently found hyperactivation in vmPFC for patients with
BPD (linked to increased self-related thought and autobiographical representations) and
the prevalence of adverse attachment experiences, especially relationship traumas related
to maltreatment and physical abuse in patients with BPD (e.g., [14,16,17,117–120].

4.3. The Relation between Results of the Extended and Narrow Task Selection

Despite our social-cognition-related interpretation of vmPFC hyperactivations in
patients with BPD, we found similar group differences for our narrow and extended
task selection meta-analyses in the medial prefrontal cortex and anterior cingulate cortex.
Notably, the direct comparison of activation between task selections did not reveal any
significant differences. The conceptual difference between the narrow and extended task
samples was the inclusion of IAPS tasks. As we have argued, some IAPS stimuli feature
social content, but other pictures of the set might be socially less relevant. Therefore, the
fact that the extended task selection activated the same areas as the narrow task selection
does not provide conclusive evidence.

4.4. Limitations

In addition to the mentioned limitation regarding the comparison of narrow versus
extended task selections, our meta-analysis shows several other limitations. First, the
literature review for this meta-analysis found that most studies featured social and emo-
tional content conjointly (also in our narrow task selection). Arguably, such stimuli are
ecologically highly relevant. However, they also limit the potential of our meta-analysis
to segregate purely cognitive from more intermediate (cognitive and affective combined)
forms of social cognition. Second, similar to previous meta-analyses (e.g., [9]), we observed
limited convergence regarding the neurofunctional correlates of BPD. That is, we found no
significant group differences in brain activation for either the narrow or the extended task
selection at a statistically corrected threshold (FWE, p < 0.05). We discuss in this manuscript
results for an exploratory threshold of p < 0.005 uncorrected, which must be understood
as preliminary evidence. One likely factor contributing to the limited convergence in
brain activation is the inclusion of studies containing patients currently taking medication
and showing multiple diagnoses. Concerning concurrent medication, a previous meta-
analysis [9] of emotion-processing tasks in BPD found similar results for a sub-sample
of only unmedicated patients and a larger sample of medicated and unmedicated pa-
tients. Neuroimaging studies of BPD often feature samples with marked comorbidity
(for an overview, see, e.g., [9,10]), with frequent concurrent diagnoses being, for example,
PTSD [121] and depression [122]. Our meta-analysis only considered the comparison of
patients with BPD versus healthy controls. However, a previous meta-analysis [8] showed
that some brain abnormalities found in patients with BPD are also found in patients with
major depression and PTSD. These findings highlight the interpretational limitations of
our results, which may not be linked to BPD alone. A third limitation of our study is
that we omitted the planned comparison between tasks showing concrete social stimuli
(i.e., pictures or drawings of faces, persons, or interactions) and abstract tasks (i.e., purely
verbal). We intended to carry out this comparison to follow up on the observation from our
previous meta-analysis [32] that brain activation patterns across different social cognition
tasks largely reflect a principal concrete-vs.-abstract gradient of functional brain organi-
zation (see [86]). However, our coding of tasks into corresponding categories produced a
significant imbalance in sample size (n = 14 concrete, n = 5 abstract tasks), and we therefore
did not compare the two types of tasks. Based on the limitations of our meta-analysis and
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our review of studies, we conclude that additional evidence is required to delineate current
sources of heterogeneity. Future neuroimaging studies presenting both emotional and
social tasks to a larger sample of patients with BPD could help differentiate heterogeneity
in brain activation related to the type of task, medication status, and comorbid diagnoses.

5. Conclusions

Our meta-analysis found a frequent co-occurrence of social and emotional contents in
studies probing the neural correlates of borderline personality disorder. When applying a
more liberal strategy for task selection to that literature (including social and emotional
contents), our results partially converge with previous findings and identify the right amyg-
dala and parts of the medial prefrontal cortex as the primary loci of hyperactivation in BPD.
When testing for activation differences in the opposite direction, we found hypoactivations
in bilateral inferior frontal gyri for patients. A second meta-analysis, employing a stricter
approach to only select social cognition tasks, found hyperactivations only in prefrontal
areas, particularly in the ventromedial prefrontal cortex (which was also activated in the ex-
tended meta-analysis). Based on evidence of the vmPFC’s role in social cognition in healthy
individuals, we suggest that BPD hyperactivations in the area reflect an overreliance on
self-related thought to understand the mental states of others. This observation could
reflect a neural underpinning of BPD patients’ difficulties with mentalizing, in particular,
the tendency to conflate mental states of the self and others [21].
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