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Abstract: Eriocheir sinensis, a key species in China’s freshwater aquaculture, is threatened by various
diseases, which were verified to be closely associated with oxidative stress. This study aimed to inves-
tigate the response of E. sinensis to hydrogen peroxide (H2O2)-induced oxidative stress to understand
the biological processes behind these diseases. Crabs were exposed to different concentrations of
H2O2 and their antioxidant enzyme activities and gene expressions for defense and immunity were
measured. Results showed that activities of antioxidant enzymes—specificallysuperoxide dismu-
tase (SOD), catalase (CAT), total antioxidant capacity(T-AOC), glutathione (GSH), and glutathione
peroxidase (GSH-Px)—varied with exposure concentration and duration, initially increasing then
decreasing. Notably, SOD, GSH-Px, and T-AOC activities dropped below control levels at 96 h.
Concurrently, oxidative damage markers, including malondialdehyde (MDA), H2O2, and 8-hydroxy-
2′-deoxyguanosine (8-OHdG) levels, increased with exposure duration. The mRNA expression of
SOD, CAT, and GSH-Px also showed an initial increase followed by a decrease, peaking at 72 h. The
upregulation of phenoloxidaseloxidase (proPO) and peroxinectin (PX) was also detected, but proPO was
suppressed under high levels of H2O2. Heat shock protein 70 (HSP70) expression gradually increased
with higher H2O2 concentrations, whereas induced nitrogen monoxide synthase (iNOS) was upregulated
but decreased at 96 h. These findings emphasize H2O2’s significant impact on the crab’s oxidative
and immune responses, highlighting the importance of understanding cellular stress responses for
disease prevention and therapy development.
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1. Introduction

Eriocheir sinensis holds the second highest rank in terms of production volume in the
field of crustacean aquaculture in China. It is highly prized for its culinary attributes and
economic value. E. sinensis has a long history of consumption in China. It has high content of
protein, fats, and various vitamins [1]. The fatty paste and roe, that is, the gonads, represent
luxury foodstuffs and are often featured in traditional Chinese cuisine. Over the years,
there have been considerable advancements in the aquaculture techniques for E. sinensis.
However, with an expansion in farm size and increased stocking densities, there has been
a concomitant increase in the incidence of disease. This rise is attributable to combinations
of environmental stressors and escalated pathogen load. The hepatopancreas of E. sinensis
is not only an edible tissue but also serves multiple physiological functions. It is involved in
digestion, absorption, and storage of nutrients, particularly during molting [2] and gonadal
maturation [3]. Additionally, it plays a role in detoxification and metabolic regulation. Due
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to its important roles, the hepatopancreas is sensitive to changes in the external and internal
environments. When E. sinensis is subjected to environmental stressors, its hepatopancreas
is typically one of the first organs to be affected.

In aquaculture, E. sinensis is exposed to a variety of environmental stressors, such as
hypoxia [4], elevated temperature [5], heavy metal ions [6], pesticides [7], and high levels
of ammonia nitrogen [8]. These stressors trigger two types of stress responses: oxidative
stress and nitrosative stress [9]. Oxidative stress induces the overproduction of reactive
oxygen species (ROS), including superoxide anion radicals (O2−), hydroxyl radicals (OH),
and H2O2. Nitrosative stress induces the production and release of nitric oxide (NO),
triggering a series of chain reactions that result in the formation of reactive nitrogen
species (RNS). Research has demonstrated that many diseases in E. sinensis are frequently
accompanied by strong oxidative stress. Infections caused by Aeromonas hydrophora lead to
an upregulation of antioxidant defenses, including T-AOC), GSH, and GSH-PX, as well as
lysozyme (LZM) and phenoloxidase (PO) activities [10]. When E. sinensis was subjected to
acute salt stress, there was an elevation in antioxidant enzyme activities, such as CAT, SOD,
T-AOC, GSH-PX, and MDA levels, alongside an upregulation of the heat shock protein
90 (HSP90) gene, which enhanced resistance [11]. Conversely, under ammonia nitrogen
stress, there was a notable decrease in the antioxidant capacity indicators of T-AOC, T-SOD,
and GSH-Px in the hemolymph, alongside a significant increase in MDA, marking reduced
antioxidant capacity and increased oxidative damage of E. sinensis [12]. Saline-alkali stress
exposure resulted in initial increases followed by decreases in SOD, CAT, and T-AOC
activities in the hepatopancreas of E. sinensis; the decreases in antioxidant capacity were
in correlation with hepatopancreatic damage [13]. Yang’s work demonstrated that acute
hepatopancreatic necrosis syndrome (AHPNS) in E. sinensis led to higher blood levels of
aspartate aminotransferase (AST) and glutamic pyruvic transaminase (GPT) compared to
healthy specimens; contrastingly, alkaline phosphatase (ALP) and acid phosphatase (ACP)
activities in the hepatopancreas were notably lower, with a concurrent significant increase
in MDA levels, indicating both oxidative stress and organ damage [14]. Thus, investigating
the effects of oxidative stress on E. sinensis may offer new insights into exploring the
pathogenesis of disease.

H2O2 is a widely prevalent ROS with a remarkable ability to penetrate cell membranes,
leading to oxidative stress or triggering apoptosis within the cell. Consequently, H2O2
is frequently used as a standard reagent to experimentally induce oxidative stress in
animals. In this study, one-year old juvenile E. sinensis were subjected to H2O2 stress tests
to explore their physiological response to oxidative stress. The activity of antioxidase in the
hepatopancreas and hemolymph, and the mRNA expression levels of antioxidative and
immune-related genes in the hepatopancreas, were measured after 96 h of gradient H2O2
treatment. This research provides a scientific basis for the in-depth study of the oxidative
stress response in E. sinensis and brings a novel perspective to the prevention and treatment
strategies for diseases caused by oxidative damage.

2. Materials and Methods
2.1. Ethics Statement

The crabs were handled and the experimental procedures were performed in accor-
dance with the guidelines for the care and use of animals for scientific purposes set by
the Animal Ethics Committee of the Freshwater Fisheries Research Center (FFRC) Chinese
Academy of Fishery Sciences, and the necessary ethical protocol code is LAECFFRC-2023-
09-12. All operations were performed to minimize the suffering of the crabs.

2.2. Crabs and Rearing Conditions

Juvenile E. sinensis were obtained from Yangcheng Lake Shrimp and Crab Green Culti-
vation Base, Freshwater Fisheries Center, Chinese Academy of Fisheries Sciences. Juvenile
crabs (13.34 ± 2.56 g) were acclimated to the aquatic environment in a laboratory aquarium
(100 cm × 45 cm × 50 cm) for one week. During the acclimation period, continuous aeration
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was provided to maintain a dissolved oxygen concentration (DO) of ≥7.0 mg·L−1. The
ambient water temperature was regulated at 25 ± 2 ◦C with a pH of 8.0 ± 0.2. Commercial
feed was administered every morning, and one-third of the water volume was replaced
every other day. Feeding was ceased 24 h prior to experimentation, and individuals in
intermolt with healthy, intact appendages were selected for the study.

2.3. H2O2 Stress Treatment

Six treatment groups were set up in the experiment, with H2O2 concentrations set
at 0 (control group), 3, 6, 9, 12, and 15 mmol·L−1. Each group containing 70 juvenile
E. sinensis was raised separately in two tanks (100 cm × 45 cm × 50 cm) with the same
conditions. During the experiment, the water was completely changed every 24 h, with
the concentration of hydrogen peroxide being adjusted to meet the specified experimental
requirements. During the experiment, the water quality parameters were maintained at
a temperature of 25 ± 2 ◦C, DO ≥ 7.0 mg·L−1, pH = 8.0 ± 0.2, ammonia ≤ 0.02 mg·L−1, and
nitrite ≤ 0.05 mg·L−1. Samples were collected at 0, 24, 48, 72, and 96 h of exposure. For each
sample point, nine juvenile crabs were picked randomly and immediately anesthetized in
an ice water bath. Hemolymph was extracted using a disposable sterile syringe from the
basal membrane of the third walking leg, followed by dissection on ice for hepatopancreas
sampling. After the hemolymph clotting at room temperature, it was centrifuged at 1000× g
for 10 min to obtain serum. Hepatopancreas samples were flash-frozen in liquid nitrogen.
Samples were stored at −80 ◦C for subsequent experiments.

2.4. Biochemical Analysis

Hepatopancreas tissues were immersed in physiological saline (with a weight/volume
ratio of 1:9) and homogenized using a high throughput tissue grinder (SCIENTZ-48, Ningbo,
China). After centrifuging at 5000× g for 15 min at 4 ◦C, the supernatant was collected
for measurement. Serum was diluted using saline for enzyme activity determination.
All parameters were determined using commercial assay kits according to the manufac-
turer’s protocols provided by Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
Total protein content (TP) was determined by the Coomassie Brilliant Blue assay (A045-2).
MDA levels were assessed using the thiobarbituric acid (TBA) method (A003-1). T-AOC
was measured via the ABTS method (A015-2-1). SOD activity was quantified through the
nitro blue tetrazolium (NBT) method (A001-1), while CAT activity was evaluated using the
ammonium molybdate method (A007-1-1). GSH (A006-2-1) and GSH-Px (A005-1) activities
and H2O2 (A064-1-1) content were determined by colorimetric assay. The concentration of
8-OHdG was measured using a Crab 8-hydroxydeoxyguanosine Elisa Kit (H165-1).

2.5. Quantitative Real-Time Fluorescent PCR (qPCR) Analysis

Total RNA was extracted from the hepatopancreas by the TRIzol method. RNA quality,
including purity and concentration, was assessed by spectrophotometry (NanoPhotometer®

N50, Implen, Munich, Germen) at 260/280 nm. The cDNA was synthesized from 2 µg of
total RNA using the PrimeScript™ RT reagent kit with gDNA Eraser (Takara). Primers
for SOD, CAT, GPS-Px, iNOS, HSP70, PX, proPO, and β-actin were designed by the Primer
Premier 5.0 software (USA) based on known sequences from E. sinensis. The primer
sequences and GenBank accession numbers are listed in Table 1. β-actin served as the
internal reference gene. The qPCR was performed on a Thermal Cycler Dice® Real Time
System TP800 and programmed as follows: an initial denaturation step at 95 ◦C for 30 s,
followed by 40 cycles of denaturation at 95 ◦C for 5 s and annealing at 60 ◦C for 30 s. The
melting curve analysis was performed with the following temperatures and times: 95 ◦C
for 15 s, 60 ◦C for 30 s, 95 ◦C for 5 s. Three replicates were performed for each sample. Each
sample was subjected to three repetitions, and the data were converted to cycle/threshold
(Ct) values after each reaction. The relative gene expression levels were calculated by the
2−∆∆Ct method.
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Table 1. Sequences of primers used in qPCR.

Gene Primer Sequence (5′-3′) Product Length (bp) GenBank Accession
Number

iNOS TTGCCAGAGCCGTCAAGTT
GCGCCTCGTGTTCTATGTTG 201 XM_050876720.1

GSH-Px ATCCTGTACCCTGCAACCAC
CTCTGGGAACAGCTTCTTGG 174 FJ617305.1

SOD TGGACTGACGGAAGGGCTGC
TGGCGTTAGGGGCGGAGTG 128 FJ617306.1

CAT CCTGCTCGCAGGAATCGGTG
GTCCAAGGAGGTGGCGGTCA 159 MH178391.1

HSP70 GGCAAGGCAGCGAAGGTCATC
CGGCATTGGTGACAGACTGACG 127 KC493625.1

peroxinectin CAGCAACGACTACAACCCGA
TCCTTGCACCAGGGAATGAC 91 GU353176.1

Prophenoloxidase CCATGTCATCATTGCAGCGG
TGTACTTGTGCCAGCGGTAG 119 EF493829.1

β-actin TGGGTATGGAATCCGTTGGC
AGACAGAACGTTGTTGGCGA 101 KM244725.1

2.6. Data Analysis

The results are expressed as mean ± standard error (mean ± SE). Data analysis was
conducted using SPSS Statistic 23.0 software (IBM, Armonk, NY, USA), with one-way
analysis of variance (ANOVA) employed to evaluate differences among groups, and the
Tukey test was used for post hoc comparisons to assess the significance of differences
between groups (p < 0.05). Tests for homogeneity of variance were utilized to verify the
assumption of normal distribution of the data. Graphical representations were generated
using GraphPad Prism 8.0.

3. Results
3.1. Effect of H2O2 Stress on Antioxidant Response in Hepatopancreas

Following exposure to H2O2 stress, the SOD activity in hepatopancreas showed an
initially increasing and subsequently declining response over time. Notably, the activities
peaked at 72 h and were significantly lower than in the control at 96 h of stress (p < 0.05,
Figure 1a) in all the treated groups. The CAT activity displayed a similar trend, showed
a rise and subsequent fall over the course of the experiment, reaching peak levels at 48 h
for concentrations of 3 mmol·L−1 and 15 mmol·L−1, and at 72 h for concentrations of
6 mmol·L−1, 9 mmol·L−1, and 12 mmol·L−1. Notably, CAT activities at 12 mmol·L−1

and 15 mmol·L−1 significantly diminished compared to those of the control at 96 h
(p < 0.05, Figure 1b). T-AOC within the 6 and 9 mmol·L−1 treatment groups showed
an initial increase, peaking at 48 h, while the 12 and 15 mmol·L−1 groups peaked at 24 h
before exhibiting a downward trend. At 96 h of stress, T-AOC levels in all treatment groups
were significantly reduced compared to those of the control group (p < 0.05, Figure 1c). GSH
levels in treated groups also rose and then fell, with the greatest levels observed at 72 h.
Notably, the 15 mmol·L−1 treatment group showed a significantly lower GSH activity than
the control at 96 h (p < 0.05, Figure 1d). GSH-PX activity in the treated groups displayed an
initial rise followed by a decline, with activities substantially lower than those of the control
group at 96 h of stress (p < 0.05, Figure 1e). MDA, 8-OHdG, and H2O2 levels all exhibited a
consistent upward trend in response to both increased experimental duration and elevated
stress concentrations (Figure 1f–h).
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Figure 1. Effects of H2O2 stress on the antioxidant parameters of hepatopancreas. Distinct lowercase
letters indicate significant differences at the same time point (p < 0.05), and distinct uppercase letters
indicate significant differences at different time points within the same treatment group (p < 0.05).

3.2. Effect of H2O2 Stress on Antioxidant Response in Hemolymph

The activities of SOD, T-AOC, CAT, GSH, and GSH-PX in all treatment groups initially
increased and subsequently decreased over the duration of the experiment. Specifically,
SOD activity in the 3 and 12 mmol·L−1 H2O2 treatment groups reached a maximum at 72 h,
while peak activity in the other concentration groups occurred at 48 h (Figure 2a). T-AOC,
CAT, and GSH activities reached their respective maxima at 72 h (Figure 2b–d). GSH-PX
activity showed a peak at 48 h in the 12 and 15 mmol·L−1 H2O2 treatment groups, and at
72 h in the lower concentration groups of 3, 6, and 9 mmol·L−1 (Figure 2e). Conversely,
the concentrations of MDA and H2O2 in the hemolymph showed an increasing trend with
experimental time. The concentrations of MDA and H2O2 in the hemolymph exhibited
a progressively increasing trend as time continued (Figure 2f,g).
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Figure 2. Effects of H2O2 stress on the antioxidant parameters of hemolymph. Distinct lowercase
letters indicate significant differences at the same time point (p < 0.05), and distinct uppercase letters
indicate significant differences at different time points within the same treatment group (p < 0.05).
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3.3. Effect of H2O2 Stress on Genes Expression in Hepatopancreas

During H2O2-induced stress, the mRNA expression levels of SOD, CAT, GSH-Px,
and iNOS in each treatment group exhibited a tendency to increase and then decrease
over time. These expression levels of genes peaked at 72 h post-treatment. By 96 h, the
mRNA expression across all stressed groups was significantly increasing compared to the
control (p < 0.05, Figure 3a–c,g). Concurrently, the mRNA expression of proPO in the 3,
6, 9, and 12 mmol·L−1 H2O2 concentrations of different treatment groups also increased
and then decreased, reaching the highest value at 72 h. Notably, in the 15 mmol·L−1 H2O2
concentration group, the mRNA expression of proPO demonstrated a consistent decline
over time and was significantly reduced compared to that of the control group at 48 h
(p < 0.05, Figure 3d). Additionally, the mRNA expression levels of HSP70 and PX showed
a steady increase as the duration of time extended (Figure 3e,f).
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Figure 3. Effects of H2O2 stress on the expression of antioxidant-related genes in hepatopancreas.
Distinct lowercase letters indicate significant differences at the same time point (p < 0.05), and distinct
uppercase letters indicate significant differences at different time points within the same treatment
group (p < 0.05).

4. Discussion

Extensive studies have demonstrated that variations in salinity, alkalinity, dissolved
oxygen, temperature, and ammonia nitrogen within the aquatic environment can induce
defense responses in organisms, including oxidative stress responses [15–18]. Under such
stress conditions, the continuous production of ROS can disrupt the balance between the
oxidative and antioxidant system, inflicting oxidative damage on lipids, proteins, DNA,
and carbohydrates. When subjected to external stressors, the antioxidant system responds
swiftly, enhancing its antioxidative capacity and modulating the expression of relevant
genes to mitigate the stresses of oxidative challenge.

4.1. Effect of H2O2 Stress on Antioxidative Enzyme Activities in Hepatopancreas of E. sinensis

Under normal physiological conditions, organisms generate ROS as a byproduct of
metabolism. However, an excessive accumulation of ROS can negatively impact the or-
ganism’s physiological state [19]. Antioxidants, which organisms intrinsically possess, can
promptly and effectively remove ROS, thereby preventing oxidative stress. Hepatopancreas
of E. sinensis plays a key role in eliminating excessive ROS [20]. Under stress conditions,
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SOD and CAT are critical antioxidant enzymes and function as the primary line of de-
fense against the overproduction of ROS, mitigating potential adverse effects [21]. SOD
removes the conversion of superoxide radicals (·O2−) into H2O2 and O2, while CAT further
decomposes H2O2 into water (H2O) and oxygen (O2). Their combined activity effectively
eliminates oxidative damage from superoxide radicals, thus preserving the organism’s
internal homeostasis [22]. T-AOC is the cumulative antioxidant potential of tissue and
represents the organism’s overall capacity to scavenge ROS [23]. Studies showed that
air exposure caused oxidative stress in E. sinensis, with the activities of SOD and CAT in
the hepatopancreas initially increasing and then decreasing as the duration of exposure
extended [24]. In the Pacific white shrimp (Litopenaeus vannamei), SOD and CAT activities
in the hepatopancreas were found to be elevated by hypoxia treatment; however, post-
reoxygenation, the activities first rose and then diminished [25]. Furthermore, after recovery
from cold-shock treatment in Pacific white shrimp, activities of SOD, CAT, and T-AOC
showed an initial increase followed by a gradual decrease [26]. The results of our study
indicated that during H2O2 stress, SOD, CAT, and T-AOC levels in the hepatopancreas
initially increased and then decreased. This suggests that the antioxidative capacity of
the organism was rapidly enhanced in response to H2O2 stress. Firstly, the presence of
H2O2 directly enhanced CAT activity. Additionally, oxidative stress elevated·O2− levels,
which increased SOD activity. SOD converted·O2− into H2O2, which in turn boosted CAT
activity to eliminate excess H2O2. This resulted in an elevated activity of T-AOC. However,
with the persistence of oxidative stress, the antioxidant system exceeded its reductive limit,
leading to oxidative damage. This occurred when the cell failed to counterbalance the
damage or the synthesis of new enzymes became impaired, as Sohal, R.S. indicated [27],
which subsequently led to a decrease in antioxidant activities.

GSH possesses the capability to scavenge ROS, including free radicals, peroxides,
and lipid peroxides, thereby playing a crucial role in cellular antioxidative defense mecha-
nisms [28]. GSH-Px is an important peroxidolytic enzyme, catalyzing the specific reduction
of ROS by oxidizing reduced GSH to its oxidized form against lipid peroxidation [29].
Wang et al. found that the administration of aflatoxin B1 to L. vannamei significantly in-
creased the activities of CAT, SOD, and GSH-PX in the hepatopancreas compared to controls,
with a tendency to increase and then decrease [30]. Duan et al. studied the oxidative stress
response of Penaeus monodon to Vibrio parahaemolyticus infection, noting that GSH-Px and
SOD activities in the hepatopancreas initially increased and then decreased, while the MDA
content persistently rose [31]. In our study, when exposed to H2O2, the activities of GSH
and GSH-Px both exhibited a trend of initial increase followed by a decrease. Specifically,
the activity of GSH-PX peaked at 24 h post-stress and then progressively decreased from
48 h to 96 h. Meanwhile, GSH activity reached a higher level at 48 h and 72 h. This pattern
may be due to the role of GSH as the substrate for GSH-Px. Increased activity of GSH-Px
led to the consumption of GSH. Notably, the activity of GSH-Px decreased after 48 h,
which consequently led to a continued rise in GSH levels [32]. At a H2O2 concentration
of 15 mmol·L−1, GSH and GSH-Px activities showed a significant reduction compared to
those of the control. This reduction may be attributed to exacerbated lipid peroxidation,
resulting in hepatopancreatic damage compared to the control.

H2O2 is a significant byproduct of oxidative stress that belongs to ROS. MDA, a typical
product of ROS-induced lipid peroxidation, serves as a crucial indicator of oxidative stress,
reflects the rate and intensity of lipid peroxidation, and indirectly indicates the degree of
tissue peroxidative damage [33,34]. When ROS attack DNA molecules, 8-OHdG is formed
as an oxidative adduct. It is widely recognized as a sensitive biomarker for oxidative DNA
damage [35]. Lin et al. found that when Cd stress was applied to E. sinensis, the activities
of SOD, CAT, and GPx followed a trend of initial increase and then decrease, coinciding
with increased MDA and H2O2 content, which led to tissue damage and apoptosis [36].
When Charybdis japonica was exposed to sulfide, MDA content had an ascending trend [37].
Additionally, the hepatopancreatic cells of E. sinensis showed an increase in 8-OHdG content
after in vitro stimulation with abamectin, indicating DNA damage [38]. In red swamp
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crayfish (Procambarus clarkii), there was a significant increase in 8-OHdG levels in response
to the pesticide deltamethrin [39]. The results of our experiment showed that under H2O2
stress, the MDA and H2O2 levels in the hepatopancreas of E. sinensis showed a gradual
increase. This indicates that the production and accumulation of ROS in the hepatopancreas
led to aggravative lipid peroxidation. Additionally, the significant elevation in the levels
of 8-OHdG observed after 48 h of exposure highlights a time-dependent aggravation of
oxidative DNA damage.

4.2. Effects of H2O2 Stress on the Antioxidant Enzyme Activities of Hemolymph in E. sinensis

Crustaceans depend on the innate immune defense system to combat infections.
The hemolymph serves as the primary vehicle for immunological defense and is vital in
mediating the host’s defensive reactions [40]. Singaram et al. observed that in the mud
crab (Scylla serrata), antioxidant parameters such as SOD, CAT, and GPx in the hemolymph
increased initially and then decreased when exposed to mercury stress [41]. Similarly,
E. sinensis exhibited a comparable response under thiamethoxam stress, with activities of
SOD, CAT, T-AOC, and GSH-Px in the hemolymph showing an initial rise followed by
a decline [42]. Furthermore, when E. sinensis was subjected to acute ammonia-N stress,
there was a significant decrease in hemolymph antioxidants T-AOC and T-SOD, while levels
of GSH-Px and MDA were concomitantly elevated [12]. In our study, the levels of SOD, CAT,
and T-AOC in the hemolymph showed an initial increase followed by a subsequent decrease
under H2O2-induced oxidative stress. This indicates that the crab initially upregulated
SOD and CAT activity to counteract the accumulation of ROS. However, as the duration
of stress extended, the activities of these antioxidant enzymes became suppressed. This
could be due to an excessive accumulation of ROS exceeding the detoxification capacity
of SOD and CAT, and subsequently leading to a reduction in T-AOC activity. Moreover,
GSH and GSH-Px activities showed a tendency of initial increase and then decrease. This
pattern triggered by the initial accumulation of peroxides in hemolymph. But, theree
activities decreased when oxidative stress was overwhelmed at a particular ROS threshold.
Furthermore, upon exposure to deltamethrin, E. sinensis exhibited a significant elevation in
oxidative stress markers H2O2 and MDA in the hemolymph [43]. Similarly, our findings
revealed a consistent increase in MDA and H2O2 levels in the hemolymph of E. sinensis
under H2O2 stress. The results indicated that H2O2, acting as inducer, can lead to significant
accumulation in both ROS and lipid peroxidation products in the hemolymph.

4.3. Effects of H2O2 Stress on the Expression of Antioxidant- and Immune-Related Genes
in Hepatopancreas

In E. sinensis, the innate immune system is principally composed of the antioxidant
systems, prophenoloxidase (proPO) system, and multiple immune factors [44]. Among
them, key antioxidant enzymes such as SOD, CAT, and GPx are the first line of defense
against external invasions [45]. Studies have shown that the mRNA expression of SOD,
CAT, and GPx in the hepatopancreas of Portunus trituberculatus initially increased and
then decreased when infected by Plasmodium trituberculatus [46]. Similarly, the kuruma
prawn (Marsupenaeus japonicas) exhibited an initial increase and subsequent decrease in
these mRNA expressions when subjected to nitrite stress [47]. In L. vannamei, a comparable
trend in the mRNA expression of CAT and GPx was observed after recovery from cold
shock [26]. In this study, the expression of SOD, CAT, and GSH-Px first increased and
then decreased under H2O2 stress, reaching the peak at 72 h, consistent with the activity
profiles of these enzymes. This indicates that oxidative stress triggered the gene expression
of antioxidant enzymes in the hepatopancreas. However, as the stress intensified, the levels
of gene expression decreased.

The proPO system, significantly implicated in the melanization process, is integral
to crustacean immune responses and participates in the acute reaction to pathogenic chal-
lenges [48]. It is a complex cascade consisting of proPO, PO, pattern recognition proteins
(PRPs), and multiple serine proteases. Upon invasion by external pathogens, PRPs initiate
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a cascade of reactions that activates proPO into its active form, PO. Within this system,
an important immune factor known as PX is also activated alongside proPO, thereby acquir-
ing biological activity [49]. Studies have revealed distinct responses of genes in crustaceans’
proPO system following various challenges. In P. clarkii, infection with Aeromonas veronii led
to an initial upregulation followed by a downregulation of proPO expression [50]. Similarly,
infection with Aeromonas astaci in Japanese water shrimp (Macrobrachium nipponense) caused
a significant upregulation of proPO mRNA levels [51]. Additionally, the immunostimulant
β-glucan was found to induce an upregulation of PX in the Indian white shrimp (Fen-
neropenaeus indicus) [52]. In the current study, consistent elevation of proPO mRNA was
observed at the H2O2 concentration of 3 mmol·L−1. Conversely, H2O2 concentrations of 6,
9, 12, and 15 mmol·L−1 induced an initial increase and then a decrease in proPO mRNA
levels. This indicates that while low concentrations of H2O2 activated the proPO system,
excessively high levels may disrupt it, causing a decrease in proPO mRNA expression.
Moreover, the relative expression of PX continuously increased over time with rising H2O2
concentrations, suggesting that PX expression increased in accordance with oxidative stress,
thereby enhancing the immune system and disease resistance of E. sinensis.

Heat shock proteins (HSPs) are ubiquitously distributed within the cells of both eu-
karyotes and prokaryotes with a highly conserved evolutionary process. HSPs perform
multiple biomolecular functions, including as molecular chaperones, antioxidants, reg-
ulators of apoptotic, and mediators of immune responses [53]. As sensitive biomarkers
of environmental stress, HSPs can provide indications to diverse stressors, such as wa-
ter environmental factors, salinity, air exposure, and pesticides—all of which can elicit
an increase in HSP expression levels [54–57]. When ridgetail white shrimp (Exopalaemon
carinicauda) were exposed to Prorocentrum minimum, an increase in HSP70 gene expression
was observed in hemocytes and the hepatopancreas [54]. In Macrophthalmus japonicus, the
mRNA expression of HSP70 and HSP90 was significantly upregulated in the hepatopan-
creas under salinity or bisphenol A (BPA) stress [55]. Under conditions of air exposure,
mud crab (Scylla paramamosain) exhibited raised levels of HSP90 and HSP70 mRNAs in
the hepatopancreas [56]. Moreover, in the black tiger prawn (Penaeus maculatus), HSP70 in
the muscle was significantly increased under the stress of the pesticides endosulfan and
deltamethrin [57]. However, E. sinensis showed an initial increase followed by a decrease
in HSP70 gene expression when exposed to glyphosate [58]. In the current study, the ex-
pression of HSP70 in the hepatopancreas of E. sinensis showed a continuous increase under
H2O2 stress, correlating with both the duration of exposure and rising H2O2 concentrations.
Notably, at a higher concentration of 15 mmol·L−1, a substantial upsurge in expression
was observed. The study demonstrated that the elevated expression of HSP70 may play
a crucial role in mitigating oxidative damage.

iNOS is a vital component of the innate immune system, possessing antiviral, an-
tibacterial, and antiparasitic properties. iNOS exerts these effects by directly or indirectly
targeting the bases and chains of DNA, proteins, and membrane lipids, thereby inflicting
damage to the DNA, enzymes, and membranes of pathogens [59]. Post-infection with
the White Spot Syndrome Virus (WSSV), the expression of iNOS in Chinese white shrimp
(Fenneropenaeus chinensis) and M. japonicas showed an initial upregulation followed by
a subsequent reduction [60]. Similarly, S. paramamosain showed a significant increase at the
mRNA levels of NOS within the intestine, hepatopancreas, and hemocytes upon pathogens
infection, suggesting a correlation between NOS activity and immune system functional-
ity [61]. In this study, the expression of iNOS in E. sinensis during H2O2 stress also followed
a trend of first increasing and then decreasing, indicating the role of iNOS in modulating
the immune response of E. sinensis. Additionally, iNOS has the ability to generate NO,
which may lead to an increase in RNS, and thereby intensify damage in E. sinensis [62].

4.4. Effects of Stressors on the Antioxidant Capacity of Crustaceans

The crustacean antioxidant enzyme system plays a pivotal role in combating oxidative
stress, representing an intricate mechanism by which these organisms maintain physiologi-
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cal homeostasis amidst environmental perturbations. We compared the trends in oxidative
stress markers in crustaceans under various stressors to gain deeper insight into their
physiological responses to oxidative stress over time (Table S1). We observed that different
stress treatments elicited varying antioxidant responses across different crustaceans. For
crustaceans, the primary external stressors include environmental pressures such as tem-
perature, hypoxia, salinity, ammonia, and desiccation; and anthropogenic stressors such
as heavy metals (copper, cadmium), toxic substances, and pesticides (aflatoxin, bisphenol,
abamectin, deltamethrin). Furthermore, pathogenic microorganisms (bacteria and viruses),
compound the oxidative burden. In response to oxidative stress, the activity of antioxi-
dant enzymes in crustaceans can exhibit three distinct trends: an increase, a decrease, or
an initial increase followed by a decrease. Generally, upon exposure to stressors, there is
an upregulation of antioxidant markers to neutralize the surge in ROS. However, a decrease
in certain antioxidant markers may occur due to depletion in response to excessive ROS
or as a result of tissue damage. Additionally, antioxidant markers initially rise due to the
pro-oxidant characteristics; if the stress is prolonged or excessive, the antioxidant system
may become depleted or damaged, leading to a decrease in the activity of antioxidant
enzymes. This inability to effectively clear ROS aggravates cellular damage. The elevation
of lipid peroxidation products (such as MDA) and DNA damage markers (such as 8-OHdG)
are also significant indicators of oxidative stress, signaling damage to cell membranes and
genetic material.

5. Conclusions

In summary, we exposed E. sinensis to various concentrations of H2O2 and monitored
physiological and biochemical markers of oxidative stress. We also measured expression
levels of genes associated with the antioxidant response and immune function. The con-
veyed data support the dynamic and biphasic nature of the oxidative stress response in
E. sinensis. The findings demonstrate that an organism’s initial response to oxidative stress
is to enhance its antioxidative defenses. However, if the intensity or duration of the stress
surpasses a certain threshold, the protective mechanisms become overwhelmed, resulting
in oxidative damage. These findings have significant implications for comprehending
the stress responses at the cellular and molecular levels and can be critical for devising
strategies to shield organisms from oxidative harm.
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