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Abstract: Driver fatigue represents a significant peril to global traffic safety, necessitating the advance-
ment of potent fatigue monitoring methodologies to bolster road safety. This research introduces a
conditional generative adversarial network with a classification head that integrates convolutional
and attention mechanisms (CA-ACGAN) designed for the precise identification of fatigue driving
states through the analysis of electroencephalography (EEG) signals. First, this study constructed a 4D
feature data model capable of mirroring drivers’ fatigue state, meticulously analyzing the EEG signals’
frequency, spatial, and temporal dimensions. Following this, we present the CA-ACGAN framework,
a novel integration of attention schemes, the bottleneck residual block, and the Transformer element.
This integration was designed to refine the processing of EEG signals significantly. In utilizing a
conditional generative adversarial network equipped with a classification header, the framework
aims to distinguish fatigue states effectively. Moreover, it addresses the scarcity of authentic data
through the generation of superior-quality synthetic data. Empirical outcomes illustrate that the
CA-ACGAN model surpasses various extant methods in the fatigue detection endeavor on the
SEED-VIG public dataset. Moreover, juxtaposed with leading-edge GAN models, our model exhibits
an efficacy in in producing high-quality data that is clearly superior. This investigation confirms the
CA-ACGAN model’s utility in fatigue driving identification and suggests fresh perspectives for deep
learning applications in time series data generation and processing.

Keywords: EEG; fatigue driving detection; conditional generative adversarial network; attention
mechanism; bottleneck residual

1. Introduction

Globally, the issue of road safety remains a pressing concern, with the Global Health
Authority reporting that traffic-related fatalities annually claim the lives of around 1.25 million
people worldwide [1], establishing these accidents as the leading death cause among young
people aged 15 to 29 years [2].

Driving fatigue significantly compromises driving safety and further exacerbates the
problem. Research conducted in Europe revealed that around 17% of drivers have experi-
enced drowsiness while operating vehicles, with 7% reporting involvement in accidents
due to this condition [3]. Consequently, the development of advanced fatigue monitoring
methodologies is imperative for enhancing road safety.

Current strategies for monitoring driver fatigue predominantly examine three aspects:
vehicle dynamics [4], drivers’ behavioral patterns [5,6], and physiological signals [7]. These
methods assess drivers’ attention levels by evaluating operational data from the vehicle
and observing drivers’ behavioral changes, including facial expressions and eye move-
ments. Nevertheless, these approaches encounter obstacles such as privacy concerns and
the influence of environmental variables. Fatigue detection techniques based on physiolog-
ical measurements, like the electroencephalogram (EEG), electrocardiogram (ECG), and
electrooculogram (EOG), offer objective insights into a driver’s fatigue levels. In particular,
different wave rhythms in EEG, such as δ, θ, α, β, and γ waves, can reflect the driver’s men-
tal state and physiological activities [8], which are useful for distinguishing between fatigue
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and wakefulness, and are the key to fatigue detection. Despite the non-invasive nature
and high accuracy of EEG-based methods, challenges persist in signal processing, limited
sample sizes, and unbalanced data distribution. First, EEG recordings often encounter
interference from external environmental factors and internal physiological activities, po-
tentially compromising the integrity of the signal and complicating the subsequent data
analysis processes. Second, the collection and labeling of EEG data requires specialized
knowledge, so there is the problem of a limited sample size, which limits the depth and
breadth of the research. In addition, when dealing with multi-category medical datasets,
an unbalanced data distribution often leads to an uneven classification performance of the
model, which is mainly due to the natural differences in the frequency of different events.

To enhance the accuracy of EEG signal decoding, it is imperative to holistically opti-
mize the feature extraction and classification methodologies while pursuing more effective
algorithms. EEG signals are imbued with abundant frequency, spatial, and temporal in-
formation, pivotal for elucidating the brain’s activity patterns. Nonetheless, conventional
studies on EEG signals predominantly focus on a limited scope, analyzing merely one or
two dimensions of information. For a spatial analysis, this is accomplished by analyzing
the differences in activity recorded by electrodes in different regions of the brain, which
can be accomplished in a variety of ways, such as converting EEG signals into topological
maps [9], exploring spatial correlations between electrodes using a Recurrent Neural Net-
work (RNN), or constructing 2D representations of electrode data for deep learning model
training [10]. Conversely, temporal analysis accentuates the dynamics of brain activity over
time, employing Convolutional Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks to adeptly extract EEG signal time series features [11]. Investigating
novel architectures for the efficient extraction of EEG signals’ multidimensional features
warrants further exploration.

The efficacy of deep learning models significantly depends on extensive training data.
In scenarios with limited samples, data augmentation techniques can substantially enhance
the models’ decoding performance. In 2014, a team led by Ian Goodfellow unveiled a novel
framework for deep learning, known as the generative adversarial network (GAN) [12],
that addresses data scarcity by synthesizing new, unseen data. Traditional GANs, however,
grapple with specifying the generated data’s type and quality. Conditional generative
adversarial networks (CGANs) [13] address this problem by adding additional conditional
information, such as category labels or partial image information, to the generators and
discriminators, improving the controllability and targeting of data generation. Never-
theless, CGANs still face challenges when dealing with time series data with multiple
signal categories, such as each category needing to be trained separately, which is a time-
consuming and inefficient process. In addition, the available datasets are usually small,
and the distribution of data categories is not balanced, which makes the model prone to
overfitting when training on categories with low amounts of data. Data shortage and an
uneven category distribution are challenges when training multiple GAN models.

To address the data imbalance problem, researchers have adopted various strate-
gies to mitigate its negative impact on model performance, including undersampling
the overrepresented classes, oversampling the underrepresented classes, giving higher
weights to the underrepresented classes, and using improved evaluation metrics [14]. While
these approaches partially alleviate the issue of imbalanced datasets, they can lead to the
disappearance of essential data, negatively affecting the model’s capacity to assimilate
knowledge.

Recent endeavors have explored the adoption of RNN-based GAN architectures for
synthesizing time series data, exemplified by C-RNN-GAN [15] and SigCWGAN [16].
Notwithstanding, RNNs struggle with the ability to connect more distant time steps in long
sequences. Conversely, the Transformer architecture has emerged as a groundbreaking
development in neural network technologies, outperforming conventional models across
various fields, such as image classification and sequence data processing [17,18]. The
Transformer’s innovative design and its proficient mitigation of the gradient vanishing
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dilemma in lengthy data sequences underscore its efficacy. This framework has been
applied successfully in a variety of fields, such as natural language processing and computer
vision, with recent studies investigating its integration with GAN architectures to enhance
data generation quality and optimize the training process [19].

This research endeavored to enhance the production of sequential data and augment
the precision of fatigue driving detection through deep learning methodologies. The
contributions are delineated as follows:

1. We developed an innovative conditional generative adversarial network that lever-
ages convolution and attention mechanisms (CA-ACGAN). Our empirical analysis con-
firmed that the CA-ACGAN model surpasses several established methods in fatigue
detection tasks, utilizing the SEED-VIG public dataset for evaluation.

2. The CA-ACGAN was also designed to conditionally generate multi-class time
series data with labels. The superiority of our model in generating data quality was
illustrated by contrasting qualitative metrics with those of other leading-edge GAN models.
Moreover, we adopted a classification confidence-based selection technique to sift through
and retain high-quality generated data. This approach facilitates an effective amalgamation
of authentic and artificially generated data, thereby augmenting the classification accuracy
of the model.

3. The CA-ACGAN amalgamates the strengths of CNNs and Transformes, thereby
enhancing its capability for feature extraction. In combining a four-dimensional feature
mapping framework, the attention module and the bottleneck residual module, the model’s
ability to recognize the essential frequency and spatial domains during fatigue analysis
is improved. Furthermore, the introduction of the Transformer encoder’s self-attention
mechanism optimizes feature representation and diminishes feature redundancy. This
optimization significantly bolsters the model’s efficacy in extracting temporal features.

2. Method

The following segment outlines the methodology for transforming raw EEG signals
into four-dimensional (4D) feature data, as well as the overall structures of the CA-ACGAN
model and its constituent modules.The CA-ACGAN model is capable of accurately recog-
nizing and generating high-quality 4D feature data.

This paper’s key symbols and terms are compiled in Abbreviations.

2.1. Model Structure

Figure 1 illustrates the overall framework of the CA-ACGAN model, which comprises
a pair of key units: a generator and a discriminator. Three main modules are embedded
in the ACGAN (a GAN with classification header) model: an attention module, a bottle-
neck residual module, and the Transformer module, which together optimize the system’s
capacity for data analysis. With the attention module, the model’s frequency and spatial
feature recognition is enhanced; the bottleneck residual module optimizes the computa-
tional process to extract frequency and spatial features; and the Transformer module assists
the model to understand the long-term dependencies among the data.

In terms of specialized functionality, the generator G transforms the concatenated
vector, comprising the noise vector z and the target categorical label l, into data Wn through a
linear mapping. The randomization in the production of the label l enhances the generator’s
capability to produce data across various categories.The Transformer module receives Wn
as its input. In the data processing phase, the generator employs a Deconvolution (DeConv)
layer and a reshape operation to expand the data W ′

n, which has been processed by the
Transformer module, into 4D feature data Tn. This serves as the input for the attention
module and the bottleneck residual module, which facilitates the generation of synthetic
signal Yn characterized by a 4D structure, denoted as G(z, l) → Yn . It is noteworthy
that Wn, W ′

n, Tn, and Yn are instantiated within specific dimensional spaces, denoted as
Wn, W ′

n ∈ R64×2T and Tn, Yn ∈ Rh×w×d×2T , thereby delineating the structural framework
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of the generated data. In the document presented, it has been established that the value of
2T equals 16, with the parameters h, w, and d assigned the values of 6, 9, and 5 respectively.

Figure 1. Overall framework of CA-ACGAN model.

The objective of discriminator D is to assess whether the input signal is authentic and to
identify its respective category. Specifically, the real EEG data needs to be converted into 4D
feature data Xn, and either Xn or the generated 4D data Yn can be used as input for the dis-
criminator. The data processing procedure encompasses a feature extraction phase, which
also involves the deployment of the attention module, the bottleneck residual module, and
the Transformer module. The conditional discriminator is equipped with two classification
heads, one head is responsible for recognizing the truth of the signal (Dadv), and the other
head is used to identify the category of the signal (Dcls), i.e., Xn → {Dadv(Xn), Dcls(Xn)}
and Yn → {Dadv(Yn), Dcls(Yn)} . Such a configuration not only improves the accuracy
of the model in recognizing the authenticity of data, but also enhances its classification
performance, which provides effective support for handling complex data situations.

2.1.1. Constructing EEG Data with 4D Features

In recent explorations, there has been a growing trend toward amalgamating the
dimensions of frequency, spatial orientation, and time within EEG data into a unified
four-dimensional feature construct. This advancement is poised to enhance methodolo-
gies in fields like motor imagery processing and the identification of emotional states.
A novel method for EEG-based emotion recognition using a four-dimensional convolu-
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tional recurrent neural network (4D-CRNN) [20], which improves accuracy by integrating
the frequency, spatial, and temporal information of multichannel EEG signals, has been
proposed. Concurrently, the 4D Attention-Based Neural Network (4D-aNN) represents
an innovative approach developed to facilitate the recognition of emotions from EEG
signals [21]. Some approaches to motor imagery processing also offer novel insights into
the precise parsing of brain activity by incorporating the multidimensional aspects of EEG
signals [22].

In referring to the extant literature, the conversion of raw EEG data into a 4D format
encompasses several critical steps, as depicted in Figure 2. Initially, raw EEG signals un-
dergo preliminary preprocessing operations, including amplification and filtering, aimed
at eliminating background noise and accentuating useful signals. Subsequently, the prepro-
cessed signals are segmented into multiple temporal segments tailored to the experimental
design and analytical requirements. Afterward, various feature extraction techniques are
employed in order to identify characteristics of EEG signal frequency ranges across differ-
ent time intervals. This step generates a three-dimensional data structure incorporating
both frequency and spatial (i.e., electrode position) dimensions. In the final stage, to ac-
commodate the needs of further analysis or model training, these 3D data are augmented
into a 4D structure through techniques such as stacking, with the fourth dimension em-
bodying the temporal aspect. Through this series of processing, the raw EEG signals are
transformed into 4D data that can comprehensively reflect the dynamics of brain activity
and its characteristics.

Figure 2. 4D feature construction process.

Next, we elucidate the construction process in detail. Initially, we introduce a novel
feature termed differential entropy (DE) [23], which demonstrates stability and efficacy as
a characteristic in classifying fatigue. This feature is employed to quantify the complexity
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inherent in continuous random variables. Calculating differential entropy relies on the
random variable’s probability density function, as demonstrated in Equation (1):

DE = −
∫

f (x) log( f (x)) dx (1)

In this context, x represents a random variable, whereas f (x) signifies its correspond-
ing probability density function.

A SEED-VIG dataset’s raw EEG signal is represented as Sn, Sn ∈ Rm×rT , where m
denotes the quantity of electrode channels available, and r signifies the rate of sampling.
Specifically, m is assigned a value of 17, and r, a value of 200. To align each EEG datum
with its respective label, we segmented the raw EEG signals into multiple non-overlapping
segments, each 8 s in length. This segmentation approach leverages the dataset’s method-
ology of computing a label every 8 s, which is then assigned to the corresponding EEG
segment. To concurrently augment the dataset, the segments derived from EEG signals
were subsequently segmented into time frames, amounting to 2T in total, with each frame
spanning a duration of half a second. EEG can be decomposed into five distinct frequency
bands: δ (1–4 Hz), θ (4–8 Hz), α (8–14 Hz), β (14–31 Hz), and γ (31–51 Hz), which have
been strongly associated with fatigue levels in humans. It has been found that analyzing
information from these frequency bands in combination provides a more accurate moni-
toring of fatigue status than relying on a single band alone. Hence, we processed the EEG
signals by extracting these five standard frequency bands utilizing a Butterworth filter and
computing their differential entropy (DE). This procedure transformed the original EEG
signal segments into DE segments, denoted as Dn ∈ Rm×d×2T , where d signifies the count
of distinct frequency bands (d = 5).

The preceding process fails to maintain the spatial relationships inherent to electrode
placements. To address this limitation, DE features are transformed into a localized 2D
mapping, informed by the electrodes’ physical arrangement as illustrated in Figure 3.
This can better represent the spatial relationship between electrodes. With this mapping,
we generate a minimal 2D matrix that covers all the electrode locations with significant
effects, and the unused electrode locations are filled with 0. Through the 2D matrix, we
synthesize to reveal 3D characteristics. Subsequently, these temporal 3D characteristics, Dn,
are superimposed to form 4D attributes, Xn, which can be represented as Xn ∈ Rh×w×d×2T .
Here, h denotes the vertical measurement, and w signifies the horizontal dimension of the
2D diagram. The dataset’s spatial arrangement, consisting of 17 channels, manifests as a
2D diagram with vertical and horizontal dimensions measuring 6 and 9 units, respectively.

Figure 3. 2D mapping.

To encapsulate, the four-dimensional feature Xn encompasses not only the distinct
entropy traits observed in EEG signals within five distinct frequency domains, but also
encapsulates spatial information pertaining to the electrode placements while maintaining
the temporal continuity among successive time windows. The discriminator D receives the
genuine EEG signals from the 4D characteristics as its input, with the purpose of allowing
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the discriminator to learn its features in order to differentiate between the genuine signals
and the synthetic signals.

2.1.2. Auxiliary Classifier Generation Adversarial Network (ACGAN)

The practice of embedding labels on generators and discriminators fails to generate
meaningful synthetic data. In response, we implemented a methodology that leverages
label information as a conditional input for the generator. This adjustment not only stream-
lines the generation of multi-category data, but also enhances the overall quality and
diversity of the output. In addition, a categorization header is introduced as part of the
assisted categorization task, which is capable of extracting information from the middle
layer of the discriminator to predict the data’s category. The classification outcome for
fatigue detection, associated with the initial EEG signal fragment, is determined after
contrasting the prediction with the classification threshold, as depicted in Figure 4.

Figure 4. ACGAN structure.

2.1.3. Spatial and Frequency Attention

Roy introduced a novel method aimed at enhancing the efficacy of image segmenta-
tion tasks. This method involves the parallel integration of spatial and channel Squeeze
and Excitation (SE) modules within a fully convolutional network framework [24]. The
investigation delineates three distinct variants of the SE module: cSE, sSE, and scSE. The
cSE variant amplifies the channel dimension, the sSE variant targets the spatial dimension,
while the scSE variant concurrently enhances both the channel and spatial dimensions. Em-
pirical outcomes indicate that the incorporation of the SE module markedly enhances the
precision of image segmentation tasks without contributing to increased model complexity.
These findings usher in novel avenues for research and furnish the medical field with inno-
vative technological instruments, underscoring the SE modules’ capacity to significantly
boost model performance.

In this study, we introduced an attention module comprising two distinct components:
spatial attention and frequency attention. It incorporates mechanisms for focusing on
specific spatial locations and frequency ranges. The architecture of the attention module is
identically implemented within the generator and the discriminator, as shown in Figure 5.
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Figure 5. The attention module in the discriminator, which has the same structure as the module in
the generator.

Initially, the framework for spatial attention is engineered to leverage the 2D layout
information of the electrode placements, thereby assigning specific weights to each temporal
segment. This process generates a new spatial attention feature map using a 1 × 1 × 1
convolutional kernel for feature compression in the frequency dimension and then applying
a Sigmoid function activation. This step highlights the key features in the spatial dimension
and merges them with the original features to update the time segments at the spatial level.

Subsequently, the frequency attention mechanism is tasked with examining the in-
teractions across different frequency bands (totalling five) within each temporal slice to
allocate corresponding weights. By reducing the dimensions of the original feature map
from a structure of 6 × 9 × 5 down to a compact format of 1 × 1 × 5, and applying dual
convolutional layers for the further processing of the feature matrix, followed by Sigmoid
function activation, a novel map focusing on frequency-based attention features was pro-
duced. This method prioritizes the relative significance among the five frequency ranges,
merging them with the primary characteristics to update the temporal segments in the
frequency dimension.

By integrating spatial and frequency attention-weighted time segments, we fine-tuned
the spatial versus frequency dimensions of each time segment. This approach effectively
enhances the model’s attention to spatially salient features and frequency-critical features,
while suppressing minor features, thus significantly enhancing the comprehensive efficacy
of the framework.

Within the CA-ACGAN architecture, the attention module is pivotal, orchestrating
the intricate amalgamation of 4D features across the spatial and frequency domains. This
amalgamation not only elevates the 4D features’ quality, rendering them more amenable
for the bottleneck residual module to distill essential spatial and frequency insights, but
also maintains the congruence of the input and output dimensions. In particular, the
dimensions of the output data X′

n, derived from the input 4D structural data Xn within
the discriminator, along with the dimensions of the output data T′

n, which represent the
outcome of the DeConv-processed data Tn in the generator, are consistently preserved at
Rh×w×d×2T . Through this approach, the model adeptly modulates and amplifies the spatial
and frequency information’s weights within each time segment, ensuring the precision
and salience of the data within the feature stream, and thereby significantly elevating the
model’s overall performance.

2.1.4. Bottleneck Residual Module

Standard Convolutional Neural Networks (CNNs) are extensively employed for their
proficiency in extracting high-dimensional features pertinent to EEG signals within the
realm of deep learning. Nonetheless, the advent of lightweight convolutions has garnered
increasing attention amidst the burgeoning necessity for model deployment on low-power
platforms characterized by constrained computational resources. This inclination is at-
tributed to the compact architecture and enhanced efficiency of lightweight convolutions,
positing them as a potential viable substitute for standard convolutions with expectations of
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broader application prospects in future endeavors. A pertinent study unveiled an efficient
CNN variant, dubbed MobileNet, which endeavors to equilibrate the interplay among
model size, computational speed, and accuracy, thereby furnishing an efficient solution for
mobile and embedded systems [25]. MobileNet harness a streamlined design, employing
Deep Separable Convolution (DSC) to forge lightweight deep neural networks. This ap-
proach empowers developers to tailor the network size appropriately, aligning it with the
application’s resource limitations (e.g., latency, memory footprint). Empirical assessments
across various scenarios have underscored MobileNet’s superiority in balancing resource
consumption against accuracy. However, the ReLU activation function of DSC may lead
to a large amount of missing feature information when processing lower dimensional
outputs. In addition, training convolutional kernels during depthwise convolution (DC) is
challenging, especially when a large number of convolutional kernel values tend to zero.
Such phenomena not only diminish the model’s feature recognition capabilities, but may
also instigate gradient vanishing issues, thereby impeding the learning efficacy and overall
performance of the model.

(1) Bottleneck residual block (BR):

Inspired by the MobileNetV2 architecture [26], our model employs bottleneck residual
blocks. Two core techniques were adopted to enhance the efficiency of feature extraction
and reduce information loss. First, a reverse residual structure, characterized by diminished
input–output dimensions and juxtaposed with an expanded middle layer dimension, is
employed. This configuration facilitates the execution of convolutional operations in
higher dimensions, thereby augmenting feature extraction capabilities and effectively
curbing information loss during feature transfer. Subsequently, to further bolster the
network’s efficiency in feature conduction, we introduced a linear bottleneck technique.
This technique entails substituting the activation function in the network’s final layer from
ReLU to linear activation. Such a modification preserves a greater extent of the original
feature information, particularly within deep network structures, thus attenuating the
potential for feature information loss attributable to nonlinear activation in low-dimensional
outputs. Meanwhile, ReLU6 serves as the activation function in the other layers. As
depicted in Figure 6, the bottleneck residual block integrated into our model comprises
several core components: depthwise convolution (Depthwise Conv), pointwise convolution
(Pointwise Conv), and the linear and ReLU6 activation functions.

Figure 6. Bottleneck residual block.
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The process enhances the network’s performance and stability. Initially, data are intro-
duced into the network, followed by a stage of point convolution employing a 1 × 1 × kd
convolution kernel, where k dictates a multiplicative increase in the dimensionality of
the middle layer within the bottleneck residual blocks to integrate input features. At this
juncture, the ReLU6 activation function, a variation of the rectified linear unit (ReLU)
that confines the output to a range between 0 and 6, is applied to introduce nonlinearity.
Subsequently, a deep convolution operation, utilizing a 3× 3× kd convolutional kernel and
a stride of 1, is executed independently on each input channel, aiming to extract features in
the spatial dimension while continuing to utilize the ReLU6 activation function to augment
the nonlinear characteristics of the features. Following this, point convolution with a
1 × 1 × C convolution kernel, where C specifies the dimensionality of the output feature
layer, is employed once more, with a linear activation function, indicating that the output
will directly reflect the input features without undergoing a nonlinear transformation. The
culmination of this process involves integrating the output of the preceding point convo-
lution and the original input through an addition operation, a technique termed residual
join. This technique is specifically designed to mitigate the issue of gradient vanishing that
deep learning networks might encounter during training sessions, thereby enhancing the
stability of the training process. Collectively, this process amalgamates feature fusion, deep
spatial feature extraction, and other strategies to augment the stability of network training.

EEG signals exhibit distinct characteristics from images, particularly regarding spatial
and frequency correlations. This distinctive feature renders the bottleneck residual block
particularly advantageous for the efficient extraction of spatial frequency features following
the attention module.

(2) Bottleneck residual module

The configurations of the bottleneck residual module exhibit minor variations in the
architecture of both the generator and the discriminator; similarly, the bottleneck residual
module includes eight bottleneck residual blocks and a two-branch structure, and the
difference is that the bottleneck residual module in the discriminator has one more average
pooling layer as well as one more fully-connected layer, as shown in Figure 7. When dealing
with low-resolution feature maps such as EEG signals, we especially notice that although
CNNs tend to reduce the size and computation of feature maps and prevent overfitting
through multiple pooling layers, too much pooling may lead to the loss of important spatial
information. To overcome this obstacle, a strategy involving the utilization of a solitary
pooling layer has been adopted. This approach not only preserves the spatial integrity of
the information, but also contributes to a reduction in the parameter count.

Figure 7. The bottleneck residual module in the discriminator, which has a slightly different structure
in the generator.

In the discriminator, the bottleneck residual module operates as follows: the input
feature tensor X′

n is processed through a bottleneck residual convolution kernel of size 3× 3.
Initially, the feature map’s channel count is expanded from 5 to 128. Following a series of
operations, this number is halved and subsequently directed into a bifurcated structure
comprising two branches. Each branch houses a distinct arrangement of bottleneck residual
blocks—one with a single block and the other with two—to amalgamate information across
various receptive fields. The outputs from both branches are then combined, and the
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channel count is further reduced to 32 through the application of two bottleneck residual
blocks. Subsequently, the feature map’s dimensions are condensed to 2 × 2 through a 3 × 4
averaging pooling layer. This layer not only diminishes the likelihood of overfitting, but
also bolsters the network’s resilience. The resultant data from the pooling stage undergo
expansion before being introduced into a fully connected layer comprising 64 nodes. This
process yields an outcome, designated as Qn, which exists within the realm of Qn ∈ R64×2T .
It succinctly encapsulates both the spatial and frequency characteristics inherent to the
segmented EEG signals initially obtained. These attributes are subsequently processed
through the Transformer framework to distill temporal characteristics, thereby augmenting
the model’s proficiency in identifying EEG signal characteristics. In the generator, the
channel count is diminished to 5 through the concluding two bottleneck residual blocks.
The feature tensor, T′

n, processed by the attention module, serves as the input, culminating
in the final output, Yn, which represents the synthesized data produced by the generator.

2.1.5. Transformer

The architecture of the Transformer model is characterized by two principal elements:
the multi-head self-attention mechanism and the feed-forward multilayer perceptron (MLP)
segment, which employs a GELU as its activation function. To enhance the efficiency of
the training process, a normalization layer is introduced between these two components.
Furthermore, a dropout layer is incorporated subsequent to the output of each section
to mitigate the risk of overfitting. Additionally, to maintain uninterrupted information
flow and circumvent the challenges associated with vanishing or exploding gradients, a
residual linking strategy is implemented within both segments. This approach is elucidated
in Figure 8.

Figure 8. The Transformer module in the discriminator, and the module in the generator has the
same structure. N* means repeating N times.
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In our study, the Transformer modules of the generator and the discriminator are
slightly different in terms of where they process the data stream. Specifically, within
the discriminator, the Transformer module is utilized to discern temporal dependencies
across time segments within the 4D features. Following the extraction of frequency and
spatial characteristics from the 4D characteristic stream using a bottleneck residual module,
the Transformer module commences temporal characteristic extraction, thus obtaining a
comprehensive characterization of the EEG data in the dimensions of frequency, space, and
time in an integrated manner. Upon the completion of EEG feature extraction, the derived
features are subsequently input into the classification head to facilitate the categorization
of fatigue status. In the generator, the Transformer module receives wn as its input and
produces the output w′

n, which subsequently serves as the input for the DeConv layer.
With the CA-ACGAN model, we are able to comprehensively extract the space,

frequency and time characteristics of EEG data, which provides a powerful tool for fa-
tigue detection.

2.2. Loss Function

In a CA-ACGAN, the loss functions employed by the generator G and the discriminator
D incorporate category labeling, marking a substantial deviation from the loss functions
utilized in traditional GANs. Specifically, see Equations (2) and (3):

LD = −Ladv + λLr
cls (2)

LG = Ladv + λL f
cls (3)

The adversarial loss Ladv quantifies the divergence between data synthesized by
the generator and real data. Throughout the course of model training, the objective of
generator G is to reduce the adversarial loss Ladv, whereas the discriminator D endeavors
to maximize it. The classification loss, Lcls assesses the discrepancy between the model-
generated predictions and the actual classifications. Hyperparameter λ is used to adjust
the significance of the categorization loss in the total loss function by varying the value of
λ, and the relative importance between the categorization loss and the adversarial loss can
be adjusted. In this investigation, λ was set to 1, signifying that the classification loss was
attributed equal importance as the adversarial loss.

This loss function was meticulously crafted to enable the CA-ACGAN to not only
fabricate data of high fidelity, but also to guarantee the precision of the generated data in
categorical terms, thereby enhancing the model’s efficacy in specific tasks.

(1) Adversarial Loss:

In our investigation, we implemented an enhanced variant of Wasserstein’s generative
adversarial network (WGAN) loss function, as delineated in reference [27]. The primary
objective of the initial WGAN loss function centers on augmenting the fidelity of syntheti-
cally generated data by diminishing the Wasserstein distance between the distribution of
the synthesized signals and that of the authentic signals. Nevertheless, the original WGAN
necessitates the truncation of the discriminators’ weights during its execution, a requisite
that could precipitate instability throughout the training regimen. To mitigate this issue,
we introduced a gradient penalty term (GP), an innovative element within the loss function
designed to penalize the magnitude of the gradient linked to the input and output of the
discriminator, thereby ensuring a more stable training process.

The aforementioned loss function is formalized as in Equation (4):

Ladv = Ex[Dadv(x)]−E(z,c)[Dadv(G(z, c))] + λgpEx̂

[
(∥ ∇x̂Dadv(x̂) ∥2 − 1)2

]
(4)

In this formulation, Ex[Dadv(x)] signifies the expected output of the discriminator
when presented with the real data, x, with the discriminator’s objective being to maximize
this value to enhance its capability in accurately identifying real data. E(z,c)[Dadv(G(z, c))]
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depicts the anticipated outcome of the discriminator to the generator’s created data, which
utilizes the noise vector z and the conditional variable c; here, the discriminator aims to
minimize this value to effectively distinguish between generated and real data. The term
λgp denotes the coefficient of the gradient penalty, serving as a mechanism to regulate the
strength of the gradient penalty, and was assigned a value of 10 within the scope of this
study. The notation x̂ refers to a sample drawn from a hybrid distribution that combines
the real data distribution with that of the generator. The expression ∥ ∇x̂Dadv(x̂) ∥2 −1
represents the difference between the gradient paradigm of the discriminator at point x̂
and 1, which is used as a penalty term to guarantee the discriminator’s adherence to the
1-Lipschitz prerequisite, i.e., the gradient paradigm does not exceed 1.

(2) Classification Loss:

To augment the discriminator D’s classification capability, an extra classification header
was appended to it, and a corrective classification loss was incorporated during the dis-
criminator and generator training phases. This specific classification loss aims to enhance
the discriminator’s efficiency when processing genuine data signals. Within the context
of the classification task, the cross-entropy loss function performs the role of a prevalent
metric for gauging the divergence between the label distribution predicted by the model
and the genuine label distribution. This loss function’s precise formulation is delineated as
follows (Equation (5)):

Lr
cls = E(x,c′)

[
− log Dcls

(
c′ | x

)]
(5)

The symbol c′ represents the categorical label associated with the real data signal.
Through the minimization of this specified loss function, the discriminator is honed to
precisely categorize the real signal x into its authentic category c′, thereby augmenting the
model’s proficiency in accurately classifying real data.

In addition, the generator G’s objective is to ensure that the signal it generates can
be accurately classified into a given category c by the discriminator. The adversarial loss
expression is Equation (6):

L f
cls = E(z,c)[− log Dcls(c | G(z, c))] (6)

The expression − log Dcls(c | G(z, c)) depicts the negative logarithm of the probability
that the discriminator accurately classifies the signal G(z, c), generated by the generator, as
belonging to category c, under the given condition c. Throughout the training process, the
generator aims to minimize this loss value, thereby enhancing the conditional consistency
of the data produced.

3. Experiments and Results
3.1. Experiments
3.1.1. Dataset

We conducted an evaluation of our model utilizing the SEED-VIG dataset [28], a subset
derived from the publicly accessible SEED dataset. In the following sections, we provide a
comprehensive description of the SEED-VIG dataset and conclude the article with a link
to access the dataset. Furthermore, we elucidate the methodology for preprocessing the
SEED-VIG dataset, as well as the size of the SEED-VIG dataset, and specify how many
categories it was classified into in our experiment.

The dataset known as SEED, made available through the collaborative efforts of the
Brain-Inspired Computing Lab along with the Machine Intelligence Research Division
at Shanghai Jiao Tong University, serves as an open-access resource for brainwave data.
A subset of this project, SEED-VIG, focuses on the collection of brainwave and electrooculo-
graphic data specifically used for monitoring alertness levels.

To facilitate this research, an experimental setup was crafted to mimic a realistic four-
lane highway driving scenario, displayed across a broad liquid crystal display monitor
ahead of the participants. This simulation was designed to provide participants with real-
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time feedback on vehicle dynamics through interactions with a steering wheel and throttle,
creating a driving experience that promotes driver fatigue by featuring a monotonous,
predominantly straight roadway. The study engaged 23 participants and was strategi-
cally scheduled for the late afternoon, around 13:30, to coincide with the phase of the
human circadian rhythm most susceptible to sleepiness. The entire experiment spanned
approximately two hours, during which participants were asked to complete the driving
simulation without any mechanisms designed to maintain alertness.

In this study, the Neuroscan apparatus was employed to concurrently capture EEG
and EOG signals directly from the subjects’ foreheads, functioning at an elevated sampling
frequency of 1000 Hz. The recording encompassed 12 electrodes positioned in the posterior
brain regions (CP1, CPZ, CP2, P1, PZ, P2, PO3, POZ, PO4, O1, OZ, and O2) and 6 electrodes
in the temporal areas (FT7, FT8, T7, T8, TP7, and TP8), all aligned based on the International
10–20 Electrode Placement System. An additional electrode, designated as CPZ, served as
the reference electrode. Moreover, the individuals involved were equipped with SMI ETG
spectacles designed for eye movement tracking to capture the dynamics of their gaze.

To evaluate the participants’ state of fatigue, this study employed the PERCLOS index,
a metric derived from eye-tracking data. The PERCLOS index quantifies the degree of eye
closure over a specified duration, calculated as the ratio of the duration of eye closure to
the total observed period, as delineated in Equation (7):

PERCLOS =
eye_closure_time

total_observed_time
(7)

The “total observed time” for the experimental procedure was established at 8 s, within
which the duration of eye closure was meticulously recorded to ascertain the PERCLOS
value, ranging from 0 to 1. PERCLOS values of 0.35 and 0.7 were used as the thresholds for
judging wakefulness and fatigue and fatigue and drowsiness, respectively.

In our experiments, we removed a minute of data at the beginning and end of the
experiment in order to exclude possible noise. It should be emphasized that we reduced
the sampling rate of the original SEED-VIG dataset from 1000 Hz to 200 Hz. because based
on the principles of the Nyquist–Shannon sampling theorem, it has been established that
a sampling frequency of 200 Hz adequately encompasses the entirety of the information
contained within the specified frequency regions. Only the EEG signals were included
in this study and not the EOG signals. The data format of the processed EEG signal was
1,416,000 samples multiplied by 17 channels. Regarding EEG-based fatigue detection,
the prevailing classification models predominantly utilized a binary classification scheme.
Therefore, a threshold of 0.35 was established to differentiate between awake and fatigued
states, thereby aligning with the benchmarks of existing fatigue detection frameworks for
comparative analysis.

3.1.2. Experimental Setup

In our deep learning laboratory, we provisioned leading-edge computational resources
to facilitate the CA-ACGAN model’s optimal efficacy in detecting driver fatigue. These
resources encompass GPU servers equipped with NVIDIA A100 Tensor Core GPUs, from
Santa Clara, United States, real-time inference servers powered by dual Intel Xeon Scalable
CPUs from Santa Clara, CA, USA, deep learning workstations integrated with NVIDIA
RTX 3090 GPUs from Santa Clara, CA, USA, and data preprocessing servers configured
with dual Intel Xeon Gold CPUs from Santa Clara, CA, USA.

For enhanced efficiency, we meticulously fine-tuned the hyperparameters of the CA-
ACGAN model. Specifically, we adjusted the learning rates for the generator and discrim-
inator to 1 × 10−4 and 3 × 10−4, respectively, and standardized the batch size for both
components at 150. The model was trained utilizing the AdamW optimization algorithm,
incorporating a 0.02 coefficient for weight decay. In tailoring the model’s loss function, we
assigned values of 1 and 10 to λ and λgp, respectively, to meet the specific requirements of
the framework. Moreover, to validate the effectiveness of the framework, we implemented
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five-fold cross-validation and recorded the highest precision within the designated testing
subset. To ensure the reproducibility of the experiments, we also fixed random seeds.

These hyperparameters were set based on our real-world, practical experiences with
computational resources and general principles for training GAN models. While indi-
vidualized parameter tuning for each case may have further improved the quality of the
synthetic data, even with this generic configuration, our GAN model demonstrated higher
effectiveness against other leading-edge models.

3.1.3. Evaluation Metrics

(1) Classified metrics

For a comprehensive evaluation of the experimental outcomes, five widely recognized
classification performance metrics were utilized: accuracy, F1 score, recall, precision, and
the kappa coefficient. These metrics’ definitions are provided below:

• Accuracy: the proportion of all samples categorized accurately.
• Precision: the proportion of all samples that genuinely belong to the positive category

out of all samples predicted as positive by the model.
• Recall: the proportion of true positives, indicating the fraction of all actual positive

instances that the model successfully identifies.
• F1 score: defined as the weighted average between precision and recall, offering a

comprehensive assessment of both metrics.
• Kappa coefficient: assesses the level of consistency in the classification performance,

taking into account the possibility of chance agreement.

Together, these metrics provide us with a comprehensive evaluation framework for
measuring the model performance on the task of classifying multi-category data from
EEG signals.

(2) Generated data quality metric

The interpretation of time series data frequently poses challenges for human under-
standing due to the absence of standardized and uniform metrics with which to assess
similarities between GAN-generated time series data and real data. An exhaustive liter-
ature review revealed that current methods for evaluating signal similarity fall short in
distinguishing minor discrepancies between two signal sets effectively. Consequently, iden-
tifying a metric that exhibits high variability across different categories while maintaining
low variability within the same category is crucial for the precise evaluation of similarities
between real and synthesized signals. To meet this necessity, we employed a revised
rendition of the wavelet coherence metric. This rendition enables a quantitative evaluation
of the resemblance between two signal sets, eliminating the necessity to manually isolate
features from the raw sequences [29].

The metric of wavelet coherence quantifies the synchronicity between two tempo-
ral sequences across the time-frequency spectrum, focusing on the consistency of phase
interactions at distinct temporal points and frequency bands. This approach aims to un-
cover potential connections or causal relationships between them. The revised rendition of
the wavelet coherence metric is derived by calculating the local correlation between the
continuous wavelet transforms (CWT) of the two time series, as depicted in Equation (8):

wc =

∣∣∣S(Cx(a, b)Cy(a, b)
)∣∣∣2

S
(
|Cx(a, b)|2

)
·S
(∣∣Cy(a, b)

∣∣2) (8)

In this formulation, the smoothing operator S enhances temporal and scale analysis,
while the coefficients Cx(a, b) and Cy(a, b) for signals x and y reflect the analysis’ focus on
frequency (scale parameter a) and signal location (position parameter b), with the overline
indicating complex conjugate operations. The wc value, ranging from 0 to 1, serves as an
indicator of the coherence strength between the time series at the specified scale. Specifically,
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a higher value suggests enhanced coherence, implying a more consistent phase relationship
within the time–frequency domain.

Wavelet coherence (wc), which quantifies the similarity between two time series signals,
is represented as a two-dimensional matrix encompassing the dimensions of frequency
and time step. To condense this matrix into a scalar value, we aggregated the values
along the time axis (x-axis) and then calculated the mean across the frequency axis (y-axis),
yielding a composite wavelet coherence score between the two signals. In the context
of multidimensional signals, the average wavelet coherence across all dimensions was
computed.

Further, for two groups of signals A and B, each containing n signal samples, we first
calculated the wavelet coherence values between each signal in group A and then each
signal in group B. Then, we summarized these values and calculated the average wavelet
coherence value between the two groups of signals. This calculation process can be used to
obtain a measure of the average similarity between the two groups of signals.

3.2. Result Analysis
3.2.1. Classification Performance

A benchmarking analysis against four recognized network models was carried out to
determine the relative effectiveness of the model introduced in this research: EEG Conv [30],
EEG-Fest [31], LSTM-CapsAtt [32], and AMS-CNN [33].

In the dataset from SEED-VIG, the evaluation of various models was conducted using
the five-fold cross-validation technique to calculate their mean performance metrics. The
outcomes from the comparative study are documented in Table 1.

Table 1. Comparison of classification results.

Model Accuracy Recall Precision F1-Score Kappa

CA-ACGAN 0.907 0.954 0.916 0.935 0.814
EEG Conv [30] 0.794 0.895 0.803 0.847 0.539
EEG-Fest [31] 0.821 0.882 0.814 0.847 0.528
LSTM-CapsAtt [32] 0.883 0.926 0.878 0.901 0.797
AMS-CNN [33] 0.803 0.879 0.821 0.849 0.556

The CA-ACGAN model showcases highly precise fatigue detection capabilities through
the utilization of EEG signals, outperforming other EEG-based models in terms of efficiency.
The main challenge faced by the AMS-CNN is that it may demand significant quantities
of data and computational power to adapt to different scales of feature extraction, which
may result in extended periods of training and increased expenses related to computation.
Furthermore, models such as EEG Conv exhibit limited adaptability to the complex and
nonlinear characteristics of SEED-VIG dataset, hindering their performance in handling in-
tricate EEG signal processing tasks. The EEG-Fest model incompletely utilizes the valuable
information inherent in the SEED-VIG dataset, resulting in suboptimal outcomes during
the processes of data analysis and interpretation. The LSTM-CapsAtt model requires
further refinement to address challenges associated with noise interference and signal
interpretation difficulties.

The distinctiveness of the CA-ACGAN lies in its incorporation of the bottleneck resid-
ual module, attention module, and Transformer module, which were crafted to efficiently
extract and process spatial–frequency–temporal information. This capability not only en-
sures the model’s accuracy in the SEED-VIG dataset, but also its interpretability in EEG
signal-based fatigue detection tasks, highlighting CA-ACGAN’s substantial benefits in
managing complex EEG signal processing challenges.

To evaluate the classification performance of the CA-ACGAN model under conditions
of class imbalance, we conducted a test using a dataset comprising 15,000 randomly selected
samples across two categories from 23 subjects, which included 10,000 samples labeled
as ‘awake’ and 5000 as ‘fatigue’. The classification outcomes are presented in a confusion
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matrix (Figure 9). The results suggest that the proposed model maintains high accuracy in
identifying categories, even when faced with an imbalanced dataset.

Figure 9. Confusion matrix for the CA-ACGAN model, demonstrating its classification performance
on 15,000 imbalanced samples (10,000 awake, 5000 fatigue).

3.2.2. Quality of Data Generated

In this research, wavelet coherence scores served as the metric for assessing the
resemblance between synthesized signals that have been subjected to dimensionality
reduction and their real counterparts, where a higher score denotes greater similarity.
Furthermore, we compared the CA-ACGAN with the latest leading-edge time series GAN
frameworks, including cDCGAN [34], CS-GAN [35], SigCWGAN [16], and GANSER [36].
Table 2 presents the results of the wavelet coherence analysis using the SEED-VIG dataset.

Table 2. Wavelet coherence scores; higher scores are better.

Model Score (%)

CA-ACGAN 81.26
cDCGAN [34] 69.83
CS-GAN [35] 76.49
SigCWGAN [16] 74.30
GANSER [36] 79.18

As shown by the data in Table 2, our CA-ACGAN model outperformed all other base-
line models in terms of wavelet coherence scores. This superior performance suggests that
the CA-ACGAN model is capable of synthesizing signals that bear a closer resemblance to
real signals when compared to other GAN models. Our research integrates the strengths
found in previous studies. We incorporated conditional data, akin to that used in a cDC-
GAN, to enhance the functionality of generative models and implement a Wasserstein loss,
akin to that used in a SigCWGAN, to enhance the training process of our model. Similar
to CS-GAN, our methodology also fully leverages the temporal and spatial attributes of
EEG data. The GANSER model offers us valuable insights into the efficient utilization of
amplified samples.

In this study, the classification model was trained using diverse training scenarios to
evaluate its effectiveness in classification tasks. The training scenarios were varied and
included the following: the utilization of purely real signal samples, the employment of
purely synthetic signal samples, the application of a few real signal samples, and hybrid
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training incorporating a few real signal samples with mostly synthetic signal samples. The
aggregate volume of data encompassed by the aforementioned four training scenarios
remained equivalent. The outcomes of these experiments and the respective classification
scores are detailed in Table 3.

Table 3. Classification scores for training using different signal sources.

Data Mixing Methods Accuracy

Purely real samples 0.907
Purely synthetic samples 0.864
Few real samples 0.805
Few real samples + most synthetic samples 0.887

The experimental findings may be condensed into the following points. 1. The syn-
thetic signal, although not as effective as the purely real signal training, in terms of clas-
sification performance, can still provide similar information as the real signal. 2. A small
dataset size poses challenges for the model’s learning capabilities. 3. A hybrid training
approach, combining real and synthetic signals, surpasses the effectiveness of training with
limited real signals or exclusively with synthetic signals. This approach mirrors a practical
scenario where real signals are scarce, and synthetic signal support is beneficial.

In order to effectively combine real and synthetic signals to boost the model’s efficiency,
we used a classification confidence-based selection method to filter high-quality generated
signals [37]. This method involves assigning a confidence score to each synthetic signal
point and establishing a threshold of 90 for this score. Only synthetic signal points that
met or exceeded this threshold were selected. These selected, high-quality synthetic signal
points, along with their categorical labels, were subsequently incorporated into the original
training dataset, thereby augmenting the training set.

The adoption of a classification confidence-based strategy markedly improved the
classification accuracy, elevating it to 0.938. It is crucial, however, to acknowledge that
while this strategy significantly enhanced accuracy, it may also lead to increased computa-
tional time.

3.2.3. Ablation Experiments

To assess the influence of the 4D feature flow, attention mechanisms, and lightweight
convolution on the efficacy of the framework, we executed a comprehensive set of ablation
experiments. These investigations contrast the fatigue detection capabilities of the com-
prehensive CA-ACGAN model against its numerous variants: CA-ACGAN (3D), which
lacks 4D feature flow; CA-ACGAN equipped with sparse graphs; CA-ACGAN, devoid of
the attention module; and CA-ACGAN, utilizing a conventional convolution module, as
delineated in Table 4.

Table 4. Results of ablation experiments.

Model Accuracy Recall Precision F1-Score Kappa

CA-ACGAN 0.907 0.954 0.916 0.935 0.814
CA-ACGAN (3D) 0.872 0.926 0.881 0.903 0.787
CA-ACGAN (with sparse graphs) 0.893 0.943 0.904 0.923 0.798
CA-ACGAN (without attention module) 0.906 0.952 0.913 0.932 0.810
CA-ACGAN (with standard convolution module) 0.886 0.931 0.887 0.908 0.792

The results presented in Table 4 elucidate that the incorporation of 4D feature streams
markedly augments model performance relative to the 3D features. Usually, there are two
types of 2D images formed by electrodes: one is dense and the other is sparse. Empirical
evidence from this study indicates that the dense image variant surpasses its sparse coun-
terpart in both accuracy and training time efficiency. This discrepancy may stem from the
inclusion of zeros between adjacent electrodes in sparse images, which fails to contribute
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substantive information. Conversely, the dense image type exhibits reduced training du-
ration costs, potentially attributed to its diminished size, thereby lessening the requisite
number of convolutional filters for processing. Although the integration of the attention
module did not yield a substantial performance enhancement, it was designed to enhance
the system’s proficiency in identifying key elements across the spatial and frequency do-
mains and to reduce attention to unimportant features, which is beneficial to the overall
efficacy of the model. Given the pronounced correlation between brainwave signals in
both the spatial and frequency domains, the bottleneck residual block proves exceptionally
efficacious for the extraction of spatial and frequency features. This model’s application
not only minimizes the parameter count, but also significantly amplifies performance,
underscoring its critical role in feature extraction.

4. Discussion and Future Perspectives

The comparative analysis presented herein elucidates that our proposed architecture
surpasses alternative approaches in terms of the performance metrics. We further delve
into the following noteworthy aspects:

(1) The integration of the dimensionality of the frequency, space, and time of the EEG
signal data into a 4D feature dataset significantly enhances performance over 2D and
3D datasets, which encapsulate only fragmentary information. Employing this 4D
feature dataset as input, our model achieved superior accuracy compared to existing
methods, primarily due to its efficient structuring of input features.

(2) CNNs excel in local information extraction and are apt for spatial feature analysis,
whereas Transformers excel in global information extraction and are suited for se-
quence data processing. The amalgamation of CNN and Transformer attributes lead
to an improvement in model performance.

Despite the preliminary successes of this research, there exist multiple challenges and
prospects for forthcoming studies that warrant exploration:

(1) The general applicability of the model: Subsequent research should examine the
model’s applicability and efficiency across diverse EEG dataset types to further vali-
date its widespread application potential.

(2) Real-time monitoring applications: The feasibility of incorporating the model into a
real-time monitoring system should be explored, aiming to enhance service effective-
ness in actual driving scenarios.

(3) Model optimization: Employing manual calculations for a preliminary estimate,
alongside automated tools for a more thorough and accurate performance evaluation,
we determined the computational complexity of the model to be approximately 0.21
GFLOPs. Future efforts should focus on identifying novel algorithms and techniques
to diminish the model’s computational demands, thereby augmenting the operational
efficiency and utility of the monitoring system.

5. Conclusions

In our research, we investigated an approach to detect driving fatigue through the
utilization of the CA-ACGAN algorithm. This methodology adeptly identified patterns
of brain activity by scrutinizing the four-dimensional characteristics of EEG data, which
include frequency, spatial, and temporal attributes. Moreover, by integrating differential
entropy (DE) features with electrode location data, we generated two-dimensional repre-
sentations that elucidate spatial correlations, thereby aiming to augment the interpretation
of signal intricacy.

Regarding the architectural composition of the model, the CA-ACGAN significantly
enhanced model efficacy through the adoption of spatial and frequency attention mecha-
nisms. This enabled the precise identification and processing of critical information within
the EEG signals. The incorporation of a bottleneck residual module, along with depth and
pointwise convolution techniques, facilitated the extraction of spatial and frequency fea-
tures while maintaining model efficiency and compactness. The Transformer module was
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instrumental in capturing the temporal relationships of the four-dimensional features, im-
proving feature detection capabilities through multi-head self-attention and a feed-forward
multilayer perceptron (MLP).

During the experimental phase, the efficacy of the CA-ACGAN model was evaluated
through hyperparameter optimization within a high-performance computing context, while
employing various assessment metrics. The findings attest to the superior performance of
the CA-ACGAN in detecting fatigue driving, particularly regarding the generative quality
and classification accuracy. An ablation study further underscores the pivotal contributions
of the four-dimensional feature mapping framework, the bottleneck residual module, and
the compact 2D mapping to model enhancement.

In summary, the CA-ACGAN model exhibits considerable potential in applications
related to fatigue driving detection. Integrating the multidimensional features of EEG
signals with an innovative network architecture significantly enhances both the accuracy
and practical value of fatigue recognition. This study distinguishes itself not only through
the quality of the generated data, but also through its notable advancements in classification
efficiency. Such achievements herald a new direction in the technology of fatigue driving
detection, underscoring the model’s pivotal role in evolving the field.
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Abbreviations

z noise vector
l target categorical label
Wn output of linear transformation in generator
W ′

n Wn after Transformer module in generator
Tn W ′

n after Deconv layer in generator
T′

n Tn after attention module in generator
Yn synthetic data of 4D structure
Sn raw EEG data
m the number of electrode channels available
r the rate of sampling
Dn DE segment of 3D structure
d the count of distinct frequency bands
T EEG segments into time frames, amounting to 2T in total
h, w the height and width of a 2D map
Xn real data of a 4D structure
X′

n Xn after attention module in discriminator
Qn X′

n after bottleneck residual module in discriminator
C the dimensionality of the output layer within the bottleneck residual block
k multiplicative dimensionality increase in bottleneck layer
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