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Abstract: In this study, we investigated the feasibility of using electroencephalogram (EEG) signals to
differentiate between four distinct subject-driven cognitive states: resting state, narrative memory,
music, and subtraction tasks. EEG data were collected from seven healthy male participants while
performing these cognitive tasks, and the raw EEG signals were transformed into time–frequency
maps using continuous wavelet transform. Based on these time–frequency maps, we developed
a convolutional neural network model (TF-CNN-CFA) with a channel and frequency attention
mechanism to automatically distinguish between these cognitive states. The experimental results
demonstrated that the model achieved an average classification accuracy of 76.14% in identifying
these four cognitive states, significantly outperforming traditional EEG signal processing methods and
other classical image classification algorithms. Furthermore, we investigated the impact of varying
lengths of EEG signals on classification performance and found that TF-CNN-CFA demonstrates
consistent performance across different window lengths, indicating its strong generalization capability.
This study validates the ability of EEG to differentiate higher cognitive states, which could potentially
offer a novel BCI paradigm.

Keywords: subject-driven cognitive states; EEG signals; time–frequency map; channel and frequency
attention; brain–computer interface

1. Introduction

Brain–computer interfaces (BCIs) are advanced technologies that establish a direct
connection between the human brain and external devices [1–3]. BCIs can interpret users’
intentions directly from their brain signals, enabling control of external computers or
devices. Currently, BCI devices have been used to assist individuals with motor disabilities
to interact with the outside world, such as by enabling movement or feeling through
tools like mechanical arms [4–6]. Based on the method of acquiring neural signals, BCI
devices are mainly divided into two categories: invasive and non-invasive [7]. The invasive
approach utilizes a microelectrode array, which involves surgically implanting electrodes
into the depths of the brain cortex to record action potentials of individual neurons, as well
as local field potentials of highly concentrated small clusters of neurons and synapses. This
method provides high precision in capturing neural information, but carries a relatively
high risk of damage to the human brain. In contrast, non-invasive BCIs place signal
acquisition devices outside the scalp, making them more easily accepted by the general
population [8]. Among non-invasive devices, EEG-based BCIs are the most commonly
researched due to their low cost, ease of subject recruitment, and high temporal resolution
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of brain signals [9,10]. EEG-based BCIs have seen rapid development recently [11–13],
achieving control over complex applications such as wheelchairs [14], virtual [15,16] and
physical [17] quadcopters, robotic arms [18], and speech decoding [19].

In EEG-BCIs, signals can be classified into evoked and spontaneous types. Evoked EEG
involves triggering specific brain responses through external stimuli, such as P300 [20–23]
and Steady-State Visual Evoked Potentials (SSVEPs) [24–29]. While extensively studied in
BCI systems, P300 is susceptible to interference and prolonged fixation on light sources, while
SSVEPs may lead to visual fatigue. In contrast, the spontaneous motor imagery (MI) signals,
generated without external stimuli, have been widely used in EEG BCIs [30–33]. Despite
various advantages over existing paradigms [34], MI signals exhibit individual variability in
strength and location. Users of BCIs employing MI show diverse performance levels, ranging
from near-perfect control to BCI blindness (inability to meaningfully control the system) [35].
Although subjects can enhance their MI performance through learning, some may still struggle
to achieve effective control even after multiple training sessions [36,37]. Challenges associated
with MI include significant individual differences, high training costs, and task complexity,
which impede the widespread application and advancement of this paradigm.

Some studies have initiated exploration into whether advanced cognitive activities, such
as visual imagery [38] and mental arithmetic [39], could potentially serve as novel paradigms
for brain–computer interfaces. However, the existing research falls short and requires further
in-depth examination. Brain–computer interfaces are currently constrained by a limited range
of brain signals, predominantly originating from the primary sensory–motor cortex. Further
research is essential to enhance the diversity of commands in brain–computer interfaces,
particularly concerning the viability of incorporating memory, reasoning, and other advanced
cognitive functions as potential new paradigms for brain–computer interfaces. The feasibility
of this approach and potential individual variability remain uncertain. Given the intricate
and abstract nature of these advanced cognitive tasks, continued investigations are crucial to
accurately capture and interpret the signals evoked by these tasks.

Functional MRI demonstrates the feasibility of distinguishing the selected advanced
cognitive states (resting state, narrative memory, music, and subtraction tasks) [40]; how-
ever, the potential for differentiation using scalp EEG signals remains unexplored. Cogni-
tive neuroscience indicates that these advanced cognitive activities involve cortical activity
across the entire brain, particularly encompassing internal brain regions such as the hip-
pocampus. EEG is considered a challenging method to capture activity from these deep
brain regions, as it primarily records electrical signals from the brain’s surface cortex. Thus,
distinguishing high-level cognitive activities using EEG presents a significant challenge.

In this paper, our study presents a novel methodology for effectively utilizing EEG
signals to differentiate between diverse cognitive states, such as resting state, narrative
memory, music, and subtraction tasks. The task is subject-dependent cognitive state
detection. Firstly, through the application of continuous wavelet transform to convert raw
EEG signals into time–frequency maps, we successfully extract crucial features essential
for accurate classification. Secondly, the introduction of the TF-CNN-CFA model with
a channel and frequency attention mechanism significantly improves the precision in
distinguishing these cognitive states. Lastly, our results not only demonstrate the superior
performance of the TF-CNN-CFA model over traditional methods but also highlight its
consistent efficacy across varying lengths of EEG signals, underscoring its potential for
practical implementation in brain–computer interface systems.

2. Methods
2.1. General Procedure

The overall framework of the proposed TF-CNN-CFA model is shown in Figure 1.
Firstly, the raw EEG brain signals are carefully preprocessed using the EEGLAB MAT-
LAB toolbox (MATLAB R2021b; EEGLAB v2023.1) [41], including filtering and denoising
operations, to ensure high-quality data. Subsequently, we utilize continuous wavelet trans-
form technology to transform the preprocessed EEG signals into time–frequency maps.
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The purpose of this step is to effectively display the characteristics of brain signals in
both the time and frequency domains, thereby better revealing patterns and properties of
brainwave activities. Each EEG signal channel is transformed into a time–frequency map,
illustrating the activity state of this channel at different time points and frequencies. Each
time–frequency map is grouped, segmented by frequency range, and decomposed into
RGB channels, corresponding to frequency ranges of 0–15 Hz, 15–30 Hz, and 30–45 Hz.
Next, the time–frequency maps of all channels are overlaid in the RGB dimension. Finally,
the overlaid time–frequency maps are input into the network for training to decode and
classify EEG signals corresponding to the four cognitive states.

1 
 

 
Figure 1. The overall framework of the proposed TF-CNN-CFA model. This network consists of a
feature extraction module, a channel and frequency attention (CFA) module, a convolution module,
and a fully connected module.

We have chosen Convolutional Neural Networks (CNNs) as the primary tool for our
research because CNNs exhibit significant advantages in processing image data. They
can effectively analyze images and extract features from them, which makes them particu-
larly proficient in extracting time–frequency features from EEG signals, enabling precise
classification of brainwave data.

In this study, to further enhance the neural network’s processing of EEG signals, we
introduce a channel and frequency attention (CFA) module. The design of this module
aims to boost the network’s focus on different EEG signal channels, allowing the network
to concentrate more on the feature information of key channels, thereby improving the
accuracy and robustness of the classification task. By incorporating the CFA module, we
anticipate strengthening the neural network’s ability to identify important channels within
the EEG signals, thus enhancing the precision and efficiency of the classification process.

2.2. Experimental Paradigm Design

The experimental paradigm design is illustrated in Figure 2. Each participant is required
to complete three sessions of experiments, with each session consisting of 5 blocks. In each
block, the participant sequentially engages in four types of imaginations—resting, memory,
music, and subtraction: a resting state, a narrative memory task, a music lyrics task, and
a subtraction task. The resting state is always performed first, while the order of the three
cognitive tasks is balanced. For the resting task, participants let their minds wander without
focusing on anything specific. For the memory task, participants are asked to recall events
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from the moment they woke up until the current time. In the music task, participants are
instructed to mentally sing their favorite song lyrics. In the subtraction task, participants are
required to count down from 5000 in increments of 3. Participants are instructed to maintain
an open-eyed state in a self-driven cognitive state throughout.
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Figure 2. Experimental paradigm design. Each participant is required to complete three experimental
sessions, each comprising 5 blocks. Within each block, participants engage in four types of mental
imagery—resting, memory, music, and subtraction. In each block, a “+” signal appears on the screen
to indicate the beginning of the task. Cue words for the four mental states are then displayed for
60 s, followed by a 24 s rest period. There is no break between the 5 blocks within a session, but a
five-minute rest interval separates each session. At the conclusion of the experiment, each participant
has 15 min of EEG data recorded for each mental imagery task state.

In each block, a 6 s display of “+” on the screen signals the participant to prepare
for the experiment, during which the participant is required to gaze at the center of the
screen where the “+” is located without moving their body. Subsequently, cue words
indicating the four states are displayed on the screen, prompting the participant to use
their imagination for 60 s. During this period, the participant must concentrate, avoid
head and body movements, and minimize blinking. Finally, a 24 s rest period follows,
allowing the participant to relax with minimal body movement as the screen remains blank.
A one-minute rest interval separates two consecutive blocks, while a five-minute break is
provided between sessions. At the end of the experiment, each participant has 15 min of
EEG experimental data for each task state.

In this study, the EEG data were acquired with a Neuracle EEG amplifier at a sampling
rate of 1000 Hz. The 59 electrodes were placed according to the international 10–20 system at
positions including Fpz, Fp1, Fp2, AF3, AF4, AF7, AF8, Fz, F1, F2, F3, F4, F5, F6, F7, F8, FCz,
FC1, FC2, FC3, FC4, FC5, FC6, FT7, FT8, Cz, C1, C2, C3, C4, C5, C6, T7, T8, CP1, CP2, CP3, CP4,
CP5, CP6, TP7, TP8, Pz, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO5, PO6, PO7, PO8, Oz, O1,
and O2. This electrode arrangement aims to comprehensively cover different brain regions for
comprehensive and accurate recording of brainwave activity, as depicted in Figure 3.

Seven healthy male participants aged 22 to 28 years took part in the experiment, all
with normal vision or corrected vision with glasses, and no history of electrical or drug
therapy 30 days prior to the experiment. They were all right-handed and had no mental
illnesses. Participants refrained from staying up late the night before the experiment,
ensuring good rest, and abstained from alcohol, smoking, and tea consumption. Detailed
explanations of the experimental tasks and procedures were provided to participants before
the experiment. All participants signed written informed consent forms and were involved
in the experiment. This study was conducted in accordance with the Declaration of Helsinki
and approved by the Ethics Committee of the Xiangya Hospital of Central South University.

During the data collection process, participants sat comfortably in a chair 0.5 m away
from the monitor, with their hands naturally resting on the armrests. The experiments
were conducted in a quiet, well-lit, and temperature-controlled laboratory environment.
Before the formal experiment commenced, participants were required to complete a 30 min
training task. The training session aimed to familiarize participants with the experimental
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tasks and procedures by practicing each of the four cognitive states—resting, memory,
music, and subtraction—five times.
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2.3. Data Preprocessing

In our study, we employed the EEGLAB toolbox in MATLAB to preprocess the raw
EEG signals. The data preprocessing workflow, as illustrated in Figure 4, involves several
key steps. Initially, we applied band-pass filtering (0.1–45 Hz) to the collected EEG signals
to retain information within the specific frequency range of interest while reducing noise
interference, thereby enhancing signal quality for clearer analysis and interpretation. Due to
the high number and even distribution of electrodes on the cap used, we utilized the average
reference method to obtain a reference electrode and performed offline re-referencing of the
EEG data. Subsequently, the EEG data were decomposed into independent components
using Independent Component Analysis (ICA). By identifying components with artifacts
related to eye movements, heartbeats, muscle activities, and other non-neural activity-
related artifacts, these components were removed to preserve authentic brainwave signals.
The data were then reorganized to eliminate artifact effects and retain genuine brainwave
signals. For bad channels, interpolation repair using the commonly used spherical spline
method was conducted based on data from normal channels. Following this, the data were
segmented according to the experimental task labels for the four tasks (resting, memory,
music, and subtraction), with an additional baseline correction involving the extraction of
6000 ms of resting time before the start of each task.

Each participant provided 60 min of EEG data, with each of the four states having
an interval of 15 min. To further analyze the data, we segmented the EEG data for each
state into three-second intervals without overlap. Subsequently, we utilized continuous
wavelet transform technology to generate corresponding color-coded time–frequency maps.
These maps display changes in signal energy intensity across different frequencies over
time, with the X-axis representing time (0–3000 ms) and the Y-axis representing frequency
(0–45 Hz). The color mapping in time–frequency images, achieved through continuous
wavelet transform (CWT), presents an alternative visualization technique for illustrating
the distribution of signal energy across various frequencies. Warm hues, such as red and
orange, signify high signal power, whereas cooler tones like blue and purple indicate low
power levels, effectively capturing temporal and spectral fluctuations in signal intensity.



Brain Sci. 2024, 14, 498 6 of 21

Nonetheless, it is crucial to recognize that this color-coded depiction constitutes an esthetic
variation; fundamentally, the information conveyed is consistent with that of grayscale
time–frequency images, differing only in visual presentation.
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ing (0.1–45 Hz), the average reference method, Independent Component Analysis (ICA), interpolation
repair, data segmentation, and baseline correction. Subsequently, continuous wavelet transform was
used to create time–frequency images, which were organized by frequency range and decomposed
into RGB channels representing frequency ranges of 0–15 Hz, 15–30 Hz, and 30–45 Hz.

These time–frequency images were grouped, segmented by frequency range, and
decomposed into RGB channels, corresponding to frequency ranges of 0–15 Hz, 15–30 Hz,
and 30–45 Hz. Each channel shows the energy distribution within different frequency
ranges: the red channel corresponds to low-frequency energy, the green channel to mod-
erate frequency energy, and the blue channel to high-frequency energy. The magnitude
of grayscale values reflects the power within each frequency band, with higher values
indicating higher power. By overlaying the grayscale values from all three channels, the
original colored image was obtained, showcasing the signal strength across all frequencies.

After compressing each single-channel time–frequency map to a size of 60 × 100, we
combined the 59 channels’ time–frequency maps onto the RGB channels to create composite
images with 177 channels (59 RGB three-channel overlays). Finally, these composite images
were used as input data for the neural network training, with a dimension of (32, 177,
60, 100)—where 32 denotes batch size, 177 represents the number of channels in the time–
frequency maps, 60 signifies the height of the time–frequency maps, and 100 indicates the
width of the time–frequency maps. These processed data were subsequently fed into the
neural network for training.

2.4. Network Architecture

In this study, we propose a custom convolutional neural network model named TF-
CNN-CFA designed to handle EEG signal classification tasks. The neural network model
comprises several key components, including convolutional layers, pooling layers, and
fully connected layers. Specifically, the model consists of four convolutional layers (Conv1,
Conv2, Conv3, and Conv4), with Conv4 incorporating a dropout layer and an ReLU non-
linear activation function layer to enhance model generalization and non-linear feature
representation. Additionally, the model includes three pooling layers (Pool1, Pool2, and
Pool3) to reduce feature dimensions and extract salient features. Notably, the model inte-
grates a channel and frequency attention (CFA) module aimed at enhancing the network’s
focus on different EEG signal channels to capture crucial features and improve classification
accuracy. Finally, the model structure encompasses a fully connected layer (FC) responsible
for learning feature representations and achieving the 4-classification task. The network
parameters are detailed in Table 1.
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Table 1. Specific network structure.

Input Layer Output Feature Maps Kernel Stride

N1(32, 177, 60, 100) conv1 N2(32, 177, 60, 100) 177 3 × 3 1
N2(32, 177, 60, 100) CFA module N2(32, 177, 60, 100) 177 - -
N2(32, 177, 60, 100) pool1 N3(32, 177, 12, 20) 177 5 × 5 5
N3(32, 177, 12, 20) conv2 N4(32, 128, 12, 20) 128 5 × 5 1
N4(32, 128, 12, 20) pool2 N5(32, 128, 6, 10) 128 2 × 2 2
N5(32, 128, 6, 10) conv3 N6(32, 128, 6, 10) 128 5 × 5 1
N6(32, 128, 6, 10) conv4 N7(32, 64, 6, 10) 64 5 × 5 1
N7(32, 64, 6, 10) dropout N7(32, 64, 6, 10) 64 - -
N7(32, 64, 6, 10) pool3 N8(32, 64, 3, 5) 64 2 × 2 2
N8(32, 64, 3, 5) flatten N9(32, 960) 960 - -

N9(32, 960) fc N10(32, 4) 4 - -

The input layer N1 is sized at (32, 177, 60, 100). It undergoes a convolutional operation
with a 3 × 3 kernel size (conv1) to produce N2, maintaining the feature map size at (32, 177,
60, 100). Subsequently, a CFA module operation is applied to maintain the size. Next, a
5 × 5 pooling operation (pool) is performed on N2 to obtain N3, resulting in a feature map
size of (32, 177, 12, 20). Following this, a 5 × 5 convolution operation with conv2 on N3
generates N4 with a feature map size of (32, 128, 12, 20). The subsequent 2 × 2 pooling
operation (pool2) on N4 yields N5 with a feature map size of (32, 128, 6, 10). N5 then
undergoes a 5 × 5 convolution operation (conv3) to produce N6 with a feature map size
of (32, 128, 6, 10). This is followed by another 5 × 5 convolution operation (conv4) on N6
to obtain N7 with a feature map size of (32, 64, 6, 10). A dropout operation is conducted
on N7, maintaining its size before a 2 × 2 pooling operation (pool4) on N7 produces N8
with a feature map size of (32, 64, 3, 5). N8 is then flattened into a one-dimensional vector
to obtain N9 with a size of (32, 960). Finally, a fully connected layer (fc) maps N9 to N10,
achieving the 4-classification task.

2.4.1. Channel and Frequency Attention (CFA) Module

In our study, we introduce a CFA module to enhance the neural network’s performance
of classifying EEG signals. This module receives an input tensor of dimensions (32, 177,
60, 100), where the batch size is 32, the number of channels in the time–frequency maps is
177 (derived from 59 RGB three-channel time–frequency maps), and the height and width
of the time–frequency maps are 60 and 100, respectively. This module allows for dynamic
adjustments of weights across different channels, enabling the network to focus more on
key channel information to enhance model performance and accuracy.

The specific operational flow is as follows: Initially, through global max-pooling
and global average-pooling operations, features of each channel are extracted to a spatial
dimension of 1 × 1, resulting in an output size of (32, 177, 1, 1). Subsequently, a fully
connected layer (fc1) reduces the number of channels to 59, applying ReLU activation for
non-linear transformation. Then, another fully connected layer (fc2) restores the number
of channels to 177, followed by another application of ReLU activation. Finally, channel
weights are normalized using the Sigmoid activation function, multiplying the channel
weights with the input feature map to produce an output feature map with a size of (32,
177, 60, 100). The network structure of the CFA module is depicted in Table 2.

By integrating the CFA module, the neural network can better learn and utilize
key channel features, enhancing focus on important channels, thereby improving model
performance and accuracy when processing EEG signals. The introduction of this module
significantly enhances and optimizes EEG signal classification tasks.
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Table 2. Channel and frequency attention (CFA) module’s network structure.

Input Layer Output Feature Maps

(32, 177, 60, 100) AdaptiveMaxPool2d (32, 177, 1, 1) 177
(32, 177, 60, 100) AdaptiveAvgPool2d (32, 177, 1, 1) 177

(32, 177, 1, 1) Linear(fc1) (32, 59) 59
(32, 177, 1, 1) ReLU (32, 59) 59

(32, 59) Linear(fc2) (32, 177) 177
(32, 177) ReLU (32, 177) 177
(32, 177) Sigmoid (32, 177, 1, 1) 177

2.4.2. Training Process and Strategies

To ensure the stability of the model, we employed a five-fold cross-validation method
during training. Within the limited dataset context, each participant’s data samples (1200)
were divided into an 80% training set (960) and a 20% test set (240). Subsequently, the
960 training samples per participant were randomly split into 5 equal parts. Four of these
parts were assigned to the training set, while the remaining fifth part was used as the
validation set for model verification. Following the completion of model training, testing
was conducted using the test set to obtain classification accuracy for each fold. Finally,
the average accuracy across the five folds was calculated and considered the model’s
classification outcome.

In the training process, we utilized the Adam optimizer, a commonly preferred optimiza-
tion algorithm known for its simplicity, high computational efficiency, and minimal memory
usage. With bias correction applied, the optimizer ensured that the learning rate for each
iteration remained within a specific range, contributing to parameter stability. The chosen loss
function was the cross-entropy loss function, well-suited for multi-classification networks, as
depicted in Equation (1). Cross-entropy serves to measure the disparity between two differ-
ent probability distributions within the same random variable, representing the difference
between the actual probability distribution and the predicted probability distribution.

Loss = −∑ pi(x)logqi(x), i = 1, 2, · · · , n (1)

where x represents a single data sample, n denotes the total number of categories, indicating
how many categories need to be classified, pi(x) represents the i-th target probability
distribution, and qi(x) denotes the i-th predicted probability distribution. A smaller cross-
entropy loss value indicates improved predictive performance of the model.

The training configuration involved 50 epochs with a batch size of 32 for each itera-
tion. To achieve superior training outcomes, the network also implemented the dropout
technique with a probability of P = 0.5 to mitigate overfitting and gradient explosions. Ad-
ditionally, the ReLU activation function was utilized as part of the network architecture to
introduce non-linearity and address vanishing gradient issues effectively, as demonstrated
in Equation (2).

ReLU(x) =

{
x if x > 0
0 if x ≤ 0

(2)

2.4.3. Evaluation Metrics

In assessing model performance, we utilize various metrics including accuracy (Acc),
precision (P), recall (R), F-score, and Kappa coefficient (Pk).

Accuracy (Acc): Accuracy represents the proportion of correctly classified samples
over the total number of samples in the test set. It is calculated as shown in Equation (3):

Acc =
TP + TN

TP + TN + FP + FN
(3)



Brain Sci. 2024, 14, 498 9 of 21

where TP denotes true positives (correctly predicted positive instances), TN represents
true negatives (correctly predicted negative instances), FP signifies false positives (negative
instances incorrectly predicted as positive), and FN indicates false negatives (positive
instances erroneously predicted as negative).

Precision (P) and Recall (R): Precision measures the ratio of correctly classified positive
samples to the total samples classified as positive, while recall evaluates the ratio of correctly
classified positive samples to all actual positive samples. The formulas are given by the following:

P =
TP

TP + FP
, R =

TP
TP + FN

(4)

F-score: The F-score combines precision and recall, providing a single metric that
balances both aspects. It is computed as shown in Equation (5):

F-score =
2 × R
P + R

(5)

Kappa Coefficient (Pk): The Kappa coefficient is utilized for consistency testing and to
gauge classification accuracy. It is expressed as follows in Equation (6):

Pk =
Acc − P0

1 − P0
(6)

Here, P0 represents the chance-corrected agreement.

3. Results
3.1. Model Performance Analysis

We evaluated the overall performance of the model, with EEG signal time lengths L
set to 3 s, using five-fold cross-validation, and conducting experiments on a self-collected
dataset. The experimental results are presented in Table 3.

Table 3. Classification results of TF-CNN-CFA model in 7 subjects (3 s).

Subject Accuracy Precision Recall F-Score Kappa

S1 0.8661 0.8724 0.8661 0.8663 0.8214
S2 0.7304 0.7488 0.7304 0.7263 0.6406
S3 0.6670 0.7309 0.6670 0.6555 0.5569
S4 0.7116 0.7505 0.7116 0.7051 0.6151
S5 0.6920 0.7280 0.6920 0.6854 0.5890
S6 0.7536 0.7645 0.7536 0.7524 0.6715
S7 0.9089 0.9151 0.9089 0.9091 0.8784

Mean 0.7614 0.7872 0.7614 0.7572 0.6818
Std. 0.0913 0.0749 0.0913 0.0950 0.1215

Overall, the experimental outcomes demonstrate high accuracy and a certain level of
consistency. The average accuracy stands at 76.14%, with a standard deviation of 9.13%,
indicating some variability across different participants.

Observing the results for the seven participants, except for S3 and S5, the accuracy
rates surpass 70% for the remaining individuals. Notably, S1 and S7 exhibit exceptional
accuracy rates of 86.61% and 90.89%, respectively, marking them as the top-performing
participants in the experiment. Their average accuracy rates both exceed 85%, showcasing
the model’s outstanding recognition capabilities for specific individuals.

However, some participants exhibit a more moderate performance. For instance, S2, S3, S4,
and S5 achieve accuracy rates of 73.04%, 66.70%, 71.16%, and 69.20%, respectively. Particularly
concerning is S3, with an accuracy rate of only 66.70%. Moreover, the precision, recall, F1
score, and Kappa coefficient for S3 are relatively lower, at 73.09%, 66.70%, 65.55%, and 55.69%,
respectively, indicating a degree of fluctuation in model performance across participants.
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In order to gain a deeper understanding of each participant’s classification perfor-
mance, we generated ROC curves for the seven participants, as displayed in Figure 5.

Brain Sci. 2024, 14, x FOR PEER REVIEW 10 of 23 
 

Table 3. Classification results of TF-CNN-CFA model in 7 subjects (3 s). 

Subject Accuracy Precision Recall F-Score Kappa 
S1 0.8661 0.8724 0.8661 0.8663 0.8214 
S2 0.7304 0.7488 0.7304 0.7263 0.6406 
S3 0.6670 0.7309 0.6670 0.6555 0.5569 
S4 0.7116 0.7505 0.7116 0.7051 0.6151 
S5 0.6920 0.7280 0.6920 0.6854 0.5890 
S6 0.7536 0.7645 0.7536 0.7524 0.6715 
S7 0.9089 0.9151 0.9089 0.9091 0.8784 

Mean 0.7614 0.7872 0.7614 0.7572 0.6818 
Std. 0.0913 0.0749 0.0913 0.0950 0.1215 

Overall, the experimental outcomes demonstrate high accuracy and a certain level of 
consistency. The average accuracy stands at 76.14%, with a standard deviation of 9.13%, 
indicating some variability across different participants. 

Observing the results for the seven participants, except for S3 and S5, the accuracy 
rates surpass 70% for the remaining individuals. Notably, S1 and S7 exhibit exceptional 
accuracy rates of 86.61% and 90.89%, respectively, marking them as the top-performing 
participants in the experiment. Their average accuracy rates both exceed 85%, showcasing 
the model’s outstanding recognition capabilities for specific individuals. 

However, some participants exhibit a more moderate performance. For instance, S2, 
S3, S4, and S5 achieve accuracy rates of 73.04%, 66.70%, 71.16%, and 69.20%, respectively. 
Particularly concerning is S3, with an accuracy rate of only 66.70%. Moreover, the preci-
sion, recall, F1 score, and Kappa coefficient for S3 are relatively lower, at 73.09%, 66.70%, 
65.55%, and 55.69%, respectively, indicating a degree of fluctuation in model performance 
across participants. 

In order to gain a deeper understanding of each participant’s classification perfor-
mance, we generated ROC curves for the seven participants, as displayed in Figure 5. 

 
Figure 5. ROC curves. The horizontal axis represents the false positive rate (FPR), while the vertical 
axis represents the true positive rate (TPR). Each participant has an individual ROC curve, with the 
thick blue line depicting the average ROC curve across all participants. The shaded area indicates 
the standard deviation. The diagonal line represents the random classification probability. 

The results indicate that participant 7 exhibited outstanding performance, with an 
AUC value as high as 0.94. This signifies the model’s exceptional ability in distinguishing 

Figure 5. ROC curves. The horizontal axis represents the false positive rate (FPR), while the vertical
axis represents the true positive rate (TPR). Each participant has an individual ROC curve, with the
thick blue line depicting the average ROC curve across all participants. The shaded area indicates the
standard deviation. The diagonal line represents the random classification probability.

The results indicate that participant 7 exhibited outstanding performance, with an
AUC value as high as 0.94. This signifies the model’s exceptional ability in distinguishing
between the four different states, demonstrating strong category discrimination capabil-
ity. Participant 1 also achieved notable results, obtaining an AUC value of 0.91, further
confirming the model’s outstanding performance. However, participant 3 showcased the
lowest AUC value at 0.78, highlighting fluctuations in classification performance across
different participants.

The overall average AUC of 0.84 with a standard deviation of 0.06 suggests a relatively
stable classification performance across the varied participants. This implies that the model
performs well in multi-classification tasks, displaying good overall performance despite
minor individual differences. Considering the collective performances of all participants, it
is evident that the model exhibits effectiveness and robustness in recognizing the states of
resting, memory, music, and subtraction.

To assess the recognition capabilities for each state, we present the average confusion
matrix for all participants in Figure 6. It is observed that the “Resting” state is relatively
easier to identify compared to “Memory”, “Music”, and “Subtraction”, boasting the highest
classification accuracy of 80%. Additionally, the classification accuracies for “Resting”,
“Memory”, “Music”, and “Subtraction” all exceed 72%. This indicates that the classification
accuracies for the four categories are quite close, suggesting good model performance, with
effective classification results for each category.

The algorithm demonstrates a low false positive rate for the “Resting” state, indicating
its ability to correctly identify instances of this state. In the case of the “Memory” and
“Music” states, the algorithm shows low misclassification rates, with both low false positives
and false negatives, highlighting its accuracy in differentiating these states. Conversely,
the higher false positive rates for the “Subtraction” state suggest that there is room for
improvement in accurately classifying this state.
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classified as class j.

However, the classification accuracy for the “Memory” state is relatively lower, with
probabilities of misclassification as “Resting”, “Music”, and “Subtraction” standing at 8%,
11%, and 9%, respectively. This phenomenon may be attributed to the complexity and
diversity inherent in memory processes. Memory involves various cognitive processes
and brain regions, presenting differences in brain activity patterns, potentially leading to
increased difficulty in identification. From a physiological perspective, memory entails
the coordinated action of multiple brain regions, such as the hippocampus and frontal
cortex, contributing to its complexity and potentially resulting in diverse and challenging-
to-capture features of memory states within EEG signals.

3.1.1. Ablation Analysis

This study proposed a channel and frequency attention (CFA) module aimed at
extracting the channels and frequencies that contribute significantly to the classification
task, enhancing the classification performance of these four major subject-driven higher
cognitive states. The experimental results are illustrated in Figure 7.

The experimental outcomes reveal that incorporating the CFA module led to an
overall enhancement in the model’s classification accuracy. With the CFA module in
place, the average classification accuracy across participants was 0.7614, compared to
0.7005 without the CFA module. This indicates that the CFA module played a beneficial role
in improving the overall classification accuracy. Particularly noteworthy is the significant
improvement in classification performance observed in participant 2 and participant 7, who
initially exhibited poorer classification results. Thus, the results of this study suggest that
introducing the CFA module effectively boosts the classification accuracy of EEG signals.

Moreover, the proposed CFA module also contributes to enhancing the model’s inter-
pretability and visualization. The CFA module can highlight the importance weights of each
signal channel in different state classifications, making the model’s decision-making process
more transparent and understandable. Figure 8 illustrates the distribution of the average
channel and frequency attention weight coefficients for the seven participants on brain topo-
graphic maps. The present study found that channels such as C5, FP1, FP2, C4, PO4, TP7, CP6,
T7, F1, and F2 in the low frequency range (0–15 Hz), channels including FT8, FC4, FP1, F8,
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C4, PO7, POz, P5, FC3, and CP1 in the mid-frequency range (15–30 Hz), as well as channels
like AF8, C3, Fp2, FC4, CP2, PO8, C5, CP1, FC6, C4, and PO7 in the high frequency range
(30–45 Hz) play a significant role in the classification of the four cognitive states.
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3.1.2. Qualitative Analysis (Visual Analysis)

Following a series of quantitative evaluation tasks, we conducted a qualitative as-
sessment using T-distributed Stochastic Neighbor Embedding (T-SNE) [42] to evaluate
the discriminative capabilities of feature vectors. T-SNE is widely used for projecting
high-dimensional data onto a two-dimensional scatter plot. All experiments in this study
were based on our self-collected dataset, conducting individual participant classification
experiments under the same training strategy.

In Figure 9, the labels of all categories of participant 7’s original EEG data are evenly
distributed in the T-SNE plot. Different colors represent the labels of EEG signals for the four
brain states (resting, memory, music, and subtraction). The confusion matrix of participant
7 after classification and its corresponding T-SNE plot are presented in Figure 10. It is observed
that the T-SNE plot and confusion matrix exhibit similar trends. Under high classification
accuracy, the T-SNE scatter plot shows closer clustering within the same category and clearer
separation between different categories. When misclassifications occur, there may be some
overlap between the scatter points of different categories in the T-SNE plot.
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The t-SNE visualization effectively demonstrates the classification performance, show-
casing the superior classification results of the TF-CNN-CFA network model in distinguish-
ing between the four different brain states. This further confirms the model’s effectiveness
in multi-class classification tasks, providing compelling visual evidence and guiding direc-
tions for future model improvements and optimizations.

3.2. Comparative Analysis

We compared the TF-CNN-CFA with EEGNet_4_2 [43], EEGNet_8_2 [43], EEG-
Nex [44], ResNet18 [45], VGG16 [46], LeNet [47], and TF-CNN. EEGNet_4_2, EEGNet_8_2,
and EEGNex take raw signals as input, while TF-ResNet18, TF-VGG16, TF-LeNet, TF-CNN,
and TF-CNN-CFA take time–frequency maps as input after feature representation. The
comparison results of the accuracy, precision, recall, F-score, Kappa, and AUC values for
different models on the 3000 ms data are presented in Table 4.

The results demonstrate that the TF-CNN-CFA model exhibits significant advantages
in multiple key performance metrics. Firstly, its accuracy reaches 0.76 ± 0.09, notably higher
than that of the other models, indicating outstanding performance in correctly predicting
sample categories. Secondly, the model’s precision of 0.79 ± 0.07 surpasses that of other
models by far, signifying a high proportion of true positive instances among all predicted
positive instances.
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Table 4. A comparison of the different models on the 3000 ms data (five-fold cross-validation).
The best results for each evaluation metric are highlighted in bold. The first three network models
take raw signals as input, while the following five models take time–frequency maps as input after
feature representation.

Model Accuracy Precision Recall F-Score Kappa AUC Value

EEGNet_4_2 0.27 ± 0.02 0.27 ± 0.02 0.27 ± 0.02 0.26 ± 0.02 0.02 ± 0.03 0.51 ± 0.01
EEGNet_8_2 0.26 ± 0.03 0.26 ± 0.03 0.26 ± 0.03 0.26 ± 0.02 0.02 ± 0.03 0.51 ± 0.02

EEGNex 0.36 ± 0.08 0.35 ± 0.08 0.36 ± 0.08 0.35 ± 0.08 0.14 ± 0.10 0.57 ± 0.05
TF-ResNet18 0.22 ± 0.01 0.06 ± 0.01 0.22 ± 0.01 0.09 ± 0.01 0.00 ± 0.01 0.50 ± 0.00
TF-VGG16 0.25 ± 0.00 0.06 ± 0.00 0.25 ± 0.00 0.10 ± 0.00 0.00 ± 0.00 0.50 ± 0.00
TF-LeNet 0.43 ± 0.08 0.49 ± 0.09 0.43 ± 0.08 0.38 ± 0.11 0.25 ± 0.11 0.62 ± 0.05
TF-CNN 0.70 ± 0.08 0.76 ± 0.07 0.70 ± 0.08 0.69 ± 0.08 0.60 ± 0.10 0.80 ± 0.05

TF-CNN-CFA 0.76 ± 0.09 0.79 ± 0.07 0.76 ± 0.09 0.76 ± 0.10 0.68 ± 0.12 0.84 ± 0.06

Furthermore, in terms of recall, TF-CNN-CFA also demonstrates excellent perfor-
mance at 0.76 ± 0.09, indicating successful identification of most actual positive instances.
Considering the F1 score, which balances precision and recall, TF-CNN-CFA achieves a
score of 0.76 ± 0.10, showcasing good balanced performance in classification tasks. Addi-
tionally, the Kappa coefficient of 0.68 ± 0.12 reveals significant consistency between the
model’s predictions and random selection.

Lastly, in the AUC value aspect, TF-CNN-CFA achieves a score of 0.84 ± 0.06, demon-
strating a large area under the ROC curve and overall superior performance. In conclusion,
based on a comprehensive comparative analysis of the models across performance metrics,
it is evident that the TF-CNN-CFA model excels on the dataset, displaying strong classifi-
cation and generalization abilities. Therefore, it can be concluded that the TF-CNN-CFA
model performs remarkably well in this task and is a deep learning model worthy of further
research and application.

Further comparison of the performance of the top four neural network architectures
on our self-collected dataset, including EEGNex, TF-LeNet, TF-CNN, and TF-CNN-CFA,
was conducted. In Table 5, a detailed analysis of the accuracy (Acc) and Kappa coefficient
values of these models across different participants is provided.

The results show that the TF-CNN-CFA model excels across the entire dataset, with an
average accuracy of 0.7614, significantly higher compared to the other models. Particularly
noteworthy is the exceptional performance of the TF-CNN-CFA model in the testing of
participant S7, achieving an accuracy of 0.9089 and a Kappa coefficient of 0.8784, highlight-
ing its outstanding performance on this specific participant. This indicates the robust and
reliable overall performance of the TF-CNN-CFA model on the dataset. Furthermore, the
TF-CNN model exhibits excellent performance on participants S1 and S4, with accuracy
rates of 0.8295 and 0.7366, respectively, and Kappa coefficients of 0.7724 and 0.6491. This
demonstrates the standout performance of the TF-CNN model on specific participants and
its decent generalization capabilities. While the TF-LeNet and EEGNex models also show
relatively good performance on some participants, their overall performance slightly lags
behind that of the TF-CNN-CFA and TF-CNN models.

Considering the overall average values, the TF-CNN-CFA model significantly outper-
forms the others in terms of accuracy and Kappa coefficients, reaching values of 0.7614 and
0.6818, respectively. Through an analysis of standard deviations, it is revealed that the
performance of the TF-CNN-CFA model exhibits low variance, indicating high stability
and reliability on the dataset. This suggests that the TF-CNN-CFA model not only excels
on individual participants but also possesses excellent generalization capabilities across
the dataset.

To analyze the effects of the model proposed in this study on EEG data recognition
for each state, we computed the average confusion matrix for participant 7 across four
different models. As depicted in Figure 11, the horizontal axis represents the predicted
categories of EEG states by the models, while the vertical axis denotes the actual EEG state
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categories. The values on the diagonal represent the proportion of correct classifications,
while the off-diagonal elements indicate the proportion of misclassifications.

Table 5. Performance comparison of the four best neural network architectures on the self-collected dataset
(3000 ms). The best accuracy and Kappa coefficient values for each subject are highlighted in bold.

Subjects
EEGNex TF-LeNet TF-CNN TF-CNN-CFA

Acc Kappa Acc Kappa Acc Kappa Acc Kappa

S1 0.3679
±0.03

0.1578
±0.04

0.5232
±0.09

0.3638
±0.09

0.8295
±0.05

0.7724
±0.08

0.8661
±0.02

0.8214
±0.03

S2 0.3598
±0.03

0.1475
±0.04

0.3920
±0.10

0.1926
±0.12

0.6134
±0.15

0.4838
±0.17

0.7304
±0.05

0.6406
±0.04

S3 0.3259
±0.02

0.1003
±0.03

0.4589
±0.06

0.2783
±0.07

0.6643
±0.07

0.5520
±0.09

0.6670
±0.08

0.5569
±0.12

S4 0.4545
±0.05

0.2730
±0.06

0.3143
±0.05

0.0931
±0.06

0.7366
±0.04

0.6491
±0.05

0.7116
±0.03

0.6151
±0.05

S5 0.3223
±0.02

0.0959
±0.02

0.3464
±0.08

0.1353
±0.11

0.6152
±0.09

0.4872
±0.12

0.6920
±0.04

0.5890
±0.05

S6 0.2295
±0.02

0.0285
±0.04

0.4821
±0.07

0.3096
±0.08

0.7196
±0.05

0.6266
±0.05

0.7536
±0.04

0.6715
±0.04

S7 0.4366
±0.06

0.2489
±0.08

0.5196
±0.08

0.3585
±0.10

0.7250
±0.13

0.6340
±0.17

0.9089
±0.03

0.8784
±0.03

Mean 0.3566
±0.08

0.1421
±0.10

0.4338
±0.08

0.2473
±0.10

0.7005
±0.08

0.6007
±0.10

0.7614
±0.098

0.6818
±0.12

In this study, we combined an attention module with a CNN to process EEG data.
By extracting features from a global perspective and generating channel and frequency
attention maps, we aimed to reduce errors in the classification of the four brain states.
For participant 7, the accuracy rates for the four states reached 88%, 90%, 91%, and 95%,
respectively. Compared to the EEGNex, TF-LeNet, and TF-CNN models, the TF-CNN-
CFA model demonstrated superior performance. Additionally, the minimal differences in
classification accuracy among different categories suggest that the model exhibits stable
and excellent performance.
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3.3. Time Length Impact

In the realm of brain–computer interface (BCI), a crucial issue is the reduction in the
EEG signal length L to obtain sufficient information for robust classification. In other words,
the aim is to achieve high classification accuracy while using shorter EEG signal lengths.

In this respect, we also performed classification tasks using EEG signals of different
time lengths: L = 384 (1.5 s), 512 (2 s), 640 (2.5 s), 768 (3 s), 896 (3.5 s), 1024 (4 s), 1152
(4.5 s), and 1280 (5 s). The size of each dataset varies accordingly. Table 6 presents the
number of training samples and testing samples as shown below. Following the established
procedure, we trained the network through 5-fold cross-validation with 20 epochs per
fold. Subsequently, we compared the results obtained with this approach to EEGNet_4_2,
EEGNet_8_2, EEGNex, TF-ResNet18, TF-VGG16, TF-LeNet, and TF-CNN methods.

Table 6. The number of training and testing samples obtained by segmenting the original measure-
ment data into different non-overlapping lengths.

N. Points Training Set Test Set Image Resolution

1.5 s 13,440 3360 60 × 100
2.0 s 10,080 2520 60 × 100
2.5 s 8064 2016 60 × 100
3.0 s 6720 1680 60 × 100
3.5 s 5712 1428 60 × 100
4.0 s 5040 1260 60 × 100
4.5 s 4436 1108 60 × 100
5.0 s 4032 1008 60 × 100

Now, we consider comparing the classification performance of EEG signals of different
time lengths L. We compare TF-LeNet, TF-CNN, and our network model TF-CNN-CFA.
Table 7 presents the performance results for time lengths of 1.5 s, 2 s, 2.5 s, 3 s, 3.5 s, 4 s,
4.5 s, and 5 s. These results correspond to the average validation accuracy obtained from
K-fold cross-validation (K = 5) for each category within the four classes and the overall
average accuracy.
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Table 7. The validation accuracy based on different network models (per category and overall
performance), utilizing K-fold cross-validation, with K = 5 folds. The best overall accuracy for each
time length L is highlighted in bold.

Time Lengths L Model Class 1 Class 2 Class 3 Class 4 Overall

5.0 s
TF-LeNet 0.39 0.34 0.33 0.42 0.37 ± 0.04
TF-CNN 0.52 0.61 0.59 0.54 0.57 ± 0.04

TF-CNN-CFA 0.65 0.56 0.65 0.58 0.61 ± 0.05

4.5 s
TF-LeNet 0.31 0.37 0.36 0.48 0.38 ± 0.07
TF-CNN 0.57 0.59 0.5 0.48 0.54 ± 0.05

TF-CNN-CFA 0.63 0.63 0.71 0.55 0.63 ± 0.07

4.0 s
TF-LeNet 0.42 0.42 0.32 0.48 0.41 ± 0.07
TF-CNN 0.69 0.62 0.61 0.58 0.63 ± 0.05

TF-CNN-CFA 0.75 0.66 0.68 0.66 0.69 ± 0.04

3.5 s
TF-LeNet 0.44 0.4 0.38 0.41 0.41 ± 0.03
TF-CNN 0.66 0.7 0.67 0.67 0.68 ± 0.02

TF-CNN-CFA 0.8 0.72 0.65 0.68 0.71 ± 0.07

3.0 s
TF-LeNet 0.51 0.39 0.45 0.39 0.44 ± 0.06
TF-CNN 0.67 0.74 0.71 0.69 0.7 ± 0.03

TF-CNN-CFA 0.8 0.72 0.77 0.75 0.76 ± 0.03

2.5 s
TF-LeNet 0.57 0.46 0.55 0.53 0.53 ± 0.05
TF-CNN 0.8 0.69 0.73 0.67 0.72 ± 0.06

TF-CNN-CFA 0.79 0.75 0.73 0.73 0.75 ± 0.03

2.0 s
TF-LeNet 0.64 0.52 0.45 0.45 0.52 ± 0.09
TF-CNN 0.77 0.8 0.78 0.78 0.78 ± 0.01

TF-CNN-CFA 0.84 0.83 0.85 0.79 0.83 ± 0.03

1.5 s
TF-LeNet 0.64 0.52 0.57 0.65 0.6 ± 0.06
TF-CNN 0.89 0.83 0.86 0.82 0.85 ± 0.03

TF-CNN-CFA 0.92 0.86 0.87 0.83 0.87 ± 0.04

Firstly, in terms of overall accuracy, TF-CNN-CFA outperformed all models across
all time lengths. In particular, at time lengths of 1.5 s and 2 s, its overall accuracy reached
0.87 and 0.83, respectively, significantly surpassing that of TF-LeNet and TF-CNN. This
highlights the outstanding performance of TF-CNN-CFA in processing EEG data over short
time lengths L.

Secondly, as the time length L increased, the performance of all models showed a
decreasing trend. However, even at longer time lengths, TF-CNN-CFA maintained a
relatively high accuracy, demonstrating its exceptional capability in handling long time
length data.

Compared to TF-LeNet and TF-CNN, TF-CNN-CFA not only led in overall accuracy
but also excelled in performance in each category. At each time length L, TF-CNN-CFA
achieved higher classification accuracies, particularly excelling in categories 1 and 3.

From a generalization perspective, while the performance of all models decreased
with increasing time length L, TF-CNN-CFA exhibited a more stable performance across
different time lengths L. This indicates that TF-CNN-CFA possesses good generalization
ability and can effectively handle EEG data of varying lengths.

4. Discussion

In this study, we proposed an EEG experimental paradigm involving four different
cognitive states, including resting, narrative memory, music, and subtraction tasks for
potential cognitive BCI applications. The collected raw EEG signals were transformed
into time–frequency maps through continuous wavelet transform and a convolutional
neural network model TF-CNN-CFA with a channel and frequency attention mechanism
was designed to classify these cognitive states. The experimental results showed that the
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average classification accuracy of the seven participants across the four cognitive states
reached 76.14% ± 0.09, significantly outperforming several comparative methods.

This study introduces a deep learning method based on time–frequency maps that
effectively distinguishes between these four states, validating that advanced cognitive
activities can serve as a potential paradigm for brain–computer interfaces. This paradigm
offers several advantages. Firstly, it is simple and easy to implement, reducing the impact
of individual differences on the results. Participants do not require extensive training to
acquire the skills, thus saving time and costs. Secondly, the diverse and engaging design
of the four states alleviates cognitive load, enhancing operability and efficiency. This
article represents the first attempt at EEG decoding based on high-level cognitive activities,
covering various cognitive domains such as auditory processing, memory, and reasoning.
It confirms the feasibility of utilizing advanced cognitive activities in BCIs. This study aims
to translate brain thoughts into commands, thereby expanding the range of instructions
available for brain–machine interfaces.

The TF-CNN-CFA model proposed in this study significantly enhances the classifi-
cation performance of BCI tasks. According to the data in Table 4, direct classification of
raw EEG brain signals yielded poor results, with classification accuracies of 0.27 ± 0.02 for
EEGNet_4_2, 0.26 ± 0.03 for EEGNet_8_2, and 0.36 ± 0.08 for EEGNex. To address this
issue, the raw EEG signals were transformed into time–frequency maps through continuous
wavelet transform. These time–frequency maps were then grouped and segmented based
on frequency ranges and decomposed into RGB images with three channels corresponding
to frequency ranges of 0–15 Hz, 15–30 Hz, and 30–45 Hz. Each channel displayed the
energy distribution within different frequency ranges. The time–frequency maps were
subsequently fed into the network for training. Table 4 demonstrates an improvement
in classification performance after transforming the signals into time–frequency maps,
with average classification accuracies of 0.43 ± 0.08 for TF-LeNet, 0.70 ± 0.08 for TF-CNN,
and 0.76 ± 0.09 for TF-CNN-CFA models. The conversion of data into time–frequency
maps is essential when dealing with advanced cognitive tasks. The experimental findings
suggest that advanced cognitive activities may engage brainwave signals across various
frequency ranges throughout the entire brain, making the use of raw EEG signals ineffective.
These activities are more intricate than simple imagination, rendering conventional EEG
signal processing methods unsuitable. Furthermore, the TF-CNN-CFA model showed
minimal differences in classification accuracy among different categories, indicating its
stable and excellent performance. By introducing CFA modules, the model’s classification
performance was significantly enhanced. As shown in Figure 8, after incorporating these
attention modules, the average classification accuracy for all subjects increased from 70.05%
to 76.14%. Notably, subject 2 and subject 7 saw improvements in classification accuracy by
11.69% and 18.39%, respectively, after processing with the CFA modules.

Despite our relatively good results, there are some limitations that need further discus-
sion. First, we can learn from the research approach of Veeranki et al. [48], who effectively
utilized non-linear signal processing for emotion detection via EDA. Adopting this non-
linear-focused approach can refine our EEG-based BCI system and enhance its ability to
decipher complex cognitive processes. Second, the multi-layer architecture and attention
mechanism do help it to capture relevant features efficiently, but this also leads to an
increase in the number of parameters, which increases the computational cost and training
time. Third, with the increased complexity, the algorithm faces challenges in convergence
during training. Optimizing such a network requires careful tuning of hyperparameters,
including learning rates, dropout rates, and the number of epochs, which can be a painstak-
ing and computationally expensive process. Fourth, the limited sample size in this study
may lead to overfitting, which could impact the model’s ability to generalize to unseen
EEG data. Further research is underway to investigate cognitive state classification on
larger-scale datasets. Fifth, the classifier performance is heavily dependent on the EEG
signal denoising effect, and the commonly used ICA method for preprocessing is used in
this paper. Some more robust preprocessing denoising methods have been proposed in
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recent years [49–53] which may further enhance the classification effect. We will further
evaluate the effect of EEG noise on classification performance in future studies. In addi-
tion, cognitive activity is heavily subject-dependent and varies widely between subjects.
Cognitive BCI stable feature representation is still a direction for further exploration in
the future. Interest in cognitive BCI has grown in recent years. Vansteensel et al. [54]
documented the successful manipulation of a computer cursor toward a target through the
modulation of gamma electroencephalography (ECoG) activity within the left dorsolateral
prefrontal cortex (DLPFC). Ryun et al. [55] demonstrated the predictability of two distinct
motor actions (hand grasping and elbow bending) prior to their execution, achieved by
analyzing prefrontal ECoG signals. These invasive investigations collectively illuminated
the neural mechanisms supporting cognitive BCIs and bolstered the practical potential
of this technology. Simultaneously, endeavors to create non-intrusive cognitive BCIs in
humans, employing electroencephalography (EEG) [56,57] and near-infrared spectroscopy
(NIRS) methodologies [58], have gained momentum. Thereby validating the practicality of
non-invasive cognitive BCI systems.

5. Conclusions

This study explores a novel EEG-BCI paradigm involving four subject-driven cognitive
state tasks: resting, narrative memory, music, and subtraction. By employing the TF-CNN-
CFA model with a channel and frequency attention module to classify these four cognitive
states, the results demonstrate an average classification accuracy of 76.14% across seven
participants, significantly outperforming other classification methods of EEG-BCI. This
study can also enrich cognitive brain–machine interface paradigms.
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