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Abstract: The paracrine signaling pathways for the crosstalk between pericytes and endothelial cells
are essential for the coordination of cell responses to challenges such as hypoxia in both healthy
individuals and pathological conditions. Ischemia–reperfusion injury (IRI), one of the causes of
cellular dysfunction and death, is associated with increased expression of genes involved in cellular
adaptation to a hypoxic environment. Hypoxic inducible factors (HIFs) have a central role in the
response to processes initiated by IRI not only linked to erythropoietin production but also because of
their participation in inflammation, angiogenesis, metabolic adaptation, and fibrosis. While pericytes
have an essential physiological function in erythropoietin production, a lesser-known role of HIF
stabilization during IRI is that pericytes’ HIF expression could influence vascular remodeling, cell
loss and organ fibrosis. Better knowledge of mechanisms that control functions and consequences of
HIF stabilization in pericytes beyond erythropoietin production is advisable for the development of
therapeutic strategies to influence disease progression and improve treatments. Thus, in this review,
we discuss the dual roles—for good or bad—of HIF stabilization during IRI, focusing on pericytes,
and consequences in particular for the kidneys.

Keywords: pericytes; ischemia–reperfusion injury; hypoxia; hypoxia inducible factors (HIFs);
endothelial cells (ECs); fibrosis

1. Introduction

Pericytes (PCs) play a pivotal role in the control of physiological and pathophysiologi-
cal processes in different organs and vascular beds [1]. PCs exhibit molecular differences
and exert different functions depending on their anatomical location, development origins,
and modes of vessel recruitment [2]. Coordinated endothelial cell (EC)–PC interactions are
required to facilitate vascular remodeling during hemodynamic changes. These interactions
are mediated by coordinated responses between soluble mediators, such as transforming
growth factor-β (TGF-β), platelet-derived growth factor-β (PDGF-β), vascular endothelial
growth factor (VEGF), angiopoietin 1 and 2 (Ang1/Ang2), and their receptors [3].

The paradoxical increase in cellular dysfunction and death that occurs when blood
flow to previously ischemic tissues is restored is known as ischemia–reperfusion injury
(IRI). IRI may occur in different organs, such as the kidney, brain, heart, lung, gut, and
skeletal muscle, starting a chain of events possibly resulting in multi-organ failure. Local
and systemic inflammatory responses, oxidative stress and production of reactive oxygen
species (ROS) lead to cellular apoptosis, a recognizable characteristic alteration that occurs
cin damaged tissues after IRI. Moreover, hypoxic insults increase the expression of several
genes, including hypoxia-inducible-factor-1 (HIF-1), VEGF, glucose transporter type 1
(GLUT1), and many others that have a significant impact on how cells react to hypoxia [4].
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Although PCs are considered the major kidney erythropoietin (EPO) producing cells
through HIF-dependent gene transcription, and HIF stabilizers are emerging as promising
treatments for anemia in chronic kidney disease (CKD) patients [5], PCs are also considered
the major precursor cells of myofibroblasts in CKD and a source of fibrosis in the kidney [6].

Currently, the impact of HIF stabilization on PCs during IRI and its effects beyond EPO
production is still poorly understood. HIF stabilization is intended as a stable expression
of HIF target genes responsible for maintaining biological homeostasis in response to
decreased oxygen availability [7]. This review emphasizes the dual consequences of HIF
activity during IRI focusing on PCs and their role in vascular remodeling and fibrosis
in CKD.

2. Pericytes (PCs)—Endothelial Cells (ECs) Crosstalk

PCs are interstitial fibroblast-like cells embedded within the basement membrane of
micro-vessels in close contact with endothelial cells (ECs). Their long processes surround
the endothelial wall and are typically connected with ECs via adhesion plaques and via
peg–socket junctions, providing support to the vasculature. Peg–socket junctions are char-
acterized by PC cytoplasmic fingers (pegs) that are inserted into endothelial invaginations
(pockets), whereas adhesion plaques are junctions formed by bundles of microfilament
containing fibronectin that anchor these two cells [8]. Through these specific connections,
a single PC often connects with more than one EC, which allows PCs to integrate and
coordinate nearby cell responses. Depending on the vascular bed, PC’s coverage of ECs
ranges from approximately 10% to 50%, and the main vascular sites where they were found
are blood capillaries, arterioles, and venules. The central nervous system (CNS) has the
highest PC coverage, particularly in the retina where the relative frequency of PCs to ECs is
1:1, whereas the skeletal muscle has a lower rate (1:100). Consequently, the retina appears
to be the most vulnerable site for partial pericyte loss. Moreover, PC morphology varies
among different organs. For example, in the kidney, they are rounded, compact, and only
focally attached to the basement membrane, whereas in the CNS, they are flattened or
elongated with multiple cytoplasmic processes, in contact with a large abluminal vessel
area [9].

The paracrine signaling pathway between PCs and ECs is essential for the develop-
ment of blood vessels in healthy individuals and under pathological conditions. Angio-
genesis is initiated when blood vessels experience hypoxia and inflammation, causing
the production of relevant angiogenic factors, such as VEGF and Ang2. In response to
Ang2, PCs detach from the vessel wall due to protein hydrolysis mediated by matrix
metalloproteinase allowing the release of inactive VEGF from the extracellular matrix
(ECM). Subsequently, one EC is chosen to differentiate into a leading cell, known as a
tip cell, placed at the tips of vascular sprouts that coordinate multiple processes during
angiogenesis and lead to the migration of new ECs. This process is regulated by various
signaling pathways and molecules; HIF-1α is one of them. During neovascularization,
the recruitment of PCs is essential for preserving normal blood vessel morphology and
promoting basement membrane deposition after the connection between ECs and PCs is
established [10]. Angiopoietins are regulatory factors involved in the control of vascular
development. Ang1 is produced by PCs and participates in maintaining EC survival by
inhibiting inflammation and vascular leakage. On the other hand, Ang2 is produced by
activated ECs and is involved in inflammation and vessel leakage, acting as an antago-
nist of Ang1 [11,12]. TGF-β is synthesized by PCs and ECs as a latent complex with its
prodomain and is maintained in the ECM in its inactive state. Therefore, upon direct
interaction between PCs and ECs, TGF-β is activated. TGF-β is synthesized with large
amino-terminal pro-domains that confer latency [13] and cocultures of ECs and PCs were
showen to induce the activation of TGF-β [14]. During the activation process, one of the
most significant intracellular modifications involves the cleavage of the C-terminal pro-
region from the N-terminal portion of the protein due to pH variations, heat, chaotropic
agents and other physiological substances, such as serine protease, plasmin, neuraminidase,
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and cathepsis [15]. Activated TGF-β transduce a signal through activin receptor-like ki-
nases 1 and 5 (Alk1–Alk5) and SMAD 2/3/5. Alk1 is preferentially expressed on ECs
and mediates proliferation to promote angiogenesis, whereas Alk5 is expressed on both
ECs and PCs, mediating proliferation, and differentiation [16–18]. Moreover, another im-
portant signaling pathway in EC-PC communication is the platelet-derived growth factor
(PDGF)/PDGF Receptor-β (PDGFR-β) pathway. It affects PC development, proliferation,
and recruitment during angiogenesis [19,20]. Compensatory overexpression of VEGF-A,
the proliferation of ECs and abnormal junction development are induced by the loss of the
PDGF-/PDGFR-β signaling pathway [21]. VEGF expression by PCs and other perivascular
cells is a crucial element in the initiation of angiogenesis and can be considered as a sur-
vival factor between ECs and PCs. Transmembrane tyrosine kinase receptors for VEGF
are expressed mainly by ECs; they are known as VEGFR1, VEGFR2 and VEGFR3 and are
responsible for vasculogenic signaling transduction and EC migration [22–24]. VEGFR1 is
also expressed by PCs and has been shown to mediate PC loss, as stated by Cao et al. [25]
(Figure 1).
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Figure 1. Pericyte and endothelial cells coordinated responses. In both healthy individuals and during
pathological conditions, PC-EC crosstalk is critical for developing coordinated responses between
cells. Paracrine signaling is regulated by the production of regulatory factors involved in vascular
development, inflammation, and cell differentiation. PDGF-β: platelet-derived growth factor-β;
TGF-β: transforming growth factor-β; PTM: pericyte-to-myofibroblast; Ang1/Ang2: angiopoietin
1 and 2; VEGF: vascular endothelial growth factor. Created with BioRender.com.

3. Ischemia–Reperfusion Injury and HIF

Hypoxia leads to the activation of hypoxia-inducible transcription factors (HIFs),
which are heterodimers formed by an α subunit (O2-sensitive) and a β subunit (O2-
insensitive) and include three distinct members known as HIF-1, HIF-2, and HIF-3. More-
over, three different genes encode for three identified HIF-α subunits (HIF-1α, HIF-2α,
HIF-3α) that dimerize with the same β subunit (HIF-1β) in humans [26]. Among these,
HIF-1α is the most well known and mediates the most adaptive changes in response to
hypoxic environments in different organs while HIF-2α is considered to have a role in
angiogenesis, lipid metabolism regulation, cell migration, and tumor invasion. HIF-3α
showed the capacity to both inhibit and activate the HIF pathway, depending on the HIF-
3α isoform. HIF-1α has a short half-life (5 min) because the von Hippel–Lindau tumor
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suppressor protein (VHL) is responsible for its degradation after recognition by prolyl hy-
droxylase proteins (PHDs), which serves as an oxygen sensitivity system leading to HIF-1α
hydroxylation and its subsequent ubiquitination in normoxic conditions [27]. When the O2
concentration reaches dangerously low levels, PHDs are inactivated and the heterodimers
can translocate to the nucleus where they form a transcriptional complex with co-activators
and bind to hypoxia response elements (HREs), inducing the activation of target gene
transcription [28]. The effects of HIFs are difficult to evaluate. Normoxic conditions led to
the rapid degradation of HIF, increasing the difficulty in precise assessments of its protein
levels in tissue. Moreover, the same HIF isoform can regulate distinct target genes in
various cell types [29,30] (Figure 2).
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Figure 2. Regulation of HIF-1α depending on O2 concentration. When the oxygen levels are normal
HIF-1α undergoes prolyl hydroxylation on its proline residues by PHDs. This process facilitates its
degradation, orchestrated by the VHL through the ubiquitin proteasome pathway. In conditions
of low oxygen concentration, the VHL tumor suppressor protein becomes inactive, enabling the
formation of a heterodimer between HIF-1α and HIF-1β in the nucleus. This heterodimer assembles
into a transcriptional activation complex that binds to the HRE and acts as a transcription factor.
Created with BioRender.com.

Under conditions of low oxygen concentration, most eukaryotic cells are able to shift
their metabolic processes from predominantly mitochondrial respiration to glycolysis
to support adequate production of ATP. Increased glycolysis is useful for maintaining
bioenergetic homeostasis but may also have a significant influence on hypoxic endothelial
and immune cell biological functions and tumor development [31], as well as on defective
pericyte-endothelial cell interactions [32]. Evidence shows that HIF-1-mediated activation
of glycolysis is essential for tissue metabolic adaptation to hypoxia because it increases the
conversion of glucose to pyruvate and then lactate to maintain ATP levels and prevent ROS
production [33]. Therefore, glycolysis helps to restore the high-energy phosphate level after
reperfusion [34]. Matsushima et al. have investigated the role of NADPH oxidases 2 and
4, the heart’s major Nox isoforms, and showed that they mediate myocardial IRI through
the production of ROS and oxidative stress, but they also play a crucial part in HIF-1α
regulation in response to ischemia–reperfusion insults through the inactivation of PHD
and subsequent upregulation of HIF-1α with a potential protective role against IRI [35].
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Mitochondrial impairment is a major feature of ischemia insults. Increased intracellular
Ca2+ is found in low O2 level conditions, arising even more during reperfusion, leading to
a calcium overload, and opening of mitochondrial permeability pores. In the heart, both
Ca2+ levels and ROS production contribute to cardiomyocyte apoptosis or necrosis [36].
Na+/H+ exchanger-1 (NHE1) plays a well-established role in regulating intracellular pH
in cardiomyocytes by producing a significant transmembrane exchange of Na+ and H+

ions, allowing the removal of excess acidity from the cytoplasm [37]. During ischemia,
NHE1 may become activated in response to intracellular acidosis resulting from anaerobic
metabolism and during reperfusion, when the transmembrane pH gradient is at its peak.
The activation of NHE1 has been associated with increased mitochondrial oxidation, Ca2+

overload and ROS levels in animal models [38]. HIF-1 was shown to increase the mRNA
and protein expression of NHE1 in pulmonary arterial smooth muscle cells, mediating
vascular remodeling during hypoxic insults [39].

HIF-1α could transcriptionally control the levels of frataxin, which acts as a cardiopro-
tective factor against IRI. Frataxin is a mitochondrial protein that regulates mitochondrial
Fe-S cluster formation during the oxidative phosphorylation process and plays a role in iron
storage during conditions of iron overload, providing an essential antioxidant function by
reducing the production of ROS during iron excess. Evidence shows that HIF-1α expression
increases frataxin levels, thus reducing ROS generation and mitochondrial iron overload
and protecting the mitochondrial membrane from damage [40]. Moreover, compared with
the control myocardium, higher levels of HIF-1α have been found in the myocardium
IRI model and they were related to the expression of microRNAs (miRNAs). The rela-
tionship between mitochondria and the cell nucleus is essential for the stability of these
organelles, and miRNAs play a pivotal role in this mitochondria–nucleus dialogue. Low
levels of miR-138 are related to myocardial IRI. Overexpression of miR-138 demonstrated a
cardioprotective role in decreasing the infarct size by inhibiting mitochondria-mediated
apoptosis by targeting HIF-1α [41]. Song et al. stated that miR-126 expression may be
induced by HIF-1α in endothelial cells after myocardial infarction, which promotes angio-
genesis in peri-infarct areas through regulation of the activity of the phosphatidylinositol
3-kinase/protein kinase B pathway (PI3K/AKT) [42]. Moreover, Li H.S. et al. showed that
hypoxic-mediated apoptosis is attenuated by HIF-1α which exerts a role in the expression
of genes that control mitochondrial fission and fusion, such as GTPase Drp1 levels and
optic atrophy factor 1 (Opa1) levels [43]. Mitochondrial fission is essential for cardiac
homeostasis; it separates the mitochondrion into two daughter mitochondria and allows
the removal of damaged organelles from the healthy network for degradation by selective
autophagy of the mitochondria [44]. Mitophagy may occur through ubiquitin-dependent or
-independent mechanisms. The independent mechanism is mediated by different receptors,
among which BNIP3 (BCL2/Adenovirus E1B 19 KDa Protein-Interacting Protein 3) has
been reported to be upregulated via HIF-1α, leading to the clearance of damaged mitochon-
dria, and promoting myocardial remodeling to provide cardiac protection after IRI [45].
The production of mitochondrial antioxidants in cells is also promoted by HIF-1α through
the nuclear factor erythroid 2-related factor 3 (Nrf2) and by increasing the synthesis of
antioxidants such as glutathione and superoxide dismutase 2 [46].

3.1. HIF-1α and Cerebral IRI

Cerebral ischemic injury leads to neuronal cell death after sudden rupture of cerebral
vessels, cerebral artery embolism, or thrombosis, resulting in decreased blood supply in
specific areas of the brain. Endogenous substances, including amino acids and neuro-
transmitters, have a neuroprotective role against cerebral ischemia by controlling HIF-1α.
For example, after IRI in rats, arginine and glycine can reduce the inflammatory response
mediated by HIF-1α and protect neuronal cells from death [47,48]. Increased expression of
VEGF and HIF-1α have been linked to increased levels of the α7 nicotinic acetylcholine
receptor, which promotes the formation of cerebral arteries and reduces cerebral ischemic
damage [49]. Moreover, Jin et al. showed that cavin-1, a cytoplasmic protein involved
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in the signal transduction pathways and participating in bioenergetic processes, was in-
creased in neuronal cells after IRI and that its expression was regulated by the signal
transducer and activator of transcription 3 STAT3/HIF-1α axis, whose inhibition could
help to reduce the infarct volume and the neurological deficits in IRI models [50]. How-
ever, some studies proposed that HIF-1α could contribute to cerebral IRI by inducing
pro-inflammatory cytokine production. Yang et al. showed that nitric oxide may promote
cerebral ischemia/reperfusion injury through upregulating HIF-1α-associated inflamma-
tion processes and apoptosis in rats [51].

3.2. HIF-1α and Renal IRI

The kidneys are considered one of the organs most vulnerable to hypoxic injury
because of the intricate functional interplay between oxygen consumption, renal blood flow,
and glomerular filtration rate (GFR). IRI is considered a well-known risk factor involved in
the pathogenesis of acute kidney injury (AKI) [52]. In renal IRI, mitophagy mediated by the
HIF-1α-BNIP3 axis has demonstrated a protective role through the inhibition of oxidative
stress and apoptosis in tubular cells [53], as well as miR-668 HIF-related expression, which
inhibits pathological mitochondrial fragmentation [54]. Moreover, the induction of miR-21
and VEGF by HIF is essential in the neovascularization process after ischemic kidney
damage and may be related to the inhibition of thrombospondin 1, a multifunctional
protein recognized as an angiogenesis inhibitor [55]. The inflammatory response during
renal IRI is regulated by numerous transcription factors. Nuclear factor kB (NF-kB) plays
a pivotal role and is closely linked to HIF-1α at transcriptional levels. Li et al. found that
NF-kB is required for enhancing HIF-1α transcription in renal tubular epithelial cells [56].

3.3. HIF-1α and Hepatic IRI

In the liver, the interleukin-1 receptor antagonist (IL-1ra) expression is considered a
pivotal factor in the regulation of hepatic IRI. Evidence has shown that higher levels of
IL-1β and tumor necrosis factor-α (TNF-α) are released in the hepatic tissue after ischemic
and reperfusion insults, leading to the secretion and activation of several proinflammatory
cytokines and pathways. IL-1ra, a naturally endogenous IL-1 inhibitor that binds to
the IL-1 receptor without eliciting a signal, can significantly reduce hepatocyte damage
during IRI-induced proinflammatory cytokine production [57]. By interfering with iron
homeostasis, the Fenton reaction between ferrous iron and ROS causes iron-dependent
necrosis, called ferroptosis, leading to excessive lipid peroxidation and cell death in a
HIF-1α-dependent way during IRI. In hepatic tissues, ferroptosis can be inhibited by the
activation of the µ-opioid receptor (MOR), which exerts a hepatoprotective role by reducing
liver dysfunction and inflammation via p53 expression [58]. However, in animal models,
HIF-1α overexpression is linked to the upregulation of adenosine receptors, among which
the A2B adenosine receptor (A2BAR) is widely distributed throughout the heart, liver,
lungs, kidneys, and blood vessels and is involved in tissue adaptation to hypoxia and
inflammation. Evidence has shown that the expression of A2BAR is induced by HIF-1α in
endothelial cells, dendritic cells, and cancer cells after hypoxic damage. A2BAR activation
in hepatic IRI attenuates NF-kB signaling and consequent liver cell inflammation, protecting
the liver from damage [59].

4. Ischemia–Reperfusion Injury and Pericytes

Renal IRI causes disruption of the integrity of ECs, leading to loss of peritubular
capillaries and hypoxia, which is considered a primary initiator of fibrotic alterations in
the kidney. In this context, PCs can detach from the endothelium and differentiate into
myofibroblasts after migrating to the interstitium, contributing to kidney fibrosis. Khairoun
et al. showed that IRI in rats causes a loss of ECs, PC proliferation, and the development
of fibrosis linked to an imbalance between Ang2 and Angiopoietin1 (Ang1) [60]. Their
findings have also been validated in the field of transplantation, in which reperfusion of
kidney allografts has led to increased levels of Ang2 [61]. Human myofibroblasts in patients
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with CKD show increased expression of tumor endothelial marker 1, known as CD248
or endosialin. This marker is a PC type I transmembrane glycoprotein, and increased
expression was linked to poor renal survival [62]. Using a renal IRI murine model, CD248
was found to be upregulated in renal myofibroblasts, as observed by Pai et al. Moreover,
CD248 knockout rats exhibited decreased renal fibrosis and macrophage recruitment due
to a reduction in myofibroblast collagen production [63]. PCs play a role in regulating
kidney medullary blood flow; they are associated with the descending vasa recta and
cortical and medullary peritubular capillaries and show expression of α-smooth muscle
actin (α-SMA) which mediate the contraction of capillary PCs and controls the distribution
of blood flow within the renal medulla [64]. After ischemia and reperfusion, α-SMA was
found to be strongly expressed by PCs surrounding the descending vasa recta, resulting in
capillary constriction, presumably via actomyosin-based contractility. Moreover, another
key modulator of actin polymerization and PC contraction is the Rho kinase pathway, which
increases phosphorylation of the myosin light chain by inhibiting myosin phosphatase, thus
increasing PC contraction. Rho kinase blocking after ischemic insult and from the start of
reperfusion reduced acute kidney injury through inhibition of PC contraction and increased
medullary blood flow [65]. Metabolically, mitochondria are largely responsible for ATP
generation in renal PCs, despite evidence showing that glycolysis represents the principal
metabolic pathway responsible for the production of ATP in proliferative placental PCs [66],
suggesting that different PC subpopulations rely on different metabolic pathways probably
due to different oxygen supplies. According to Chen et al., the pericyte-to-myofibroblast
(PTM) transition mediated by TGF-β1 is characterized by increased glycolysis and elevated
phosphorylation levels of serin threonine kinase mTOR. The inhibition of the PI3K-Akt-
mTOR pathway resulted in decreased glycolysis, suggesting that this pathway plays a
role in the regulation of PTM [67]. These results are consistent with studies in AKI animal
models obtained by IRI. Researchers have observed increased expression of the pyruvate
kinase M2 subtype (PKM2) in renal-damaged PCs, suggesting that glycolysis is a pivotal
metabolic pathway for PTM [68]. Therefore, targeting PC metabolic reprogramming during
the AKI to CKD transition can prevent PTM, as stated by Xu et al. They showed that the
enhancement of fatty acid oxidation or the inhibition of the glycolytic pathway during
renal IRI in an animal model can influence the fate of PC transdifferentiation and prevent
the progression of the damage [69].

In renal IRI, the complement system plays a crucial role in mediating tissue dam-
age and enhancing innate and adaptive immune responses. Specifically, C5a exhibited
a profibrotic action by modulating the TGF-β pathway through ERK activation, leading
to increased early interstitial extracellular matrix deposition and the acquisition of PTM
phenotype, suggesting that PCs are one of the targets of complement activation during
IRI [70]. Microarray analyses were conducted by Chou et al. who showed that epigenetic
modifications during IRI are present in PCs and contribute to the shift into a profibrotic and
proliferative phenotype, leading to the progression of CKD and increased fibrogenesis [71].
Decreased vascular relaxation following reperfusion can lead to a “no-reflow phenomenon”,
which is characterized by higher resistance of microvascular blood flow after an occluded
blood artery reopens during infarct-related insult and is linked to poor outcomes [72].
One of the leading causes of disability worldwide is ischemic stroke, defined as an acute-
onset condition caused by the occlusion of a cerebral artery. Nowadays, reperfusion of
the ischemic tissue obtained from the recanalization of the occluded vessel is considered
the treatment of choice. However, “no-reflow” of the cerebral microvasculature could
result in further tissue damage. PCs have been shown to play a role in this phenomenon
because they are implicated in sustained reversible constriction of their associated capil-
laries, which has detrimental effects on cerebral blood flow during and within the first
24 h post-stroke, as demonstrated by Shrouder et al. [73]. Therefore, during the acute
phase of brain ischemia, oxidative stress leads to the accumulation of neurotoxic substances
and subsequent impairment of BBB integrity and PCs start to secrete degrading proteases,
such as matrix metalloproteinase-2 and -9 (MMP-2, MMP-9), which induce their migra-
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tion and cellular damage resulting in BBB disruption. However, PCs may also contribute
to the maintenance of BBB through regulation of the development of cerebral microcir-
culation after their recruitment to the vessel walls in the embryonic brain, as stated by
Winkler et al. [74]. Regarding microvascular blood flow, PC contraction after reperfusion is
induced by oxidative-nitrative stress and may be the cause of the failure of thrombolytic
therapy in stroke. Moreover, immune-inflammatory responses may be driven by PCs
through the production of pro-inflammatory factors such as chemokines and cytokines,
which can amplify the inflammatory process in the brain after ischemic stroke and disrupt
BBB functioning [75]. Myocardial IRI and subsequent microvascular dysfunction lead to a
decreased rate of normal myocardial reperfusion [76]. Cardiac PCs can quickly contract in
response to ischemia, and after the reperfusion, they may not relax, which might lead to
no-reflow phenomena and PC apoptotic rigor [77]. Furthermore, PCs from ischemic hearts
showed a senescent phenotype along with signs of oxidative stress, decreased angiogenic
potential, and impaired ribosome biogenesis [78,79]. Vascular hyperpermeability results
from PC dysfunction and loss and is associated with the development of fibrotic lesions
and impairs communication between surrounding cardiomyocytes and stromal cells. In
addition, this can cause left ventricular systolic and diastolic dysfunction. Moreover, the
expression of TGF-β was high in PCs post-myocardial infarct. One to seven days after
the ischemic damage, PCs migrated to the injury site and expressed fibrotic-related genes
to promote fibrosis and stabilize scar tissue [80]. However, after the production of pro-
inflammatory mediators and recruitment of neutrophils, macrophages, and other immune
cells in the early phase after ischemia, PCs start to produce immune regulatory molecules
that help to reduce the acute inflammatory responses, such as leukemia inhibitor factor,
cyclooxygenase 2, haemooxygenase 1, and IL-6 [81]. These studies suggest a pivotal role
for PCs in IRI (Figure 3 and Table 1).

Table 1. Collected studies of the paragraph and their major findings.

Organ/Cell Type Model Major Findings References

Kidney Murine IRI causes a dysbalance in angiopoietins, loss of ECs,
PCs proliferation and fibrosis Khairoun M et al. [54]

Kidney Human IRI causes Increased levels of Ang2 and EC
activation de Vries DK et al. [55]

Kidney Murine IRI causes upregulation of the fibrotic marker CD248 Pai CH et al. [57]

Kidney Murine
Blocking Rho kinase during IRI reduces AKI by

inhibiting PCs contraction and increasing medullary
blood flow

Freitas F et al. [59]

Kidney Murine
IRI induces increased expression of PKM2 in PCs,
indicating that glycolysis plays a crucial role as a

metabolic pathway for PTM
Chen Y et al. [62]

Kidney Murine Activation of FAO or inhibition of glycolysis during
IRI can prevent AKI to CKD progression Xu C et al. [63]

Kidney Swine

PCs are the target of complement activation leading
to a profibrotic maladaptive cellular response.

C1-INH may be a therapeutic strategy to counteract
the development of PMT

Castellano G et al. [64]

Kidney Murine
PC epigenetic modifications during IRI play a role in

their transition towards a profibrotic and
proliferative phenotype.

Chou YH et al. [65]

Brain Murine
PDGFRβ is expressed in PCs in the adult brain
indicating that genetic disruption of PDGFRβ

signaling leads to a PCs specific injury
Winkler EA et al. [69]
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Table 1. Cont.

Organ/Cell Type Model Major Findings References

Heart Murine

After myocardial infarct PCs regulate the induction
of genes associated with vascular permeability,

extracellular matrix production, basement
membrane degradation, and TGF-β signaling

Quijada P et al. [75]

Fibroblasts cell lines Murine
TGF-β1 can suppress HIF-2α expression by
activating ALK5 leading to decreased EPO

production
Shih HM et al. [82]

Kidney Murine
The decreased EPO production in myofibroblasts
could be partially reversed by the inactivation of

PHD
Souma T et al. [83]

Kidney Murine
HIF stabilization resulted in increased EPO

production and polycythemia but no noticeable
change in renal fibrosis.
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Figure 3. Ischemic insults leading to loss of pericytes and fibrotic damage. Schematic illustration
showing how IRI leads to damage of pericytes in the kidney, brain, and heart. In the kidney,
after ischemic insult, PCs can detach from the endothelium of peritubular capillaries and undergo
phenotypical, metabolic, and epigenetic changes under the influence of cytokines and other pro-
inflammatory factors. These changes are defined by the pericytes-to-myofibroblast transition. In
the brain, ischemic stroke is associated with disruption of BBB and the “no-reflow” phenomenon.
PCs contribute to the damage in both phenomena with secretion of ECM-degrading proteases and
sustained reversible constriction of their associated capillaries. In myocardial infarction, PCs are
dysfunctional, leading to higher vascular leakage, no-reflow, and contributing to scar stabilization.
Created with BioRender.com.
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5. HIF Stabilization in Pericytes

During hypoxia in the normal kidney, PCs produce EPO through the binding of the
HIF2α/HIFβ complex to the 5′HRE located at 9248 bp upstream of the EPO transcriptional
start site, thereby initiating EPO transcription [85]. Anemia is largely caused by impairment
of production by PCs and their phenotypic transformation into myofibroblasts. This
condition represents one of the main complications in patients with CKD and affects
outcomes and quality of life [86,87]. Despite the importance of this topic, which may
overshadow other aspects, studies have also demonstrated the pivotal role of PCs in organ
fibrosis [88]. Hypoxic insults represent one of the most important causes of tubulointerstitial
injury and peritubular capillary rarefaction, characteristics observed in many fibrotic kidney
diseases. Therefore, when hypoxia occurs, PCs begin to produce EPO to fulfill the need
for erythropoiesis, but when CKD worsens, these interstitial cells become myofibroblasts
and start to deposit ECM to promote tissue repair, losing their ability to produce EPO [89].
During IRI, increased methylation of RAS Protein Activator Like 1 (Rasal1) and Ybx2,
the actin alpha 2 (Acta2) repressor gene, is mediated by TGF-β through upregulation
of DNA methyltransferase, promoting cell proliferation and α-SMA expression in PCs.
Moreover, parallel hypermethylation in the 5′-enhancer and promoter of the EPO gene
causes suppression of EPO in myofibroblasts and consequent anemia in CKD. Shih et al.
stated that HIF-2α regulates PCs EPO production and showed that in C3H10T1/2 cells, a
pericyte cell line, TGF-β1 can suppress HIF-2α expression by activating activin receptor-like
kinase-5 (ALK5), resulting in a decreased EPO production [82]. Additionally, Souma et al.
showed that reduced EPO production in myofibroblasts may be partially reversed by
inactivation of prolyl hydroxylases and consequent activation of HIF pathways [83]. Various
studies have demonstrated the importance of HIF genes in the pathogenesis of renal
disorders. Some of them stated that HIF activation can reduce the progression rate of
kidney diseases and protect cells from ischemic damage, whereas others raised some issues
on potential oncogenic effects and deterioration of cardiovascular and kidney functions [90].
Conversely, the effects of HIF stabilization in myofibroblasts or PCs on renal fibrosis are
poorly understood [91]. In an animal study, Pan et al. observed the effects of HIFs in PCs on
renal pathology with or without fibrotic injury induced by unilateral ureteral obstruction.
Gli1+ PCs, a small subset of kidney PCs that exhibit mesenchymal stem cell properties,
showed increased EPO production, erythropoiesis, and polycythemia but no noticeable
change in renal fibrosis after HIF stabilization in VHL or PHD knockout mice. On a cellular
level, the mRNA levels of myofibroblast markers, such as collagen type I-alpha1 and type
3-alpha1 chains, (Col1a1, Col3a1), and the levels of Acta2 were not negatively affected by
HIF stabilization in PCs/myofibroblasts, underlining its neutral impact on fibrosis [84].
However, further studies are necessary to understand the impact of HIF activation in PCs
and in different renal pathological models (i.e., IRI or diabetic nephropathy) because there
are numerous other markers of PCs and fibroblasts that manifest as different lineages, such
as PDGF-β, CD73, tenascin-C, and smooth muscle myosin protein [92]. Neurologically, the
correlation between increased BBB permeability and PCs after stroke led to new discoveries
regarding HIF genes. Tsao et al. stated that preventing HIF-1 activation in brain PCs
decreases their apoptosis in peri-infarct regions and improves vascular wall coverage.
Moreover, the degree of infarction and cerebral edema was much lessened when HIF-1 PC
expression was significantly reduced. Hypoxia, in the early phase, has almost no effect
on PC survival, but more prolonged damage results in considerable cell death, and the
loss of PCs jeopardizes neuronal repair [93]. Additionally, in vivo work showed that PC-
targeted loss-of-function mutations in HIF alleviate hypoxia-induced barrier dysfunction
but the same mutation had no effect when it occurs in astrocytes [94]. Another study on PC
exosome secretion showed that activation of the HIF signaling pathway in PCs stimulated
with cobalt chloride promoted wound healing and vessel remodeling. This proangiogenic
cell state was inhibited by HIF-1α inhibitors [95]. These data suggest that HIF-1 and PC
death are tightly related and entwined with better functional recovery after stroke, although
further research is undoubtedly necessary [96]. In myocardial infarction, PCs are among
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the first cells to experience ischemic insult because of their anatomical location. Lee et al.
observed translocation of HIF-1α protein into the PC nucleus after 24 h of 2% hypoxia
with increased production of VEGF-A and PDGF and their death approximately four days
after exposure to a hypoxic environment [97]. Moreover, sirtuin3 (SIRT3) knockout mice
showed PC loss due to impairment of the angiopoietins/Tie 2 and HIF-2α/Notch3 signaling
pathways, resulting in a differentiation of PCs in myofibroblasts in the heart [98]. In lung
pathology, HIF prolyl hydroxylase domain-2 (PHD2) downregulation and consequent HIF
stabilization, leads to an increase in TGF-β production in pulmonary PCs, increasing the risk
of developing perivascular fibrosis, vessel dysfunction, and right ventricular hypertrophy.
These changes were mediated by higher levels of Ang1 produced by PHD2-deficient ECs,
resulting in aberrant Ang/Notch3 signaling. Moreover, a loss of ECs and PCs due to a
reduction in hepatocyte growth factor expression was found in HIF-2α knockout mice by
Pasupneti et al., which resulted in an emphysematous pathology [99]. Despite the growing
interest in the stabilization of HIF signaling pathways through PDH inhibitors, several
studies show the complex roles of HIFs in organ pathology, including IRI and fibrosis,
and the cell-type dependent functions that HIFs play in the etiology of diseases. In this
context, PCs represent one of the main cells in which targeting HIFs would seem useful for
developing therapeutic strategies (Figure 4).
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Figure 4. HIF stabilization in pericytes. This figure illustrates a summary of features linked to HIF-1α
stabilization in pericytes on vascular remodeling, erythropoiesis, and pericyte loss. The effects of HIF
stabilization on fibrosis are still poorly understood. Created with BioRender.com.

6. Hints of Potential Therapeutic Strategies

Ischemic preconditioning (IPC), defined as brief and intermittent episodes of controlled
ischemic reperfusion before more prolonged ischemia, has been shown to have a protective
role against IRI and increased tissue tolerance to hypoxia [94]. IPC increased autophagy
pathways in response to IRI [100] and upregulated the expression of miRNA-21 with
consequent decreased proinflammatory cytokine production through a HIF-1α dependent
mechanism [101]. When compared with wild-type mice subjected to IPC, cardiomyocyte
death was reduced in mice expressing the HIF-1α gene, which enhanced heart function,
as shown by Cai et al. [102]. In an animal model, the effect of IPC has been evaluated
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in relation to changes affecting PCs during IRI. The major findings are that IPC could
prevent microvascular PC constriction and apoptosis, leading to a decreased infarct size
and reduced area of no-reflow, showing that IPC may have a cardioprotective role during
myocardial ischemia [103]. According to Wang et al., HIF-1α can promote the transcription
of IL-1ra, acting as a protective factor in hepatic IRI through the inhibition of IL-1 signaling
pathway, and IPC increases HIF expression by each cycle stimulating IL-1ra release in
hepatic tissue [104].

HIF-prolyl hydroxylase inhibitors (HIF-PHIs) have become an alternative treatment
strategy, compared with erythropoiesis-stimulating agents (ESA), for the treatment of ane-
mia in patients with CKD. They prevent the ubiquitinoylation of HIF-α subunits activating
adaptive responses to hypoxia, such as EPO gene transcription. Moreover, some studies
support the evidence that HIF stabilization can slow the course of renal disease and protect
cells from ischemic injury, but it can also be involved in renal fibrosis [105]. During IRI-
related AKI, the use of PHD2 inhibition reduced ROS levels and attenuated oxidative stress.
Moreover, the administration of PHD inhibitors hours before IRI could exert a protective
role by preventing kidney damage [106–108]. PHD inhibitors exert pleiotropic effects.
One of them is the regulation of iron metabolism by lowering the levels of hepcidin and
ferritin. In chronic inflammatory diseases, such as CKD, the hepcidin and ferritin levels are
elevated, leading to an impaired availability of iron, and PHD inhibitors have been found
to decrease hepcidin levels in CKD patients [109–111]. Moreover, they exert metabolic
effects on glucose metabolism, lipid metabolism and cholesterol levels [112–114]. HIF
stabilization is also essential for the correct function of both innate and adaptive immunity
systems. Pharmacological inhibition of PHD2 has increased neutrophilic motility, survival,
and inflammation in response to S. Pneumoniae in a model of acute lung injury due to
increased glycolytic flux [115], and the inhibition of neutrophils’ PDH3 was associated
with decreased inflammation [116]. PHD inhibitors may have different effects on PHD
isoforms, which may cause variations in HIF levels and, thus, pleiotropic effects. Further
research is needed to elucidate how they can be used in human diseases [117]. Nowadays,
there are numerous advancements and potential applications regarding the possibility of
modulating HIFs to exert positive effects. For example, in diabetic tissues, insufficient
activation of HIF-1α signaling is a fundamental pathogenic factor in the progression of
diabetic complications [118], and alterations in PC biology are directly linked to biochemical
changes in diabetes [119]. Thus, strategies targeting the modulation of the HIF-1α signaling
pathway may be promising as novel treatments in diabetic patients. Moreover, the use
of an iron chelator, deferoxamine was shown to correct the impairment of HIF-1α/p300
binding induced by hyperglycemia and normalize the transactivation of HIF-1α [120].

Research has shown that treatment with S-nitrosoglutathione has been found to
stabilize HIF-1α and trigger the downstream gene expression of HIF-1α targets, promoting
regenerative processes. This leads to functional recovery in animals with mild traumatic
brain injury by reducing BBB leakage, reducing expression of MMP-9 and decreasing
edema [121,122].

In preclinical studies, tumor development has been seen to be significantly impacted
by the inhibition of HIF-1α activity by various methods. Therefore, the use of specific small-
molecule inhibitors targeting HIF-1α represents an appealing approach for the development
of cancer therapy as shown by Chau et al. [123].

NHE inhibitors have shown a cardioprotective role against IRI due to inhibition of
cytosolic Na+ accumulation and reduction of Ca2+ intracellular overload via reverse mode
Na+/Ca2+ exchange [124,125].

In a renal model of IRI, blocking of PDGFR-β in PCs or VEGFR2 in ECs reduced
microvascular rarefaction, inflammation, and interstitial fibrosis through the modulation
of PC-EC interactions. Moreover, communication between these types of cells plays a
pivotal role during the early stages after a kidney injury. In unilateral ureteral obstruction-
induced damage, ECs proliferated to ensure an initial angiogenic response and normal
PCs function was important for vascular stabilization, but after four days, PCs began to
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detach from the vessels and ECs started to become dysfunctional. All these changes are
correlated with capillary loss. Lin et al. showed that blocking PDGFR-β and/or VEGFR2
may be a therapeutic strategy for regulating the crosstalk between pivotal cells involved
in angiogenesis and response to hypoxic insults [126]. Therefore, the PC–myofibroblast
transition might be attenuated by using anti-PDGFR antibodies or imatinib, a tyrosine
kinase inhibitor that has been shown to decrease renal fibrosis development after IRI
damage [127].

A study indicated that in rat models, the antiplatelet medication cilostazol decreased
both the expression and activity of MMP-9, elevated the expression of VEGFR3 and facili-
tated the detachment of PCs leading to increased angiogenesis and proliferation of PCs,
which ultimately helped repair the BBB following ischemic stroke [128].

Moreover, Deguchi et al. showed that the free radical scavenger edaravone has the
capability to suppress MMP-9 production, restore the number of PDGFRβ-positive PCs
and mitigate the damage at the BBB after ischemic insult in rat models [129].

Atorvastatin, a widely used medication for lipid-lowering, was demonstrated to
inhibit Ang2 release and increase the expression of vascular endothelial (VE)-cadherin,
resulting in increased vessel maturation and PC coverage [130] (Table 2).

Table 2. Therapeutic interventions and their effects.

Therapeutic Intervention Effects References

Ischemic preconditioning

Increase autophagy pathways, decrease
proinflammatory cytokine production

and prevent microvascular PC
constriction and apoptosis

Joo JD et al. [100]
Lu N. et al. [101]
Jia P. et al. [102]

Cai Z. et al. [103]

HIF-prolyl hydroxylase inhibitors

Reduce ROS levels and attenuate
oxidative stress and lower the levels of

hepcidin and ferritin. Regulate immunity
systems and metabolic processes.

Ito M et al. [107]
Fleming RE et al. [109]

Chen N. et al. [111]
Riopel M. et al. [112]
Sadiku P. et al. [115]

Walmsley SR et al. [116]

Deferoxamine
Correct the impairment of the HIF-1α

signaling pathway induced by
hyperglycemia

Thangarajah H et al. [120]

S-nitrosoglutathione Stabilize HIF-1α expression Khan M. et al. [121]
Khan M. et al. [122]

Na+/H+ exchanger-1 inhibitors Cardioprotective role Karmazyn M. [124]
Tani M. [125]

PDGFR-β and/or VEGFR2 blocking
Reduce microvascular rarefaction,

inflammation, and interstitial fibrosis.
Reduce PCs-myofibroblast transition

Lin SL et al. [126]
Chen YT et al. [127]

Imatinib Reduce PC–myofibroblast transition Chen YT et al. [127]

Cilostazol
Decrease the expression and activity of

MMP-9, elevate the expression of
VEGFR3 and increase angiogenesis

Omote Y. et al. [128]

Edaravone Suppress MMP-9 production Deguchi K. et al. [129]

Atorvastatin Inhibit Ang2 release and increase the
expression of VE-cadherin Baganha F. et al. [130]

7. Conclusions

In this review, we highlighted the central role of pericytes and endothelial cells and
their intricate and fine-tuned crosstalk in the regulation of cell responses after ischemia–
reperfusion injury. A sensing mechanism can detect variations in O2 levels in tissue, leading
to HIF stabilization, which is known for its numerous protective properties in preventing
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organ damage. However, HIF signaling is also involved in the activation of cell death
pathways and vascular remodeling and HIF stabilization could therefore have a detrimental
impact on the development of fibrotic lesions. In this context, pericytes and their interaction
with endothelial cells, during conditions that lead to HIF expression, represent a crucial
fascinating topic to discuss further for developing targeted therapies aiming at influencing
disease progression and improving treatments of kidney disease and other pathological
conditions.
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