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Abstract: Emerging evidence shows that the gut microbiota plays an important role in neuropathic
pain (NP) via the gut–brain axis. Male rats were divided into sham, spinal nerve ligation (SNL),
SNL + 200 mg GEG/kg BW (GEG200), and SNL + 600 mg GEG/kg BW (GEG600) for 5 weeks. The
dosages of 200 and 600 mg GEG/kg BW for rats correspond to 45 g and 135 g raw ginger for human
daily consumption, respectively. Both GEG groups mitigated SNL-induced NP behavior. GEG-
supplemented animals had a decreased abundance of Rikenella, Muribaculaceae, Clostridia UCG-014,
Mucispirillum schaedleri, RF39, Acetatifactor, and Clostridia UCG-009, while they had an increased
abundance of Flavonifactor, Hungatella, Anaerofustis stercorihominis, and Clostridium innocuum group.
Relative to sham rats, Fos and Gadd45g genes were upregulated, while Igf1, Ccl2, Hadc2, Rtn4rl1,
Nfkb2, Gpr84, Pik3cg, and Abcc8 genes were downregulated in SNL rats. Compared to the SNL group,
the GEG200 group and GEG600 group had increases/decreases in 16 (10/6) genes and 11 (1/10)
genes, respectively. GEG downregulated Fos and Gadd45g genes and upregulated Hdac2 genes in
the amygdala. In summary, GEG alleviates NP by modulating the gut microbiome and reversing a
molecular neuroimmune signature.

Keywords: ginger; pain; gut microbiome; neuroinflammation; brain

1. Introduction

Neuropathic pain (NP) arises from damage to the peripheral or central nervous
system (CNS) [1]. Nerve damage in NP leads to neuroinflammation and neuroplastic
changes in the peripheral and central nervous systems (CNS) associated with sensitization
and hyperexcitability [2]. The challenges of chronic NP are related to the complexity of
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NP symptoms (e.g., anxiety and depression), poor outcomes, and limited availability of
treatment options. The most-used form of NP treatment is opioid analgesics; unfortunately,
they can induce severe side effects and result in opioid use disorder [3].

Accumulating evidence suggests that the gut microbiome has a great impact on NP
as an important element of the gut–brain axis via modulating neuroinflammation [4].
Gut dysbiosis has been implicated in the onset or progression of NP-associated behavior,
such as pain sensitivity [5–8]. Gut dysbiosis is not only associated with marked changes in
gut-associated immune cell activation in lymphoid tissues; it also exacerbates spinal inflamma-
tion/lesions, leading to impaired recovery of neurological function [9,10]. A recent systematic
review with 19 eligible studies provides a rationale for targeting the microbiota for managing
symptoms of neuropathy and neuroinflammation-based CNS disorders [11].

NP mechanisms include an imbalance between endogenous antioxidants and reactive
oxygen species (ROS) after nerve injury, resulting in neuroimmune cross-talk [12] and
neuroinflammation in the peripheral and CNS [13]. Therefore, the advancement of new,
safe, and effective analgesic and anti-inflammatory alternatives is keenly desired. Ginger
(Zingiber officinale Roscoe) consists of gingerols (6-gingerol, 8-gingerol, and 10-gingerol)
and shogaols (6-shogaol, 8-shogaol, and 10-shogaol) that account for its anti-inflammatory
properties [14]. Myriad ginger extract and its bioactive compounds have been investigated
as anti-inflammatory agents; the length of their side chains influences their effectiveness [15].
Ginger and its bioactive components have been demonstrated to penetrate the blood–brain
barrier via passive diffusion, suggesting the positive effects of ginger on the CNS [16].

Our previous work linked ginger’s anti-inflammatory and antioxidant properties
to antinociception [17,18]. Single-dosage gingerol-enriched ginger (GEG) dietary supple-
mentation significantly mitigated mechanical hypersensitivity in rats with spinal nerve
ligation (SNL)-induced NP via, in part, (i) modulation of the gut microbiota and metabo-
lites [17] and (ii) suppression of mRNA NF-κB and TNF-α expression in the amygdala
and colon [18]. Here, we explored the effects of GEG on neuroimmune signaling with a
focus on the amygdala for the following reasons. The amygdala has emerged as a key
brain area for pain modulation and the affective component of pain [19], which, according
to the International Association for the Study of Pain (IASP), is what defines pain [20].
Neuroplasticity in the amygdala has been linked to pain behaviors. While most research on
underlying mechanisms has focused on neuronal mechanisms such as synaptic plasticity
and hyperexcitability, recent evidence suggests that neuroimmune signaling contributes to
pain mechanisms in the amygdala [18,21]. Finally, the amygdala has been recognized as a
key region and hub for brain–gut interactions [22,23].

In the current study, we further investigated how two dosages of GEG administra-
tion via oral gavage affect 770 neuroinflammatory signature genes in the amygdala of
SNL-treated animals, using the NanoString neuroinflammation panel. These neuroinflam-
mation panels are designed to swiftly analyze important aspects of neuroimmune interactions
for a thorough perspective of the complex relationship between immune and nervous sys-
tems. This neuroinflammation panel includes 23 pathways and processes that represent three
core themes of neuroinflammation: stress and metabolism, immunity and inflammation, and
neuropathology and neurobiology. In addition, we also conducted pain assessment and gut
microbiome analysis in the cecal feces of the animals. Different from previous studies where
GEG was delivered via diet at a single dosage [17,18], in the present study, GEG was given
via oral gavage at two dosages (200 mg/kg and 600 mg/kg body weight daily) to evaluate if
there was any response in the outcome parameters, namely, mechanical hypersensitivity, gut
microbiome composition, and neuroinflammation signature gene expression.

We hypothesized that GEG administration would reduce mechanical hypersensitivity
in a GEG-dose-dependent manner. Such changes in mechanical hypersensitivity would be
mediated by (i) modification of the gene expression of three core themes of neuroinflam-
mation and (ii) modulation of the gut microbiome composition with a greater abundance
of beneficial microorganisms due to GEG administration. In this study, we combined
a comprehensive evaluation of a neuroinflammation panel and gut microbiome abun-
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dance/composition to better understand the effects of ginger’s bioactive compounds on
metabolic pathways relevant to NP in the development of personalized nutrition therapy
for NP management.

2. Materials and Methods
2.1. Animals

Thirty-six male Sprague Dawley rats (4–5 weeks old, 150–180 g, Envigo, Cumberland,
VA, USA) were individually housed under a 12 h light–dark cycle. All animals were
given access to food and water ad libitum throughout the study period. All experimental
procedures were approved by the Institutional Animal Care and Use Committee at Texas
Tech University Health Sciences Center (IACUC #20032). Food consumption, water intake,
and body weights were recorded weekly.

2.2. Neuropathic Pain Induction

We employed a spinal nerve ligation (SNL) preclinical model to study the effects of
ginger extract on NP progression. SNL leads to acute hypersensitivity within 1 week that
persists for weeks [24] and prolonged changes in inflammatory and pronociceptive mediators,
neurotransmitters, and receptor expression, leading to peripheral and central sensitization [25].
The SNL model was used to induce peripheral neuropathy in the left hind paw [2,26].

After a 5-day acclimatization, 9 animals received the sham procedure, while the
remaining 27 animals received the SNL procedure. We used isoflurane [induction (3%) and
maintenance (2%) of anesthesia] throughout the sham or SNL procedure. After removing
the L5/L6-level paraspinal muscles and the underlying L6 transverse process, the L5 spinal
nerve was separated from adjacent structures and tightly ligated with 6-0 silk thread. The
paraspinal muscles were sutured closed, and the skin clipped together. Sham-operated
animals served as controls for the NP model, receiving the same surgical procedure without
the L5 spinal nerve ligation. After surgery, we applied ointment antibiotics (VetOne,
Boise, ID, USA) to the surgery site until the staples were removed. Throughout the study
period, we monitored the animals to reduce unnecessary stress or pain following the ethical
guidelines of the International Association for the Study of Pain [27].

2.3. Animal Treatments

Thirty-six animals were randomly assigned into the sham + vehicle (corn oil) group
(the sham group), SNL + vehicle (corn oil) group (the SNL group), SNL + 200 mg GEG/kg
BW group (the SNL + GEG200 group), and SNL + 600 mg GEG/kg BW group (the
SNL + GEG600 group). Both corn oil (vehicle) and GEG were administered by oral gavage
for 4 weeks. All animals were given an AIN-93G diet (catalog number # D10012G, Research
Diet, Inc., New Brunswick, NJ, USA). Prior studies that administered ginger extract to
rats (concentrations ranging between 100 mg and 400 mg/kg BW) showed a decrease in
inflammation in rats [28,29]. Thus, in this study, we tested GEG at both 200 and 600 mg/kg
BW dosages in an NP model.

Ginger (Zingiber officinale) rhizomes were harvested, cleaned with water, and dried in the
shade. Once dried, the ginger rhizomes were pulverized to a coarse powder form. The powdered
ginger was subjected to supercritical fluid extraction to obtain a soft ginger extract standardized
to 20% gingerols. Based on the results of gas chromatography–mass spectrometry, GEG consists
of 18.7% 6-gingerol, 1.81% 8-gingerol, 2.86% 10-gingerol, 3.09% 6-shogoal, 0.39% 8-shogaol, and
0.41% 10-shogaol. GEG was a gift obtained from Sabinsa, Inc., East Windsor, NJ, USA.

2.4. Assessment of Pain-Related Behavior in Live Animals

We used the von Frey test to measure mechanical hypersensitivity [2]. In brief, we
measured mechanical paw withdrawal thresholds (in grams) using an Electronic von Frey
Aesthesiometer (IITC Life Science, Woodland Hills, CA, USA) with a plastic tip in an
exclusive testing area for pain sensory assessment. The average of six measurements at
least 30 s apart was calculated for each animal test.
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2.5. Sample Collection

On collection day (after a 5-week feeding period), the animals were anesthetized and
euthanized, and blood was drawn for plasma collection. The amygdala (right) and cecal
feces were harvested, immersed in liquid nitrogen, and kept at −80 ◦C. We focused on the
right amygdala because of previous evidence for the right hemispheric lateralization of
pain plasticity and pain modulation in the amygdala [30–32].

2.6. RNA Isolation and Gene Expression Profiling Using Neuroinflammation Panel

We extracted total RNA from the amygdala using a Qiagen RNeasy Mini Kit
(Cat # 74106, Qiagen Science, Germantown, MD, USA). We measured the purity/concentration
of RNA using Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA) and stored
RNA at −80 ◦C. We shipped amygdala RNA samples (20 ng/µL) to Cleveland Clinic, Cleve-
land, OH, USA, to perform gene expression profiling using the nCounter® neuroinflamma-
tion pathway panel (NanoString Technologies, Seattle, WA, USA). The neuroinflammation
panel includes 757 genes covering the core pathways and processes that define neuroinflam-
mation interactions and 13 potential housekeeping genes for normalization. RNA samples
(100 ng per sample) were used for the Gene Expression Assay with a neuroinflammation panel
using the nCounter MAX system, a multi-channel epifluorescence scanner with the NanoString
Advanced Analysis Module plugin for quality control. We analyzed raw datasets using the
ROSALIND® platform (https://rosalind.bio/ (accessed on 9 December 2022)). Sample gene
transcript counts were normalized by dividing counts within a lane by the geometric
mean of the normalizer probes from the same lane. Housekeeping probes for normal-
ization were selected based on the geNorm algorithm using the NormqPCR R package
(version 1.48) [33]. The abundance of various cell populations was calculated using the
Nanostring Cell Type Profiling Module within ROSALIND. ROSALIND performs a filtering
of Cell Type Profiling results to include results that have scores with a p-value greater than
or equal to 0.05. Hypergeometric distribution was used to analyze the enrichment of path-
ways, gene ontology, domain structure, and other ontologies. NanoString annotation term
enrichment was calculated relative to a set of background genes relevant to the experiment.
Visualization was performed in R version 4.0.5 (Shake and Throw).

2.7. RNA Isolation and qRT-PCR

We validated the results of neuroinflammation gene profiling [FOS (Fos proto-oncogene-
encoding proteins that form the AP-1 transcription factor complex), Gadd45g (growth arrest
and DNA-damage-inducible 45 gamma), and HDAC2 (histone deacetylase 2)] using qRT-PCR.
Extracted RNA was reversely transcribed into cDNA using the Maxima first-strand cDNA
synthesis kit synthesis with dsDNase (Thermo Scientific, K1672, Waltham, MA, USA) on a
thermal cycler Bio-rad S1000 (Bio-Rad Laboratories, Inc., Hercules, CA, USA). qRT-PCR was
performed on the Quant Studio 12K Flex real-time PCR system (Life Technologies, 4470689,
Carlsbad, CA, USA) using samples cDNA for the amplification of target genes with β-actin
as the control with Universal SYBR green supermix (Bio-rad Laboratories, Inc., 17251-24,
Hercules, CA, USA). The following genes were tested: inflammation markers (FOS, Gadd45g,
and HDAC2). The primer sequences used are below in Table 1. All gene expressions were
normalized to our control β-actin. Gene expression was calculated by the following formula:
2-(∆CT*1000) [34].

Table 1. Primer sequences.

Gene Forward Reverse

FOS 5′-ATC GGC AGA AGG GGC AAA GT-3′ 5′-TCC TCC GAT TCC GGC ACT TG-3′

Gadd45g 5′-AGT CCG TGG CCA GGA TAC AG-3′ 5′-TTT GGC GGA CTC GTA GAC GC-3′

HDAC2 5′-GCA CCA CGC CAA GAA GTC AG-3′ 5′-ACG GTC ATC ACG CGA TCT GT-3′

β-actin 5′-ACA ACC TTC TTG CAG CTC CTC C-3′ 5′-TGA CCC ATA CCC ACC ATC ACA-3′

Abbreviations: FOS: Fos proto-oncogene, AP-1 transcription factor; Gadd45g: growth arrest and DNA-damage-
inducible 45 gamma; HDAC2: histone deacetylase 2.

https://rosalind.bio/
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2.8. Gut Microbiota Profiling via 16S rRNA Amplicon Sequencing

Fecal DNA was isolated using the PowerFecal DNA isolation kit (Qiagen Inc., Ger-
mantown, MD, USA). Amplicon sequencing of the V4 variable region of the 16S rRNA gene
was conducted at Molecular Research LP (Shallowater, TX, USA). Briefly, the V4 variable
region was amplified using PCR primers 515F/806R. Samples were multiplexed and pooled
together in equal proportions based on their molecular weight and DNA concentrations.
Pooled samples were purified using calibrated Ampure XP beads, and then used in Illu-
mina DNA library preparation. Sequencing was performed on a MiSeq. We deposited
raw sequencing data under BioProject accession number PRJNA935472 in the National
Center for Biotechnology Information (NCBI) BioProject database. The 16S rRNA gene
sequencing data were analyzed using QIIME 2 [35]. In brief, reads were filtered, denoised,
and merged. DADA2 was used to identify exact amplicon sequence variants (ASVs). For
the taxonomy assignment, the Silva release 138 database was used [36,37]. To compare the
relative abundance of taxa between groups, we performed compositional analysis using
LOCOM, a logistic regression model for testing differential abundance in compositional
microbiome data with false discovery rate control [38]. Results were regarded as signif-
icant when the p-value < 0.05, unless stated otherwise. Visualization was performed in
R version 4.0.5 (codename “Shake and Throw”).

2.9. Statistical Analysis

The data were analyzed by a one-way ANOVA or two-way ANOVA (repeated measures
where appropriate) followed by Tukey’s post hoc test using GraphPad Prism software ver-
sion 9.0 (GraphPad Software, San Diego, CA, USA). The data were checked for normality
(Gaussian distribution) before employing ANOVA. A significance level of p-value < 0.05 applies
to all statistical tests. Statistical analyses for other types of data are stated in their corresponding
sections above. For gut microbiota analysis, three pairwise comparisons are described as
follows: SNL vs. sham, SNL + GEG200 vs. SNL, and SNL + GEG600 vs. SNL. All comparisons
“Group 1 vs. Group 2” should be interpreted as “Group 1 relative to Group 2” in the text
and figures.

3. Results
3.1. GEG Alleviates Mechanical Hypersensitivity in NP Rats

Figure 1 shows the effects of GEG supplementation on NP-associated mechanical
hypersensitivity using the von Frey test. Relative to the sham group, the SNL group had
significantly greater mechanical hypersensitivity at 1 week post-operation, which was
sustained throughout the study period (Figure 1). At the end of the study (4 weeks after
GEG supplementation began), both GEG SNL groups showed significantly attenuated pain
sensitivity compared to untreated SNL rats, regardless of GEG dosages (Figure 1).
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per group. SNL rats showed significantly decreased mechanical thresholds, indicating that SNL
surgery induced pain-related hypersensitivity (*** p < 0.001 compared with sham, two-way ANOVA
with Tukey’s multiple comparisons test, n = 9). SNL + GEG200-group rats and SNL + GEG600 group
rats showed significantly increased mechanical thresholds (+ p < 0.05, ++ p < 0.01, +++ p < 0.001
compared with SNL, two-way ANOVA with Tukey’s multiple comparisons test, n = 9), indicating
that GEG200 or GEG600 application reduced pain-related hypersensitivity.

3.2. GEG Reverses the Expression of Neuroinflammatory Markers Associated with NP

We examined the cell type, gene expression, and pathways involved in neuroinflam-
mation and GEG effects and focused on the amygdala because it plays an important role in
pain modulation [19]. To achieve this, we used the NanoString nCounter® Neuroinflam-
mation Panel (NanoString Technologies, Inc., Seattle, WA, USA) to profile changes. One of
the key outputs of the NanoString nCounter® Neuroinflammation Panel is to measure the
relative abundance of 5 CNS cell types and 14 peripheral immune cell types with the unique
cell-profiling feature. Based on the analysis performed within ROSALIND, three neuroinflam-
mation cell types were identified, namely CD45+ peripheral immune cells, oligodendrocyte
CNS cells, and astrocyte CNS cells (Figure 2). In general, oligodendrocytes CNS cells were the
most abundant cell type (~50%) across all samples. However, the relative abundance of all
three cell types was comparable between groups (ANOVA, p > 0.05).
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Among the 770 gene expressions measured, many differentially expressed genes were
identified in each comparison, i.e., SNL vs. sham, SNL + GEG200 vs. SNL, and SNL + GEG600
vs. SNL in volcano plots (Figure 3A–C) (fold change > 1.25 and p < 0.05). Ten genes
(two increased and eight decreased) were differentially expressed in the amygdala of rats
between the SNL and sham groups (Figure 3A). Compared to the sham group, the SNL group
had higher gene expression levels of Gadd45g (growth arrest and DNA-damage-inducible
45 gamma) and Fos (FBJ osteosarcoma oncogene), while it had lower gene expression levels of
Igf1, Ccl2, Hdac2, Rtn4rl1, Nfkb2, Gpr84, Pik3cg, and Abcc8 (Figure 3A).

After identifying the molecular changes associated with SNL, we were interested to see
if GEG200 and GEG600 could reverse these changes. GEG200 and GEG600 induced changes
in the expression of 16 genes (Figure 3B) and 11 genes (Figure 3C), respectively. Relative
to the vehicle-treated SNL group, GEG at a 200 mg/kg BW dosage led to an increase in
the expression levels of 10 genes (namely, Slc17a6, Chek2, Bok, Hadc2, Birc5, Rtn4rl1, E2f1,
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Shank3, Ldha, and Trpm4) and downregulation of the expression levels of 6 genes (namely,
Hspb1, Gadd45g, Top2a, Fgd2, Fos, and Nthl1) in the amygdala of SNL-operated animals
(Figure 3B). Compared to the vehicle-treated SNL group, GEG at a 600 mg/kg BW dosage
increased the expression level of 1 gene (i.e., Hadc2) and decreased the expression levels of
10 genes (i.e., Fos, Gadd45g, Cotl1, Ncf1, Cd68, Gdpd2, Nthl1, Hidac4, Bag3, and Arc) in the
amygdala of SNL-treated animals (Figure 3C).
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Figure 3. Differential expression of neuroinflammation-related genes between groups. Volcano plots of
(A) SNL vs. sham, (B) SNL + GEG200 vs. SNL, and (C) SNL + GEG600 vs. SNL show −log10(p-value)
on the y-axis and log 2-fold change in gene expression on the x-axis. Statistical significance cutoffs are
indicated by a red horizontal dashed line at a p-value of 0.05 and blue vertical dashed lines at a fold
change of 1.25. Abbreviations: Abcc8, ATP-binding cassette subfamily C member 8; Arc, activity-regulated
cytoskeleton-associated protein; Bag3, BAG cochaperone 3; Birc5, baculoviral IAP repeat-containing 5;
Bok, BCL2 family apoptosis regulator; Ccl2, C-C motif chemokine ligand 2; Cd68, CD68 molecule; Chek2,
checkpoint kinase 2; Cotl1, coactosin-like F-actin-binding protein 1; E2f1, E2F transcription factor 1; Fgd2,
FYVE, RhoGEF and PH domain-containing 2; Fos, FBJ osteosarcoma oncogene; Gadd45g, growth arrest and
DNA-damage-inducible 45 gamma; Gdpd2, glycerophosphodiester phosphodiesterase domain-containing
2; Gpr84, G protein-coupled receptor 84; Hdac2, histone deacetylase 2; Hdac4, histone deacetylase 4;
Hspb1, heat shock protein family B (small) member 1; Igf1, insulin-like growth factor-I; Ldha, lactate
dehydrogenase A; ncf1, neutrophil cytosolic factor 1; Nfkb2, nuclear factor kappa B subunit 2; Nthl1,
nth-like DNA glycosylase 1; Pik3cg, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
gamma; Rtn4rl1, reticulon 4 receptor-like 1; Shank3, SH3 and multiple ankyrin repeat domains 3; Slc17a6,
solute carrier family 17 member 6; Top2a, DNA topoisomerase II alpha; Trpm4, transient receptor potential
cation channel subfamily M member 4.

Next, we focused on the genes of common signatures between the GEG200 group
and GEG600 group and those with a dose response associated with GEG concentrations.
Relative to the SNL group, both the GEG200 and GEG600 groups showed downregulated
Fos and Gadd45g in the amygdala of SNL rats, as shown in the log fold change of neu-
roinflammation (Figure 4A) and confirmed with qRT-PCR (Figure 4B). In contrast, both
GEG200 and GEG600 groups showed increased Hdac2 gene expression in amygdala tissue
from SNL rats compared to the vehicle-treated SNL group (Figure 4A,B). This suggests that
GEG can at least partially reverse the molecular signature in the amygdala associated with
neuropathic pain induced by SNL.
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Figure 4. Gene expression analysis of selected neuroinflammation factors, i.e., Fos, Gadd45g, and Hdac2
between groups (A); mRNA expression assessed by qRT-PCR (B). (A) Genes show differential expression
between all groups, i.e., p-value < 0.05 and fold change > 1.25. Log2-fold change in gene expression is
shown along the x-axis. SNL indicates fold change between SNL vs. sham, SNL + GEG200 indicates
fold change between SNL + GEG200 vs. SNL, and SNL + GEG600 indicates fold change between
SNL + GEG600 vs. SNL. (B) Fos, Gadd45g, and Hdac2 significantly increased in SNL rats (* p < 0.05,
** p < 0.01 one-way ANOVA, n = 9) compared to sham rats. SNL + GEG200-group rats showed de-
creased Fos expression (++ p < 0.01 one-way ANOVA, n = 9), but not Gadd45g and Hdac2 expression,
compared to SNL rats. SNL + GEG600-group rats showed decreased Fos, Gadd45g, and Hdac2 expression
(++ p < 0.01 one-way ANOVA, n = 9) compared to SNL rats. SNL + GEG600-group rats showed decreased
Gadd45g expression (# p < 0.05 one-way ANOVA, n = 9) compared to SNL + 200-group rats. Abbreviation:
Fos, FBJ osteosarcoma oncogene; Gadd45g, growth arrest and DNA-damage-inducible 45 gamma; Hdac2,
histone deacetylase 2.

3.3. GEG-Associated Gut Microbiome Changes

The effects of GEG supplementation on the gut microbiome of animals are shown in
Figure 5. The average sequencing depth per sample was ~524,000 reads. Around 51,000 non-
chimeric reads were retained after filtering, denoising, and then merging. First, we examined
gut microbiome alpha-diversity. Gut microbiome species (ASV) evenness and richness did
not differ between the sham group and the SNL group (Figure 5A). Gut microbiome evenness
and richness in GEG-supplemented groups were lower than in the vehicle-treated SNL group.
Both the SNL + GEG200 and SNL + GEG600 groups showed significantly lower evenness, but
only the SNL + GEG600 group showed significantly lower diversity (Figure 5A) (Wilcoxon
signed-rank test, p < 0.05).

Next, we aimed to find species associated with SNL and GEG treatments. We per-
formed compositional analysis using LOCOM, a logistic regression model for testing
differential abundance in compositional microbiome data with false discovery rate control.
Overall, compared to the sham group, the SNL group had only minute changes in the gut
microbiome composition and ASV abundance, and none of these changes were statisti-
cally significant after false discovery rate control (Benjamini–Hochberg Procedure-adjusted
p-value > 0.1). Thus, we focused on changes associated with both GEG doses in the SNL
groups (SNL + GEG200 vs. SNL and SNL + GEG600 vs. SNL) (Figure 5B) (Benjamini–
Hochberg Procedure-adjusted p-value < 0.1). GEG supplementation significantly de-
creased the abundance of ASVs of f_Rikenellaceae and f_Muribaculaceae in Bacteroidota phyla;
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g_Gastranaerophilales in Cyanobacteria phyla; and g_Mucispirilum in Deferribacterota phyla of
cecal feces of NP rats. Remarkably, relative to the vehicle-treated SNL group, both the SNL
+ GEG200 and SNL + GEG600 groups had an increased abundance of 10 ASVs of the taxa
in Firmicutes phyla, such as UBA1819, Flavonifractor, Hungatella, Clostridium innocuum group,
Erysipelatoclostridium, and Anaerofustis stercorihominis (Figure 5B). In contrast, the 17 ASVs
of the taxa in Firmicutes phyla were decreased in the GEG-supplemented rats compared
to the vehicle-treated SNL rats, for instance, Rikenella, Muribaculaceae, Gastranaerophilales,
Clostridia UCG-010, Mucispirillum schaedleri, RF39, Acetatifactor, Clostridia, and UCG-009
(Figure 5B).
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significance for SNL + GEG200 vs. SNL and SNL + GEG600 vs. SNL comparisons using the Wilcoxon
signed-rank test. (B) SNL + GEG200 vs. SNL, SNL + GEG600 vs. SNL compositional microbiome
analysis using LOCOM. ASVs presented are those with raw p-values < 0.05 and Benjamini–Hochberg-
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3.4. Integrated Analysis of Pain, Neuroinflammatory Markers, and the Gut Microbiome

We addressed whether NP sensitivity (mechanical hypersensitivity, VFT measurement)
is associated with neuroinflammation-related genes and gut microbiome species. Because
of the complexity of the collected data and identifying potential mechanisms involving the
microbiome–gut–brain axis, we employed a network analysis approach based on Spearman’s
correlation coefficient between all three factors, with a focus on identifying the genes and
microbiome ASVs that are strongly associated with mechanical hypersensitivity (Spearman’s
rank correlation coefficient > 0.6 and p < 0.01). Figure 6 shows the exploratory results of net-
work analysis of the correlated paw withdrawal threshold (pain mechanical hypersensitivity),
neuroinflammation genes, and gut microbiome ASVs in animals. For example, we found that a
higher paw withdrawal threshold (less mechanical hypersensitivity) was positively correlated
with the expression of Cd300lf and the abundance of Ruminococcaceae_UBA1819 and Flavonifrac-
tor (Figure 6). Moreover, a higher paw withdrawal threshold (less mechanical hypersensitivity)
was negatively correlated with the abundance of UGC-010, Lachnospiraceae_FCS020_group, and
Bacteroides massiliensis (Figure 6).
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Figure 6. Association between mechanical hypersensitivity, neuroinflammation genes of amygdala,
and gut microbiome of cecal feces in GEG-supplemented NP rats. Data were obtained from male SNL
rats given GEG at 200 and 600 mg/kg doses daily for 4 weeks. The pain withdrawal threshold was as-
sessed by the von Frey Test. The neuroinflammation gene profile in the amygdala was assessed using
the NanoString Neuroinflammation Panel. Gut microbiome composition was assessed by 16S rRNA
amplicon sequencing. We employed a network analysis approach with a focus on identifying the
genes and microbiota ASVs that are strongly associated with pain withdrawal threshold, determined
by Spearman’s rank correlation coefficient >0.6 and p < 0.01. Only nodes with edges linked to pain
sensitivity were retained in the network. Line thicknesses indicate the strength of the correlation.

4. Discussion

In the present study, the SNL-induced NP model was successfully employed to ex-
amine the effects of two GEG dosages on mechanical hypersensitivity, neuroinflamma-
tion/neuroimmune signature genes in the amygdala, and gut microbiome composition
in male rats. Both GEG dosages via oral gavage attenuated mechanical hypersensitivity
in the SNL-operated animals, independent of GEG doses, which agrees with our previ-
ous study with one GEG dosage through dietary supplementation [17,18]. The lack of
GEG dose response in this study is also consistent with a previous study showing that
the rhizome of Zingiber officinale roscoe (Z. officinale, ginger) at 100 and 500 mg/kg p.o.
mitigated oxaliplatin-treated mechanical allodynia in mice, regardless of Zingiber officinale
dosages [39]. This study shows for the first time that dietary administration of GEG
modulates the neuroinflammation signature genes of the amygdala and gut microbiome
composition of male rats with NP, though dose effects of GEG on gut microbiome composi-
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tion are limited. The data on neuroinflammation genes and the gut microbiome provide
strong evidence for the pain-mitigating effects of GEG supplementation in animals with
NP through the modulation of the microbiota–CNS connection.

The current study compared, for the first time, gene expression profiles in the amyg-
dala between SNL animals with and without GEG administration and identified two
(Fos and Gadd45g) of three co-expression genes mainly involved in the mitogen-activated
protein kinase (MAPK) signaling pathway [40]. Fos, an immediate early gene, is considered
a general neuronal activity marker, a cause of pain-related increases in neuronal activity.
The present study found Fos upregulation in the amygdala of SNL rats, which is consis-
tent with previous work showing c-FOS gene and protein upregulation in brain regions
in different NP animal models [41–43], as well as in the amygdala after spinal neural
transection [42]. The change in c-Fos after spinal nerve injury triggers the production of
TNF-α in the anterior cingulate cortex [44]; however, it remains to be determined whether
this signaling mechanism is also engaged in the amygdala to contribute to mechanical
hypersensitivity during the development of NP. In the present study, supplementation of
GEG suppressed the gene expression of Fos in the amygdala, providing an explanation of
how GEG mitigates mechanical hypersensitivity in NP.

The current study agrees with Li’s, which showed the upregulation of Gadd45A in
an SNL model [45]. Gadd45g belongs to the Gadd45 family, which is known to be induced
by a myriad of physiological stresses, including irradiation, ultraviolet radiation, and
inflammatory cytokines [46–48]. The protein encoded by the Gadd45 gene responds to
environmental/physiological stresses by mediating the activation of the p38/JNK pathway
via MTK1/MEKK4 kinase [49,50]. Gadd45g genes are associated with neural cell injury
and death, and Gadd45g is associated with core promoter lesions hypermethylated in
NP development [51]. Gadd45g participates in activity-induced neurogenesis by decreasing
site-specific DNA methylation in the brain [52,53]. On the other hand, Gadd45g interacts
with and inhibits the kinase activity of the Cdk1/CyclinB1 complex [54], suggesting an
important role in the progression from the G2 to M phase of the cell cycle [55]. In the
present study, our findings of elevated Gadd45g expression in the amygdala of SNL rats
agree with increased Gadd45β in the spinal dorsal horn after SNL surgery in rats [56], in
the anterior cingulate cortex after sciatic nerve injury in rats [57], and increased Gadd45g
protein expression in human nucleus pulposus cells isolated from advanced stages of
intervertebral disc degeneration (a form of NP) [50]. In the present study, administration of
GEG suppressed the gene expression of Gadd45g in the amygdala, suggesting a molecular
mechanism by which GEG mitigates mechanical hypersensitivity in NP.

Hdac2 is involved in transcriptional regulation, cell cycle progression, and chronic NP
development [58,59]. The reported changes in Hdac2 expression are very complex and con-
troversial in different pain models, including arthritis pain [60], neuropathic pain [61–66],
visceral pain [67–69], and bone cancer pain [38,70]. We found that lower Hdac2 expression
in the amygdala of SNL rats agrees with previous finding that SNL procedures diminish
Hdac2 occupancy in the dorsal root ganglion (DRG) of rats [59]. Excess α2δ-1 proteins
produced after SNL injury directly interact with glutamate NMDA receptors to intensify
synaptic NMDA receptor activity in the spinal cord, a prominent component of nerve
discomfort. Because α2δ-1 upregulation after nerve damage is long lasting, gabapentinoids
only temporarily relieve pain symptoms. Then, Hdac2 functions as a pivotal transcriptional
repressor of NP via suppressing Cacna2d1 promoter expression in the DRG [59]. Hdac2
knockdown or conditional knockout in DRG neurons in male and female mice regularly
induced long-lasting mechanical pain hypersensitivity. In the present study, we reported
that GEG-supplemented SNL rats had elevated Hdac2 expression in the amygdala, further
corroborating a previous study that restoring the repressive Hdac2 function and/or reduc-
ing histone acetylation at the α2δ-1 gene promoter in primary sensory neurons could lead
to long-term nerve pain relief [59].

The approach of regulating gut microbiomes to affect nervous system function repre-
sents a new idea for the treatment of NP using bioactive compounds, such as GEG. Accu-



Antioxidants 2024, 13, 502 12 of 17

mulating evidence from published work by our group and others [17,61,71] may indicate
the gut microbiota’s impact on NP. Our findings show that “potential pro-inflammatory”
taxa, such as Rikenellaceae [72], Muribaculaceae [73], Mucispirillum [74], Rikenella [75], Gas-
tranaerophilales [76], RF39 [77], Acetatifactor [78], and UGC-009 [79], are decreased in the
GEG-supplemented NP rats and support the anti-inflammatory function of GEG in pain
mitigation via the modification of gut microbiome composition [74]. In the current study,
GEG-treated animals had an increased abundance of Anaerofustis stercorihominis and Hun-
gatella in cecum feces due to their anti-inflammatory potential. Anaerofustis stercorihominis
has effects for treating or preventing inflammation-related diseases, such as inflammatory
bowel diseases (ulcerative enteritis, gastritis, and general enteritis) and rheumatoid arthritis
(WIPO). The dietary inflammatory index is inversely correlated with the relative abundance
of the Hungatella group [80].

The relationship between gut microbiota and signature gene expression in the amyg-
dala due to GEG supplementation in the context of NP is likely complex. The gut micro-
biome participates in the metabolism of GEG, and its modulation by GEG supplementation
could influence the activity of neuroinflammation genes in the amygdala, resulting in a
reduction in mechanical hypersensitivity in animals with NP status. The combination of
16S rRNA gene sequencing and signature neuroinflammation gene analysis in the amygdala
can overcome the limitations of single omics to a certain extent. In the present study, the fact
that a decreased hypersensitivity level was associated with increased Cd300lf gene expres-
sion in rats with chronic NP may result from its impeding role in neuroinflammation [81]
and may have beneficial effects on amygdala activity in NP. Keswani et al. reported that
CD300f, belonging to a family of Ig-like-encoding genes, is a potential candidate associated
with cerebral malaria resistance, and the expression of CD300lf by microglia strengthens
resistance to cerebral malaria by impeding neuroinflammation [81].

This study showed that increased abundance of Ruminoccaceae_UBA1819 and Flavonifrac-
tor is associated with reduced hypersensitivity in GEG-supplemented NP rats, in part,
due to GEG’s anti-inflammatory response to increased Ruminoccaceae [82] and Flavonifrac-
tor [83]. Furthermore, lessened hypersensitivity was accompanied by a decreased abun-
dance of Lachnospiraceae_FCS020_group in the NP rats, which is linked to impaired glu-
cose metabolism and inflammation in type 1 diabetes [84] and may be due to a reduced
inflammatory response thanks to GEG. Less hypersensitivity was also negatively associ-
ated with the abundance of Bacteroides massiliensis in GEG-supplemented NP rats. Bac-
teroides massiliensis was negatively correlated with IL-23 in rats with ulcerative colitis [85].
IL-23 is a member of the IL-12 family of cytokines with pro-inflammatory properties [86],
suggesting that the beneficial effects of GEG involve mitigation of the pro-inflammatory
potential of Bacteroides massiliensis [85]. The main metabolites of GEG are glucuronide or
sulfate conjugates, which may indirectly interact with the gut microbiome of NP rats [87].
Glucuronide conjugates (the metabolites of GEG) likely provide a significant energy source
to mammalian GI microbiomes to deactivate endobiotic and xenobiotic compounds for GI
excretion [87]. In the GI tract, the microbiota prepares β-glucuronidase enzymes, which
remove glucuronic acid as a carbon source, effectively reversing the actions of mammalian
intestinal dysbiosis [88]. In the present study, SNL-induced dysbiosis was reversed by GEG
supplementation in NP rats, likely due to the action of GEG metabolites.

We noted that this study only used males, and future studies are needed to explore
if similar gut–brain interactions and GEG effects are observed in females. The present
study provides the rationale for these important but more complex experiments. How the
microbiome affects pain pathways is an important knowledge gap. Our study provides
the basis and rationale for more research in this area to decipher underlying mechanisms
and pathways. While we hypothesize that the gut microbiota plays a role in modulating
pain sensitivity, this is most likely to be partial and does not fully explain the complex
change in pain sensitivity as other host factors contribute significantly to the phenotype.
A contribution of microbiota cannot be ruled out even though there was no detectable
change because microbiota could have different functional consequences in the changed
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environment of the chronic pain condition. Disentangling this complex relationship is very
interesting, and we hope the present study will stimulate that line of research. Incorporating
cause-and-effect experiments in future studies would significantly enhance the impact of
the results reported here. Furthermore, in this study, while it is reasonable to emphasize
the investigation of genes (namely, Fos, Gadd45g, Hdac2) shared among distinct groups with
connections between neuroimmune signaling and ginger dose response, future studies
are warranted to broaden the spectrum to the other genes presented in Figure 3B, 3C that
were influenced by ginger. Exploring these genes may provide further insight into the
mechanisms of action of GEG.

5. Conclusions

Administration of GEG dosages to neuropathic (SNL model) animals decreased me-
chanical hypersensitivity (no GEG-dose response) and modified the gut microbiome com-
position (limited GEG dose response). GEG reversed SNL-induced signature genes of
neuroinflammation with differential dose response. The data suggest the prebiotic poten-
tial of dietary ginger root intake in the management of NP.
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