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Abstract: The present paper details the complete stereoselective synthesis of four natural acetogenins,
chatenaytrienins-1, -2, -3 and -4, previously isolated from the roots of fruit trees of the family
Annonaceae (A. nutans and A. muricata), as an inseparable mixture. The novel organometallic
reactions, developed by the authors, of Ti-catalyzed cross-cyclomagnesiation of O-containing and
aliphatic allenes using available Grignard reagents were applied at the key stage of synthesis. We
have studied the biological activity of the synthesized individual chatenaytrienins-1, -2, -3 and -4
in vitro, including their cytotoxicity in a panel of tumor lines and their ability to induce apoptosis,
affect the cell cycle and mitochondria, and activate the main apoptotic signaling pathways in the
cell, applying modern approaches of flow cytometry and multiplex analysis with Luminex xMAP
technology. It has been shown that chatenaytrienins affect mitochondria by uncoupling the processes
of mitochondrial respiration, causing the accumulation of ROS ions, followed by the initiation of
apoptosis. The most likely mechanism for the death of cortical neurons from the consumption of tea
from the seeds of Annona fruit is long-term chronic hypoxia, which leads to the development of an
atypical form of Parkinson’s disease that is characteristic of the indigenous inhabitants of Guam and
New Caledonia.

Keywords: acetogenins; chatenaytrienins; cytotoxicity; autophagy; flow cytometry; apoptosis; cell
cycle; Luminex xMAP technology

1. Introduction

Fruit trees of the family Annonaceae have a good record of medicinal use with a wide
range of applications in traditional and alternative medicine in some countries, especially
in Central and South America. Spanish navigators brought these plants to the Antilles and
the Pacific Islands. All parts of the plant (bark, leaves, roots, seeds, and fruit) are used as
food in the Caribbean and known as a source of biologically active compounds. More than
40% of the people of Guadeloupe drink herbal tea made from Annonaceae fruit, although
this drink is not considered an official medicine. The toxicity of these herbal mixes has not
been thoroughly studied yet, and the correlation between the benefits of these teas and the
risk of toxic effects from the original components remains uncertain [1,2]. The edible pulp
of these plants is an important fruit resource with high palatability in many parts of the
world. For example, the cream apple (fruit of A. cherimola or A. reticulata) is an important
fruit widely consumed in Thailand. In addition to the wonderful, sweet taste and excellent
aroma, cream apples offer health benefits and a rich set of vitamins (A, B1, B2, B3, B5,
B9, C, and E) and minerals (Ca, Cu, Fe, Mg, Mn, P, and Zn) [3]. This fruit tree is widely
cultivated in Australia, India, South Africa, Somalia, Eritrea, the Mediterranean (Spain,
Israel, Portugal, Italy, Egypt, Libya, and Algeria), the Philippines, the Hawaiian Islands,
and Sri Lanka. Annona cherimola is common in Southeast Asia, especially in Vietnam and
Cambodia [3].
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In 1999, Caparros-Lefebvre et al. published a scientific article on an unexpectedly
high rate of atypical parkinsonism in Guadeloupe (French West Indies, French Polynesia)
registered during an epidemiological study in 1996. The work reported that progressive
supranuclear palsy (PSP) and atypical parkinsonism occurred precisely in those patients
in Guadeloupe who used to drink herbal tea or eat the fruit of the so-called custard apple
from the family Annonaceae. Initially, the authors suggested that the disease occurred
due to chronic poisoning when eating neurotoxins from tropical herbal teas and fruits of
A. muricata, A. squamosa, and A. reticulata [4,5].

Annonaceous acetogenins were discovered as a result of studies aimed at the isolation
and identification of organic compounds contained in Annona fruit. The main mechanism
of action of this relatively new class of bioactive compounds implied the inhibition of
NADH-ubiquinone oxidoreductase. Acetogenins are a unique and structurally homoge-
neous class of polyketides. The fatty acid-derived structure provides high lipophilicity
and allows them to freely cross biological membranes. The possible toxicity of different
acetogenins has been studied for several years in vitro, proving them to be the most potent
inhibitors of tissue respiration processes known so far [6–9].

All in vitro and in vivo studies of the neurotoxicity of Annona products provide
evidence of an association between the consumption of the seeds of Annona fruit and
the occurrence of atypical Parkinson’s disease. Exactly the same form of atypical course
of Parkinson’s disease was found in local residents of Guam and New Caledonia who
traditionally consumed fruits and seeds of plants of the family Annonaceae [10,11].

Currently, several research groups around the world are actively engaged in the
synthesis of natural acetogenins as well as their precursor, muricadienin, developing
interesting and promising synthetic approaches to creating promising anticancer drugs
with fundamentally new molecular targets, low toxicity, and minimal side effects [12,13].
The method we developed made it possible to achieve the highest yield of the reaction
products (up to 92%) compared to approaches reported earlier [14,15]. Taking into account
the great biomedical potential of natural acetogenins as powerful and highly effective
inhibitors of the respiratory chain in mitochondria [16], as well as the growing interest
of pharmacologists and specialists in the fields of organic and medicinal chemistry in the
chemical compounds contained in various parts of plants of the family Annonaceae [17,18]
towards creating new approaches for the production of natural compounds containing
bis-methylene with separated Z-double bonds in their structure, our group for the first
time carried out the complete stereoselective synthesis of all four natural acetogenins,
chatenaytrienins-1, -2, -3 and -4, previously isolated by another scientific group from the
roots of fruit trees of the family Annonaceae family (A. nutans and A. muricata), in the
form of an inseparable mixture [19]. The present work details the study of the antitumor
activity of the synthesized individual chatenaytrienins-1, -2, -3 and -4 (1–4) in vitro; their
cytotoxicity in a panel of tumor lines (Jurkat, K562, U937, and HL60), conditionally normal
cells (Hek293), as well as normal fibroblasts; their ability to induce apoptosis and influence
the cell cycle and mitochondria; their ability to inhibit the most versatile cell viability
signaling pathways (phosphorylated and non-phosphorylated fractions of tyrosine kinases
CREB, JNK, NFkB, p38, ERK1/2, Akt, p70S6K, STAT3 and STAT5); their genotoxicity (Chk2,
Chk1, MDM2, H2A.X, p21, p53, and ATR); and their ability to induce the main apoptotic
proteins (BAD, Cas8, Bcl-2, Cas9, JNK, p53, and Akt) responsible for cell proliferation as
well as for the initiation of apoptosis.

2. Materials and Methods
2.1. Apparatus and Chemical Materials

1-Dodecyne, 1-tetradecyne, lithium acetylide, ethylene diamine complex, nickel
(II) acetate tetrahydrate (Ni(OAc)2·4H2O), dicyclohexylamine, copper (I) iodide (CuI),
bis(cyclopentadienyl)titanium (IV) dichloride (Cp2TiCl2), 4-dimethylaminopyridine
(DMAP), N,N′-dicyclohexylcarbodiimide (DCC), sodium cyanoborohydride (NaBH3CN),
trifluoromethanesulfonic anhydride (Tf2O), and tris(dibenzylideneacetone)dipalladium(0)
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(Pd2(dba)3) were obtained from Sigma-Aldrich and Acros Organics. All solvents were
dried (1,4-dioxane, tetrahydrofurane, diethyl ether over Na) and freshly distilled before
use. All reactions were carried out under an argon atmosphere. 1H and 13C NMR spectra
were obtained using a Bruker Ascend 500 spectrometer in CDCl3 operating at 500 MHz
for 1H and 125 MHz for 13C and a Bruker AVANCE 400 spectrometer in CDCl3 operating
at 400 MHz for 1H and 100 MHz for 13C. IR spectra were recorded on a Bruker VERTEX
70V using KBr discs over the range of 400–4000 cm−1. Melting points were recorded on
a Stuart SMP3. Mass spectra of MALDI TOF/TOF positive ions (matrix of sinapic acid)
were recorded on a mass spectrometer Bruker AutoflexTM III Smartbeam. High-resolution
mass spectra (HRMS) were measured on a MaXis Impact instrument (Bruker) using a
time-of-flight mass analyzer (TOF) with electrospray ionization (ESI). In experiments on
selective collisional activation, the activation energy was set at maximum abundance of
fragment peaks. Syringe injection was used for solutions in MeCN (flow rate 5 µL/min).
Nitrogen was applied as a dry gas; the interface temperature was set at 180 ◦C. Individuality
and purity of the synthesized compounds were controlled by TLC on Sorbfil plates; anisic
aldehyde in acetic acid was used as the developer. Column chromatography was carried
out on Acrus silica gel (0.060–0.200 mm). All compounds for which in vitro studies were
conducted were >95% pure. The purity of the compounds was confirmed by elemental
analysis, high resolution mass-spectrometry, and 1H NMR spectra.

2.2. Chemical Synthesis

The synthesis methods for 1,2,6Z-alkatrienes (15, 16) along with the 1H and 13C NMR
data can be found in the literature [20]. The general procedure for cross-cyclomagnesiation
of 1,2,6Z-trienes (15, 16) and tetrahydropyran ethers of 1,2-allene alcohols (17–19) by
EtMgBr in the presence of Mg metal and the Cp2TiCl2 catalyst, as well as the general
procedures for the preparation of 1Z,5Z,9Z-dienoic acids (28–31), the synthesis of trienes
(32–35), the synthesis of triflates (36–39), the synthesis of chatenaytrienins-1, -2, -3 and -4
(1–4), and the 1H and 13C NMR data for compounds (24, 28, 32, 36, 1) can be found in the
literature [21]. The 1H and 13C NMR data of compounds (25–27), (29–31), (33–35), (37–39),
and (2–4) can be found in Supplementary Materials.

2.3. Cell Culturing

Cells, including Jurkat E6.1 (human leukemic T cell lymphoblasts, catalogue no.
88042803), K562 (human chronic myelogenous leukemia cells, catalogue no. 89121407),
U937 (human Caucasian histiocytic lymphoma cells, catalogue no. 85011440), HL60 (human
Caucasian promyelocytic leukemia cells, catalog no. 98070106), HEK293 (human embryonic
kidney cells with adenovirus, catalog no. 85120602), and human lung fibroblasts Ce
(catalogue no. 90011883), were purchased from the European Collection of Authenticated
Cell Cultures (UK Health Security Agency) and cultured according to standard protocols
using sterile techniques. The cell lines were shown to be free of viral contamination and
mycoplasma. Cells were maintained in RPMI 1640 (Jurkat, K562, U937, and HL60) and
DME M (fibroblast and HEK293) (Gibco) supplemented with 4 µM glutamine, 10% FBS
(Sigma), and 100 units/mL penicillin-streptomycin (Sigma). All types of cells were grown
under an atmosphere of 5% CO2 at 37 ◦C. The cells were subcultured at 2–3-day intervals.
Cells were then seeded in 24-well plates at 5 × 104 cells per well and incubated overnight.
Jurkat, K562, U937, HL60, HEK293, and fibroblast cells were subcultured at 2-day intervals
with a seeding density of 1 × 105 cells per well in 24-well plates in RPMI with 10% FBS.

2.4. Cytotoxicity Assay

Viability (live/dead) assessment was performed by staining cells with 7-AAD
(7-aminoactinomycin D; Biolegend). After treatment, cells were harvested, washed
1–2 times with phosphate-buffered saline (PBS), and centrifuged at 400× g for 5 min.
Cell pellets were resuspended in 200 µL of flow cytometry staining buffer (PBS without
Ca2+ and Mg2+, 2.5% FBS) and stained with 1 mM/L of 7-AAD staining solution for 15 min
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at room temperature in the dark. Samples were assessed using the NovoCyte Penteon Flow
Cytometer System (Agilent, 5301 Stevens Creek Blvd., Santa Clara, CA, USA). Detection of
7-AAD emission was collected through a 675/30 nm filter in the FL4 channel.

2.5. Detection of Mitodamage

In this work, we demonstrated a cytometric analysis that allowed us to multipara-
metrically assess three markers of cell health: changes in the mitochondrial potential,
expression of phosphatidylserine on the cell surface, and membrane permeabilization.
The use of reagents MitoSense Red, annexin V, and 7-AAD in the Millipore FlowCellect™
MitoDamage Kit allowed us to gain information on early, mid, and late apoptosis with
one simple assay. Cells were treated with the synthesized compounds at a concentration
of 0.5 µM and incubated at 37 ◦C for 4 h. After this time, the cells were dissociated using
an accutase solution, stained, and analyzed using the NovoCyte Penteon Flow Cytometer
System (Agilent, 5301 Stevens Creek Blvd., Santa Clara, CA, USA), according to the manu-
facturer’s protocols for the FlowCellect™ MitoDamage Kit and FlowCellect™ Oxidative
Stress Characterization Kit (Merck).

2.6. Cell Cycle Analysis

The cell cycle was analyzed by propidium iodide staining (Guava® Cell Cycle Reagent
4500-0220). After treatment and incubation of cells for 24 h, they were collected, washed
1–2 times with phosphate-buffered saline (PBS), and centrifuged at 450× g for 5 min. The
cell pellet was resuspended in 200 µL of flow cytometry staining buffer (PBS without Ca2+

and Mg2+, 2.5% FBS). Cells were then seeded in 24-well plates at a density of 15 × 105 cells
per well, centrifuged at 450× g for 5 min, then fixed with ice-cold 70% ethanol for 24 h at 0
◦C. Before staining with propidium iodide, cells were washed with PBS and incubated with
250 µL of cell cycle detection reagent (Millipore) for 40 min at 22 ◦C in the dark. Samples
were analyzed using the NovoCyte Penteon Flow Cytometer System (Agilent, 5301 Stevens
Creek Blvd., Santa Clara, CA, USA).

2.7. Assessment of Cytochrome C Loss

Quantification of cytochrome c release from mitochondria in apoptotic cells was
presented to detect the mitochondrial pathway of apoptosis in cells using flow cytometry
with the FlowCellect™ Cytochrome c Kit (FCCH100110). For this, cells were treated with
FITC-conjugated antibodies against cytochrome c and control anti-IgG1-FITC, together
with the use of an optimized fixation procedure, permeabilization, and blocking buffer
(Luminex®, USA). Higher levels of cytochrome c fluorescence were observed in living
cells, while lower levels were characteristic of apoptotic cells in which cytochrome c was
released from mitochondria into the cytoplasm. Jurkat cells were incubated for 4 h with the
synthesized substances at a concentration corresponding to their 24-h CC50 in a culture
plate and assessed using the NovoCyte Penteon Flow Cytometer System (Agilent, 5301
Stevens Creek Blvd., Santa Clara, CA, USA). The obtained data were processed using
NovoExpress® software (ACEA).

2.8. Assessment of Mitochondrial Potential

Changes in the mitochondrial membrane potential (∆Ψ) in Jurkat cells induced by
treatment with the synthesized compounds were detected using MitoSOX Red, a positively
charged probe that accumulates rapidly in mitochondria and as such can be used to
detect superoxide/ROS production within mitochondria using fluorometry, microscopy,
or flow cytometry. Live cells induced a low level of MitoSOX Red fluorescence, while
cells with scattered mitochondrial membrane potential caused much higher MitoSOX Red
fluorescence. Annexin V is a dye commonly used to detect early signs of apoptosis. Control
cells showed no fluorescence, while apoptotic cells showed positive green fluorescence
due to phosphatidylserine externalization and positive MitoSOX Red fluorescence due to
mitochondrial potential dissipation and ROS accumulation. Thus, using two different dyes,
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MitoSOX Red and annexin V (CF488A), in the FlowCellect™ MitoStress Kit (FCCH100109),
we analyzed the mitochondrial membrane potential dissipation and associated apoptosis
in Jurkat cells in response to the synthesized chatenaytrienins.

2.9. Assessment of Autophagy

Autophagy is the pathway by which cytoplasmic materials, including macromolecules,
organelles, and pathogens, are delivered to lysosomes for degradation, and this process is
associated with the reuse of intracellular organelles.

Autophagy is involved in various physiological processes and its changes are associ-
ated with the pathogenesis of diseases such as neurodegenerative diseases, cardiovascular
complications, cancer, and infectious diseases, as well as with physiological processes such
as innate and specific immunity, pathogen clearance, lymphocyte selection, antigen presen-
tation, and production of immunoglobulins. Therefore, the determination of LC3 protein
inside autophagosomes without the cytosolic form of LC3-I at the stage of selective cell
permeability was measured using flow cytometry. Thus, using the FlowCellect™ LC3-GFP
Reporter Autophagy Assay Kit (FCCH100170 and FCCH100181), flow cytometry allowed
for a rapid assay that could be combined with other phenotypic and functional markers to
characterize different cell populations.

2.10. Analysis of Genotoxity and Early Apoptosis

Multiplex analysis was performed according to a previously published method [20].
MILLIPLEX®MAP technology is used to determine the total protein or phosphorylated
protein levels of various biological analytes, such as kinases or signaling proteins, including
CREB, ERK/MAP, p70 S6, p21, p38, PI3K/AKT/mTOR, JNK (A), p53, MDM2, Bcl-2/Bax,
STAT3 and STAT5, Nf-kB, Caspase 3-8-9, JNK, ATM, Chk1, Chk2, and H2AX, in cell
lysates using the Luminex® system ((MILLIPLEX Multi-Pathway Magnetic Bead 9-Plex—
Cell Signaling Multiplex Assay kit, Merk, Germany). This MILLIPLEX®MAP technology
provides an alternative to Western blotting and immunoprecipitation and has several
important advantages, such as more accurate measurement of small amounts of protein
and the elimination of analyte loss during sample preparation. The multiplex immunoassay
(MILLIPLEX 48-680MAG; Merck Millipore, Germany) was performed in Millipore 96-
well plates to detect changes in concentrations of phosphorylated and unphosphorylated
proteins p53, MDM2, p21, p38, PI3K/AKT/mTOR, Bcl-2/Bax, STAT3 and STAT5, Nf-kB,
Caspase 3 -8-9, CREB, ERK/MAP, p70 S6, JNK, ATM, Chk1, Chk2, and H2AX in Jurkat
cell lysates.

2.11. Statistics

Data are expressed as mean ± SD or mean ± SE where indicated of at least triplicate
determinations. Statistical comparisons between groups were performed by using the
Student’s t-test. Differences were considered significant at p < 0.05.

3. Results
3.1. Chemistry

Earlier, our group was the first to carry out a low-step complete synthesis of natural
acetogenins, that is, chatenaytrienin-1 and muricadienin [21–23]. The reported synthesis
scheme was based on our reaction of Ti-catalyzed intermolecular cross-cyclomagnesiation
of aliphatic and O-containing 1,2-dienes [24–26]. A major asset of the suggested ap-
proach was the possibility of extending this technique for the rapid synthesis of any
homologs of chatenaytrienin-1 by varying the number of methylene units in the initial
1,2-dienes. Therefore, to synthesize and subsequently produce the above-mentioned indi-
vidual chatenaytrienins-1, -2, -3 and -4 (1–4), a scheme for the retrosynthesis of acetogenins
was developed (Figure 1).

According to the above scheme, proceeding to the synthesis of chatenaytrienins-1,
-2, -3 and -4 (1–4), 1,2,6Z-alkatrienes were initially synthesized, which, as a result of the
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cross-cyclomagnesiation reaction with tetrahydropyran esters of various O-containing
1,2-dienes, led to bis-methylene-separated trienoic acids. At the final stage of the synthesis
involving the Fries rearrangement, a terminal α-substituted fragment of butenolide was
formed (Figure 1).
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The starting 1,2,6Z-alkatrienes (15, 16) were synthesized in 5 steps, proceeding from
commercially available terminal alkynes for the subsequent preparation of bis-methylene-
separated trienoic acids. At the first stage, dodecin-1 (5) and tetradecin-1 (6) were treated
with EtMgBr in THF under heating, and the resulting intermediate organomagnesium
compounds were reacted with ethylene oxide (Figure 2). Subsequent stereoselective hy-
drogenation of the resulting alcohols (7, 8) with molecular hydrogen in the presence of
a Brown’s P2–Ni catalyst [27] gave unsaturated alcohols with the Z-configuration of the
double bond (9, 10) in ~98% yield. At the next stage, successive reactions of alcohols (9,
10) with mesyl chloride and treatment of mesylates with lithium bromide gave bromides
(11, 12), the ethynylation of which with lithium acetylenide produced alkynes (13, 14) in
~85% yield. Key allenes, (6Z)-heptadeca-1,2,6-triene (15) and (6Z)-nonadeca-1,2,6-triene
(16), were synthesized based on alkynes (13, 14) using the Crabbé method [28] by boiling
with formaldehyde, dicyclohexylamine, and copper iodide (Figure 2).
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The cross-cyclomagnesiation reaction of Z-alkenyl allenes (15, 16) and the correspond-
ing tetrahydropyran esters of allene alcohols 2-(undeca-9,10-dien-1-yloxy)tetrahydro-2H-
pyran (17), 2-(trideca-11,12-dien-1-yloxy)tetrahydro-2H-pyran (18), and 2-(pentadeca-13,14-
dien-1-yloxy)tetrahydro-2H-pyran (19) were synthesized according to the approach re-
ported earlier [21], using EtMgBr in the presence of Mg (powder) and the Cp2TiCl2 catalyst
(10 mol.%) at room temperature (Figure 3). The reactions proceeded through the formation
of intermediate magnesacyclopentanes (20–23), the hydrolysis of which led to the forma-
tion of (Z,Z,Z)-trien-1-ols tetrahydropyran esters (24–27) in ~85% yield. At the final stage,
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the oxidation of tetrahydropyran esters (24–27) with Jones reagent produced the target
Z,Z,Z-trienoic acids (28–31).
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The final step in the synthesis of acetogenins implied the formation of a terminal
butenolide fragment, carried out according to a well-established approach based on the
application of the Fries rearrangement catalyzed by DMAP (Figure 4). Therefore, O-
acylation of a cyclic β-keto ester (32) performed using a well-known procedure in two
stages from (S)-ethyl lactate [29,30] with acids (28–31) followed by the Fries rearrangement
initiated by dimethylaminopyridine (DMAP), produced intermediate reaction products,
the reduction of which with NaBH3CN in acetic acid gave α-alkylated butenolides (32–35)
in high yields of ~95%.
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Elimination of the hydroxy group at the C-3 position of butenolides (32–35) was carried
out by sequential synthesis of triflates (36–39) and their reduction with Bu3SnH catalyzed
by Pd2(dba)3 to give the target chatenaytrienins-1, -2, -3 and -4 (1–4) in ~90% yield.

Thus, we have presented an original stereoselective 10-step method for the synthesis
of natural chatenaytrienins-1, -2, -3 and -4 (1–4) involving a Ti-catalyzed reaction of cross-
cyclomagnesiation of aliphatic and O-containing 1,2-dienes with a Grignard reagent. The
proposed method offers huge synthetic potential as a convenient means for the stereoselec-
tive preparation of 1Z,5Z,9Z-triene systems.
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3.2. Cytotoxicity Assay

The biological activity of acetogenins is of great interest to researchers working in the
field of natural compounds. The reported data indicate that acetogenins are among the
best dissipators of mitochondrial potential and modulate ATP production in cells [31,32].
Further, a mixture of compounds in extracts from the leaves of plants of the family An-
nonaceae was found to inhibit NADH-ubiquinone oxidoreductase, disrupting the oxidation
of mitochondrial NADH by ubiquinone while disturbing the vectorial transfer of protons
through the conjugating mitochondrial membrane [33]. Although acetogenins are inhibitors
of tissue respiration through binding to complex I proteins, the detailed mechanisms of
action of this class of compounds in mitochondria still need to be thoroughly studied. All
currently known inhibitors of the respiratory chain in mitochondria, such as rotenone [34],
pyericidin A [35], oligomycin [36], atractyloside [37], 2,4 dinitrophenol [38], CCCP (car-
bonyl cyanide-m-phenylhydrazone) [39], valinomycin [40], etc., have different mechanisms
of action.

Recently, there have been many reports on the possible antitumor activity of aceto-
genins isolated as mixtures in aqueous and alcoholic extracts [41–46], but the biological
activity of the pure compounds has not been specified yet. The main reason is labor in-
tensity, the nontriviality of some types of synthesis of acetogenins, as well as unusually
small amounts of the compounds obtained in multistage synthesis, which are insufficient
for studying the biological activity [21]. In view of the above, we considered it necessary to
synthesize and thoroughly study the biological activity of each of the four chatenaytrienins-
1, -2, -3 and -4 (1–4) we synthesized by analyzing most of the signaling pathways for cell
growth and proliferation. We also studied the genotoxicity, apoptosis induction, production
of ROS ions in mitochondria, state of tissue respiration, as well as autophagy processes in
order to detail the supposed mechanisms of action of acetogenins in living cells.

Chatenaytrienin-1 (1) was found to exhibit the greatest activity according to the
cytotoxicity of these four compounds using six cell lines of different embryonic origin
(Table 1).

Table 1. Cytotoxic Activity of Synthesized Natural Chatenaytrienins-1, -2, -3 and -4 (1–4) in Tumor
Cell Lines (Jurkat, K562, U937, HL60), a Conditionally Normal Line (Hek293), and Normal Fibroblasts
(CC50, µM).

Jurkat K562 U937 HL60 Hek293 Fibroblasts
(PCS-201-018)

1 0.09 ± 0.02
(0.08–0.99)

0.10 ± 0.03
(0.09-0.11)

0.09 ± 0.02
(0.08–0.11)

0.15 ± 0.01
(0.14–0.16)

0.53 ± 0.02
(0.51–0.54)

0.69 ± 0.04
(0.67–0.81)

2 0.12 ± 0.06
(0.11–0.13)

0.18 ± 0.05
(0.17–0.19)

0.12 ± 0.01
(0.11–0.13)

0.13 ± 0.02
(0.12–0.14)

0.63 ± 0.03
(0.61–0.64)

0.79 ± 0.02
(0.77–0.82)

3 0.15 ± 0.04
(0.14–0.16)

0.09 ± 0.01
(0.08–0.1)

0.18 ± 0.02
(0.17–0.19)

0.14 ± 0.04
(0.13–0.15)

0.78 ± 0.04
(0.76–0.79)

0.83 ± 0.05
(0.81–0.84)

4 0.16 ± 0.01
(0.15–0.17)

0.13 ± 0.04
(0.12–0.14)

0.13 ± 0.05
(0.12–0.14)

0.19 ± 0.02
(0.18–0.21)

0.53 ± 0.01
(0.52–0.54)

0.98 ± 0.04
(0.96–0.99)

95% confidence intervals are provided in parenthesis. A standard error of the mean is provided. CC50, half-
maximal cytotoxicity concentration.

Meanwhile, the sufficiently large scatter of the cytotoxicity values depending on
the cell line indicated a certain selectivity of the compounds in relation to certain tumor
cultures. Here, a pronounced difference in cytotoxicity between tumor culture lines, normal
fibroblasts, and conditionally normal HEK293 cells was noteworthy. It should be taken
into account that cytotoxicity depends on many factors, such as the properties of the cell
culture, its embryonic origin, the methodology applied in determining the toxicity of a
compound, and the detection methods used [47–51]. Chatenaytrienins-1, 2, 3 and -4 (1–4)
were characterized by selective toxicity, i.e., for normal fibroblasts and conditionally normal
cell line HEK293, the CC50 was almost five or six times greater than that for Jurkat or K562
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cells (Table 1). This could be explained by the selective action of these compounds on tumor
cultures with high division potential.

In the development of these studies and analysis of the literature containing data
on acetogenins as mitochondrial agents, we studied the ability of these compounds to
uncouple the processes of oxidation and phosphorylation, induce the formation of ROS
ions, and initiate apoptosis through damage to mitochondria, i.e., initiate the mitochondrial
pathway of cell death.

Mitochondria are important cellular organelles that provide the energy balance of the
cell. They trigger processes such as apoptosis, necroptosis, and autophagy when destroyed
or disrupted since they contain key regulators of cell death processes. Mitochondria are also
key organelles in the production of ROS ions and predominate in the initiation of oxidative
stress in cells. Thus, the functional significance of mitochondria is difficult to overestimate
since these organelles are highly sensitive indicators of cell viability. The energy produced
via the functioning of the respiratory chain accumulates in the form of an electrochemical
gradient that determines the direction of movement of ions through the mitochondrial
membrane, creating a mitochondrial transmembrane potential (∆Ψm) that enables the
cell to control ATP synthesis [52]. Loss of the mitochondrial internal transmembrane
potential often occurs [53,54], but not always [55], in connection with the phenomena of
early apoptosis in the cell. The collapse of this potential has proven to be directly associated
with the opening of the pores of the mitochondrial membrane. This promotes permeability,
resulting in the release of cytochrome c into the cytosol, then triggering subsequent events
in the apoptotic cascade. Potential changes in the mitochondrial membrane are involved in
apoptosis, necrotic cell death, and caspase-independent cell death processes. Consequently,
the processes of mitochondrial potential dissipation are a reliable indicator of mitochondrial
dysfunction and cellular health that are essential in the study of various pathological
conditions mediated by mitochondrial death [56].

Detection of mitochondrial potential dissipation using MitoSense Red, annexin V, and
7-AAD provided a simultaneous measurement of three important parameters of the cell
state within the same cell sample: the state of the mitochondrial potential (∆ψ), detected by
the membrane-penetrating MitoSense Red dye; the expression of phosphatidylserine on the
cell surface of apoptotic cells, assessed by the binding of annexin V to externalized phos-
phatidylserine; and the binding of 7-AAD to DNA in cells in the late stages of apoptosis.
Multiparametric evaluation of these indicators of cell viability made it possible to deter-
mine the correlation and relationship between oxidation dissipation and phosphorylation
with apoptosis.

When assessing the level of mitochondrial membrane potential (∆ψ), a significant
increase in the abundance of Jurkat tumor cells with the ∆ψ dissipation phenomenon was
observed in the samples treated with chatenaytrienin-4 (4) (53.51%), chatenaytrienin-3 (3)
(62.42%), chatenaytrienin-2 (2) (67.76%), and chatenaytrienin-1 (1) (83.69%) (Figure 5). The
most pronounced decrease in the mitochondrial potential was caused by chatenaytrienin-1;
the effect was dose dependent and exceeded that of the known inhibitor of most protein
kinases and inducer of apoptosis in the cell, staurosporine (Figure 5). The percentages of
cells in late apoptosis in the samples treated with chatenaitrienins-1, -2, -3 and -4 (1–4) were
15.11%, 8.44%, 17.01%, and 1.88%, respectively (Figure 5), while the number of cells stained
with 7-AAD in the sample treated with staurosporine was 2.48%, which was comparable
to the action of chatenaytrienin-4 (4). All other acetogenins under study turned out to be
more active than staurosporine. Thus, chatenaytrienin-1 caused the highest percentage
of mitochondrial damage, which was probably due to its chemical structure, namely the
relative position of the triene system and the lactone cycle in the molecule. Obviously,
further studies aimed at studying the structure–activity relationship as well as the precise
definition of the molecular target will help to better understand the mechanisms of action
of this class of acetogenins. Therefore, in order to obtain more reliable evidence of the
mitochondrial mechanism of action of chatenaytrienins-1, -2, -3 and -4 (1–4), we studied
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the loss of cytochrome c (Figure 6) and activation of autophagy in cells (Figure 7) treated
with the studied acetogenins.
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Figure 6. Detection of cytochrome c loss in Jurkat tumor cell line treated with chatenaytrienins-1, -2,
-3 and -4 (1–4) taken at a concentration of CC50: (1) chatenaytrienin-1 (1); (2) chatenaytrienin-2 (2);
(3) chatenaytrienin-3 (3); (4) chatenaytrienin-4 (4); and (5) staurosporine. Anti-cytochrome c-FITC
antibody and Anti-IgG-FITC isotype control stain (FlowCellect® Cytochrome c Kit). Incubation time
was 3 h.
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The release of cytochrome c from the mitochondrial intermembrane space into the
cytosol initiates allosteric activation and hepta-oligomerization of apoptosis protease ac-
tivating factor 1 (Apaf-1), which generates a protein complex, the apoptosome. Each
apoptosome recruits seven caspase-9 dimers and contributes to their activation, followed
by proteolytic self-processing [57]. These processes are tightly regulated by several heat
shock proteins (HSPs) and mediate catalytic maturation of caspase-3 and other caspases
that ultimately mediate the biochemical and morphological features of apoptosis [58,59].
Once mitochondria become irreversibly permeable, cell death is believed to occur inde-
pendently of caspase activity, although it can be delayed if caspases are not activated.
This caspase-independent cell death may result from the loss of essential mitochondrial
functions and/or the apoptogenic function of additional molecules that migrate from the
IMS to the cytosol, namely apoptosis-inducing flavoprotein factor and endonuclease G.
Once in the cytosol, both proteins are able to translocate to the nucleus, where they pro-
mote DNA fragmentation and apoptotic cell death in a caspase-independent manner [58].
Consequently, the release of cytochrome c into the cytoplasm and its detection can serve as
a reliable marker of mitochondrial damage and activation of mitochondrial cell death. The
cytometric plots in Figure 6 demonstrate the level of cytochrome c released into the cyto-
plasm in Jurkat cells after treatment with the compounds under study. Chatenaytrienin-1
(1) exhibited the highest percentage of cells with cytochrome c released into the cytoplasm
(61.67%). This result was consistent with the effect of staurosporine (80.23%) (Figure 6).
The remaining chatenaytrienins-2, -3 and -4 (2–4) had somewhat weaker effects (33.51%,
41.99%, and 42.10%, respectively). Thus, it is likely that chatenaytrienin-1 not only initiates
apoptosis of the mitochondrial type due to damage to the mitochondrial membrane, but
also promotes DNA fragmentation, which we will discuss in more detail later in this work.

To confirm the initiation of oxidative stress in cell mitochondria under treatment
with chatenaytrienins-1, -2, -3 and -4 (1–4), we studied the level of formation of ROS
ions in mitochondria under the action of MitoSOX™ Red dye, providing visualization of
oxidative stress in mitochondria by flow cytometry. Superoxide formation occurs during
oxidative phosphorylation and cellular respiration during the reduction of molecular
oxygen in the electron transport chain [60]. Electron leakage taking place during adverse
events in mitochondria induces the formation of superoxide. The superoxide anion is
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an incompletely reduced, very short-lived, but extremely reactive oxygen molecule [61].
The resulting superoxide anion can initiate a cascade of reactions that produce other ROS,
including peroxynitrite, hydrogen peroxide, and the hydroxy radical. This vicious circle
of oxidative stress and damage to cellular structures results in cell death, apoptosis, or a
decrease in cell energy processes and aging [62]. In general, detection of ROS ions and
oxidative stress in mitochondria is a rather time consuming and difficult issue [63,64]. The
use of fluorescent probes (such as MitoSOX Red) as well as a fairly large pool of cells
(up to 100,000 events) can be analyzed by flow cytometry, ensuring an accurate record of
oxidative stress events in the cells under study. Figure 7 shows histograms of oxidative
stress detection in Jurkat tumor cells treated with the synthesized acetogenins.

Mitochondrial regulation of apoptosis and oxidative stress are closely related, as re-
peatedly reported in the literature [65–67], and the correlation between oxidative stress
and apoptosis has been demonstrated. Therefore, simultaneous detection of mitochondrial
superoxide generation (detected by MitoSOX Red membrane-penetrating dye) and expres-
sion of phosphatidylserine on the cell surface of apoptotic cells (assessed by binding of
annexin V) in the same cell sample provides an accurate evaluation of the ability of the test
compound to initiate oxidative stress in cell culture and induce apoptosis.

Under the influence of chatenaytrienins-1, -2, -3 and -4 (1–4), the processes of activation
of oxidative processes in mitochondria, as well as the entry of cells into apoptosis, were
observed. For example, chatenaytrienin-1 (1) worked most rapidly and actively (75% of
cells were in early apoptosis, and 10.53% demonstrated oxidative stress along with the
marker of early apoptosis, annexin). This action was comparable to antimycin (Figure 7).
Chatenaytrienin-3 (3) left the smallest percentage (only 9.9%) of intact (live) cells in the
sample, while antimycin left 12.65%. The percentages of cells simultaneously demonstrat-
ing markers of stress and apoptosis in the samples were also noteworthy. The samples
treated with chatenaytrienins-2 (2) and -4 (4) after 4 h of incubation exhibited the highest
percentages of such cells, that is, 11.86% and 26.8%, respectively.

Thus, we can assert that chatenaytrienins-1, -2, -3 and -4 (1–4) are able to easily
penetrate the mitochondrial membrane, uncouple oxidation and phosphorylation, cause
intramitochondrial stress, and initiate apoptosis via the mitochondrial pathway. This
conclusion was confirmed by an early study of the biological activity of acetogenins [68].
Londerhausen et al. initially observed that the toxicity induced by annonaceous acetogenins
resulted in lethargy in insects and reduced their mobility before death; acetogenin-treated
insects had significantly lower levels of adenosine triphosphate (ATP), similar to the effect of
antimycin A, a known inhibitor of the mitochondrial electron transport system (ETS). When
testing respiratory depression in mitochondria through the inhibition of mitochondrial
enzymes, the mixture of acetogenins turned out to be 2.5–5 times more effective than
rotenone in inhibiting complex I (NADH: ubiquinone oxidoreductase) [69].

In addition to apoptosis, it was of interest for our group to determine whether treat-
ment of cells with chatenaytrienins induced autophagy. Autophagy is an intracellular
catabolic pathway responsible for the turnover of cellular proteins and organelles and is
closely associated with various pathological processes, such as Alzheimer’s disease, cancer,
aging, and autoimmune diseases. It is a highly regulated process that plays a key role
in growth, development, and cellular homeostasis. The main function of autophagy as
a housekeeping mechanism is to get rid of senescent and/or dysfunctional proteins and
organelles through sequestration and preparation of such proteins for lysosomal degra-
dation. The research data in recent years have confirmed that not only apoptosis but also
autophagy can contribute to the death of cell populations and greatly affect the lifespan
and general mechanisms of cells [70]. On the one hand, autophagy can induce a certain
autophage-type cell death after damage and stress, and, on the other hand, it can be a
mechanism for restoring their viability. This means that autophagy can be cytoprotective
or a death mechanism depending on the conditions [71].

Canonical autophagy is associated with the conversion of LC3 protein (an autophago-
some marker) from the cytoplasmic form of LC3I to the lipid-bound form of LC3II, which is
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associated with the membranes of maturing autophagosomes [72]. The autophagy process
can be conveniently classified into several stages. First, induction and translocation of
the cytoplasmic LC3 protein occur due to the influence of external stimuli (adverse envi-
ronmental influences)—the process is initiated by external/internal stimuli (for example,
nutrient depletion or hypoxia). Then, the formation of autophagosomes begins, which
are double-membrane vesicles that include the LC3 protein. This protein regulates the
fusion of autophagosomes and lysosomes. It exists in two fractions—cytoplasmic LC3-I
and LC3-II, isolated in the autophagosomal membrane. The LC3-II protein fraction was
specified in our work, as its detection is a reliable indicator of the processes of autophagy
in the cell [72,73].

The analysis of the actions of rapamycin and chatenaytrienins-1, -2, -3 and -4 (1–4)
(Figure 8) revealed that the action of chatenaytrienins was very similar to that of rapamycin,
an mTOR kinase inhibitor and autophagy activator [74–76]. Each of the six histograms
represents an intact control and cells treated with the test compounds. The highest numbers
of cells with autophagy were observed in the samples treated with chatenaytrienins-1
(1) and -3 (3) (96.26% and 91.50%, respectively). Chatenaytrienins-2 (2) (79.96%) and
-4 (4) (56.09%) induced lesser degrees of autophagy. It is rather difficult to explain the rate
of autophagy in the cells due to the effect of the compounds studied or the peculiarities
of their structures. Autophagy is a process that exists in the cell under both normal
and pathological conditions, and possibly, in the case of exposure to chatenaytrienins,
it was activated in response to hypoxic stress. This is a very likely but approximate
mechanism of action of the compounds studied. In order to understand more deeply
how acetogenins act in the cell, it will probably be necessary to analyze the proteome
and try to determine the exact molecular target. Evidently, one of the neuronal damaging
mechanisms subsequently leading to progressive supranuclear palsy (PSP) and atypical
parkinsonism found in the local residents of certain areas of Central and South America [77]
is the long-term, chronic, damaging exposure of respiratory processes in mitochondria to
acetogenins and increased levels of autophagy in nervous tissue. This eventually results in
atypical forms of neurodegenerative diseases related to the consumption of various parts
of plants of the family Annonaceae.

Some research papers have mentioned the possible genotoxicity of acetogenins. Still,
the study of pure acetogenins has been reported in few works to date [78] and not their
mixtures [79].

A number of scientific sources indicated the high antitumor activity of various aceto-
genins by influencing the cell cycle. Many acetogenins supposedly regulate the cell cycle to
the G1/S transition checkpoint by inhibiting cyclin D1 expression in human hepatocellular
carcinoma cells [80,81]. In one of our experiments, a traditionally used extract of A. muricata
arrested the cell cycle in the G1 phase and reduced the number of cells in the S phase in a
concentration-dependent manner by reducing the expression of cyclin D1, an important
regulatory protein of the cell cycle [82]. A similar result was observed for squamocin, which
blocked cells in the G1 phase in T24 bladder cancer cells [83]. Despite the relevance of
a detailed study of the mechanism of cell cycle inhibition by acetogenins, this issue has
been poorly covered in the literature so far. In our work, we tested the effect of all the
synthesized chatenaytrienins-1, -2, -3 and -4 (1–4) on the cell cycle (Figure 9).

The cell cycle parameters in the control sample showed a significant predominance of
cells in the G0-G1 phase and a balance between the processes of synthesis (S-phase) and
apoptosis (sub-G0-G1 interval) (Figure 9).

After 48 h of exposure to the compounds under study, cell processes in the form of
a slightly increased ability of cells to synthesize DNA (S-phase) dominated in almost all
samples (Figure 9). Meanwhile, the sub-population of sub-G0-G1 cells was insignificantly
expressed in all of the tested samples and practically did not differ when comparing
the control sample and samples with exposure to chatenaytrienins-1, -2, -3 and -4 (1–4).
Typically, the sub-G0-G1 population characterizes cells that have undergone apoptosis and
contain fragmented DNA that differs sharply from the diploid state of the genome of whole
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living cells in the G1-G0 phase. If apoptosis proceeds along the mitochondrial pathway
without affecting DNA and causing pronounced chromatin degradation, then it is obvious
that the cell population in the sub-G0-G1 phase will be minimal.

The highest percentage of cells in the S-phase (~47%) was registered in the samples
treated with chatenaytrienin-2 (2) (Figure 9). For comparison, the percentage of cells in
the S-phase did not exceed 34.2% in the control sample. Meanwhile, almost all of the
samples exhibited an equal number of cells in the G0-G1 phase, along with an increase
in the proliferation block and a decrease in the proliferation index due to a decrease in
the number of cells in the G2+M phase. All of the above results obviously indicated the
cytotoxicity of chatenaytrienins-1, -2, -3 and -4 (1–4) towards T cell leukemia cells due to
the ability of this group of substances to induce apoptosis via the mitochondrial pathway.
In this regard, the issue of the genotoxicity of these compounds remains a challenging issue,
since there are a lot of reported data on the effect of acetogenins on the genome of neurons
and their neurotoxicity. However, almost all of the studies of this kind involved mixtures
or plant extracts with various acetogenins [84–87].
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Antibody-based Assay Kit). Incubation was 48 h.
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For the first time, our group tested this individual class of compounds of acetogenin
for genotoxicity and studied the activation of a number of signaling pathways for cell
growth and viability by determining the level of phosphorylated intracellular signaling
kinases, including p53, MDM2, p21, p38, PI3K/AKT/mTOR, Bcl-2/Bax, STAT3 and STAT5,
Nf-kB, Caspase 3-8-9, CREB, ERK/MAP, p70 S6, JNK, ATM, Chk1, Chk2, and H2AX. The
changes in the expression and activation of many of these proteins were typical of the tumor
process, since some of the kinases under study are responsible for a variety of processes in
the body, such as inflammation, growth, proliferation, and tumor transformation, and are
also markers of genotoxicity, initiating repair processes in the cell in response to adverse
environmental influences [88–92]. Phosphorylation is one of the main mechanisms of signal
transduction and regulation of various processes essential for cell life, namely differentia-
tion, growth, proliferation, apoptosis, etc. [93]. Changes in the operation of a signaling or
regulatory cascade, accompanied by changes in the level of protein phosphorylation, can
result in cell death, growth arrest, development of cancer or neurodegenerative diseases,
and also serve to transmit signals in response to various extracellular stimuli [94–96]. The
study of the profile of phosphorylated proteins often provides relevant information on the
molecular mechanisms involved in the development of various diseases [97,98]. Another
acetogenin synthesized and studied by our group earlier, muricadienin, was included in
the experiment to achieve a more accurate and deeper understanding of the mechanisms of
action of acetogenins in the cell [23]. Chatenaytrienin-1 (1) was chosen for the analysis of
protein signaling because it had the highest cytotoxicity.

The levels of phosphorylated and non-phosphorylated proteins were analyzed using
MILLIPLEX® map technology to study the analytes in the same sample within a fairly
short time. Various deviations in protein concentration due to external factors or detection
errors that could affect the results of the experiment were thereby reduced to zero.

The expression of p53, MDM2, p21, p38, PI3K/AKT/mTOR, Bcl-2/Bax, STAT3 and
STAT5, Nf-kB, Caspase 3-8-9, CREB, ERK/MAP, p70 S6, JNK, ATM, Chk1, Chk2, and H2AX
proteins in lysate samples of Jurkat tumor cells were studied using Luminex technology
with the MILLIPLEX® MAP 9-Plex Multi-Pathway 9-plex Magnetic Bead Kit. This bead-
based assay involved color-coded fluorescent particles pre-coated with specific antibodies
targeting 9 major kinases in signaling pathways.

In general, the comparison of phosphorylated and unphosphorylated fractions of
CREB, JNK, NFkB, p38, ERK1/2, Akt, p70S6K, STAT3, and STAT5 proteins revealed that
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the main changes in the ratios of these two fractions were expressed for all of these nine
signaling pathways (Figure 10). Signaling via RTKs (receptor tyrosine kinases) often
increases metabolism and cell growth. Moreover, receptor tyrosine kinases are known not
only as key regulators of normal cellular processes but also for playing critical roles in
the development and progression of many types of malignant tumors [99]. ERK/MAP
and Akt are two key families of Ser/Thr kinases activated via tyrosine kinase receptors,
inducing activation of p70S6, Msk1, STAT3 (Ser727), and CREB kinases, which in turn
increase the activation of other intermediates. Signaling pathways induced by stress or the
FAS receptor (death receptor) cause activation of p38, JNK, and NF-κB. Chatenaytrienin-1
(1) at a concentration of CC50 (MT1_1) as well as muricadienin (CC50) most pronouncedly
reduced the levels of all types of kinase proteins in the tumor cell. Under the influence of
chatenaytrienin-1 (1), levels of Akt, p38, and CREB were most pronouncedly suppressed.
Akt is an intracellular enzyme, one of three members of the protein kinase B family. Akt
kinase is a key enzyme of the PI3K/AKT signaling pathway involved in the regulation of
cell proliferation, growth, and survival [100]. Currently, considerable attention is paid to
the study of the functions of this enzyme since it acts as an oncogene in many malignant
diseases [101].

P38 refers to MAPK kinases (mitogen-activated protein kinases), which are serine-
threonine protein kinases. They are activated in response to numerous external influences
and transmit signals from the cell surface to the cell nucleus. MAPK kinases are a central
component of the Ras/ERK/MAPK signaling cascade responsible for cell growth and
differentiation. Proteins of the Ras and Raf families are important prognostic markers of
tumor diseases and targets for therapeutic effect [102].

CREBs are widely expressed transcription factor binding cis-regulatory elements
(CREs) found in the genomic regulatory regions of many neurotransmitter and growth
factor responsive genes. CREB activity is regulated by the phosphorylation of serine residue
Ser133. Phosphorylation of CREB under cell stimulation is one of the key determinants of
whether a stimulus can activate the transcription of CREB-mediated genes. After Ser133
phosphorylation, CREB attracts the co-activator CBP (CREB-binding protein) and p300,
which has histone acetyl transferase activity. After their recruitment to the promoter, CBP
and p300 provide transcription initiation by direct interaction with the components of the
mechanism of basic transcription factors, as well as through histone acetylation. Histone
acetylation decondenses chromatin and provides access to major transcription factors in
the core of the promoter region. Owing to phosphorylation, CREB is a key regulator of the
processes driven by stimulus-dependent gene expression.
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Figure 10. Histograms of the main signaling pathways in Jurkat tumor line cells treated with
muricadienin (Mu5_2) and chatenaytrienin-1 (1) (MT1_1) and in intact cells. (A) Phosphorylated
proteins CREB, ERK/MAP, p70 S6, p21, p38, PI3K/AKT/mTOR, and JNK; (B,C) p53, MDM2, Bcl-
2/Bax, STAT3 and STAT5, Nf-kB, Caspase 3-8- 9, JNK, ATM, Chk1, Chk2, and H2AX. Incubation
times were (A) 4 h, (B) 6 h, and (C) 12 h. The data on the Y-axis are given in MFI units. The data
represent values obtained in triplicate. The 95% confidence intervals are provided in parentheses in
Supplementary Materials.

Hence, inhibition of all of the kinases of the nine signaling pathways under study
by synthesized chatenaytrienin-1 (1) had an obvious negative effect on the growth and
proliferative activity of tumor cells, thereby proving it to be an effective antitumor agent
and a promising candidate for further in vivo studies as an antitumor chemotherapeutic
agent.

In some human tumors, MDM2 has been shown to be abnormally upregulated due to
gene amplification and increased transcription and translation [103], resulting in further
degradation and decreased activity of p53. Therefore, the MDM2-p53 protein complex offers
a promising therapeutic strategy for p53 reactivation during oncological transformation in
tissues [104].

The cellular response to DNA damage is mainly coordinated by two different kinase
signaling pathways, ATM-Chk2 and ATR-Chk1, activated by double-stranded and single-
stranded DNA breaks, respectively. These pathways were previously considered to operate
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in parallel with overlapping functions. However, not long ago it became apparent that
their relationship was more complex. In response to double-stranded DNA damage, ATM
is required both to activate ATR-Chk1 and to initiate DNA repair through homologous
recombination (HRR), promoting the formation of single-stranded DNA at damage sites via
nucleolytic resection. It is noteworthy that cells and organisms survive with mutations in
ATM or other components required for HRR, such as BRCA1 and BRCA2, but at the expense
of genomic instability and cancer predisposition. In contrast, the ATR-Chk1 pathway is a
major direct effector of DNA damage and replication checkpoints required for the survival
of many but not all cell types. HRR deficiency in BRCA1- and BRCA2-deficient tumors
remarkably confers sensitivity to cisplatin and inhibitors of poly(ADP-ribose)polymerase
(PARP), an enzyme required to repair damaged DNA. Furthermore, suppression of DNA
damage and replication checkpoint responses by Chk1 inhibition may enhance tumor cell
killing by various genotoxic agents [105].

Figure 10 demonstrates that, in comparison with the protein profile of the control
sample, almost all major proteins were suppressed in the first 6 h of incubation, with the
exception of the phosphorylated fraction of H2AX histone. An increase in the H2AX level in
the samples treated with the test compounds was observed with increasing incubation time,
indicating the presence of double-strand breaks in DNA and the subsequent genotoxicity
of the test substances. The DNA changes were either secondary and occurred due to the
processes of apoptosis and disruption of the functioning of the respiratory chain, initiated
by the studied acetogenins in cells, or these two processes, mitochondrial type apoptosis
and accumulation of double-strand breaks in the cell genome, occurred in parallel and
independently. Still, due to the low activity of p53 in the Jurkat cell line, apoptosis initiated
by DNA double-strand breaks occurred much later than the destruction of mitochondria.

Many chemotherapeutic agents, such as etoposide and camptothecin as well as their
derivatives, damage tumor cells by inducing DNA double-strand breaks [106]. The H2A.X
protein is a member of the H2A histone family. Moreover, the level of γ-H2A.X detected by
flow cytometry was shown to correlate with the number of DNA strand breaks and tumor
cell death. The process of serine phosphorylation at position 139 of the H2A.X protein is a
reliable indicator of DNA damage and obvious genotoxicity of the compound [107–109].
As the level of DNA damage increases, the level of phosphorylated H2A.X increases,
accumulating specifically at the sites of damage to the DNA molecule. It is the accumulation
of phosphorylated H2A.X that is often used as a marker of the level of DNA damage inside
the cell as it plays an important role in DNA repair processes [110,111].

Cellular apoptosis is a complex biological process associated with the activation of
numerous signaling pathways, and certain proteins are activated in every case, which
can be targeted markers of some intracellular processes; their imbalance brings about the
activation of programmed cell death. The activation of cysteine proteases, caspases in
particular, is a key intracellular regulator of cell apoptosis, while caspases are involved in
both internal and external pathways of apoptosis [112]. Caspase-3 is an important mediator
of apoptosis [113], promoted by various activators classified into two main signaling
pathways: the death receptor-mediated pathway, involving caspases-8 and -10, and the
mitochondria-mediated pathway, involving caspase-9 [114]. Caspase-3 is the main protease
activated by both FAS receptor ligands and cellular apoptosis induced by mitochondrial
dysfunction [115]. The tumor suppressor protein p53 is a positive regulator of the pro-
apoptotic proteins Bax, Bad, and Bak to prevent Bcl-2 uptake. Free Bax, Bad, and Bak
subsequently bind to the mitochondrial membrane, bringing about mitochondrial damage
and cell apoptosis [116]. Previous studies have shown that p53 promotes the transcription
of Bax and Bad, which regulate the release of cytochrome c from mitochondria and lead to
cell apoptosis by activating the cleavage of caspases-3 and -9 [117]. At present, Bcl-2 and
Bax proteins are known to be in a state of constant dynamic equilibrium, forming homo-
and heterodimers. The latter do not have proapoptogenic activity. When the production
of proapoptotic Bax protein is dominant, this balance is disturbed and shifts towards the
formation of a large number of homodimers with high proapoptogenic activity [118]. In our
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project, we were primarily interested in the molecular mechanisms of action of acetogenins
in the cell, as well as their possible genotoxicity and ability to induce apoptosis. In this
study, quite similar molecular profile patterns of chatenaytrienins and muricadienin were
found throughout the entire incubation time. It should be noted that the concentration
of p53 was significantly increased in the sample treated with muricadienin after 12 h of
incubation, while the levels of this protein in all of the other samples were almost similar
to that in the control. Treatment with muricadienin as well as with chatenaytrienin-1 (1)
did not significantly affect the expression of caspase-8, but it promoted the accumulation
of cleaved caspase-9. This was especially evident in the study of cell samples after 12 h
of incubation, where the level of caspase-9 in the samples treated with muricadienin and
chatenaytrienin-1 (1) exceeded the value of this protein in the control sample, supporting
the fact that chatenaytrienins, like other acetogenins, selectively induce apoptosis in cells
through a mitochondria-mediated pathway. This fact was confirmed by the study of
the biogenesis of mitochondrial potential by means of flow cytometry carried out in this
study. Further, we found that the level of BAD protein decreased under the influence
of acetogenins (muricadienin and chatenaytrienin-1 (1)) in the first 6 h, and then within
12 h of incubation, the level of BAD protein again began to increase but did not reach the
control value. In contrast, Bcl-2 remained downregulated in Jurkat cells after treatment with
acetogenins. These results suggest that acetogenins can activate p53 through a downstream
target protein that causes mitochondrial dysfunction by promoting cytochrome c release,
thereby inducing cell apoptosis via the intrinsic mitochondrial pathway.

4. Conclusions

Thus, the present research paper details the molecular mechanisms of action of the syn-
thesized chatenaytrienins in the tumor cell, including comparison of the protein profiles of
two different acetogenins, muricadienin and chatenaytrienin-1. Both acetogenins exhibited
pronounced antitumor activity, effectively suppressing the protein pathways responsible
for cell growth and proliferation, while the main mechanism of action of acetogenins is
not only their influence on mitochondria but also a pronounced genotoxic effect due to the
accumulation of DNA double-strand breaks. Meanwhile, the most likely mechanism of
DNA damage, evidenced by a high level of phosphorylated H2A.X histones, is a high level
of ROS ions in the cell in response to the action of acetogenins. Moreover, we managed to
show that concentration of ROS ions in the cell began to increase literally in the first hours
after contact with chatenaytrienins. Still, there are a number of issues concerning some
aspects of the interaction between acetogenins and the respiratory chain, namely which
protein component is the main target of acetogenins and whether these compounds can be
considered terratogens.
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