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Abstract: The nonenzymatic adduction of malondialdehyde (MDA) to the protein amino groups
leads to the formation of malondialdehyde-lysine (MDALys). The degree of unsaturation of biological
membranes and the intracellular oxidative conditions are the main factors that modulate MDALys
formation. The low concentration of this modification in the different cellular components, found in a
wide diversity of tissues and animal species, is indicative of the presence of a complex network of
cellular protection mechanisms that avoid its cytotoxic effects. In this review, we will focus on the
chemistry of this lipoxidation-derived protein modification, the specificity of MDALys formation in
proteins, the methodology used for its detection and quantification, the MDA-lipoxidized proteome,
the metabolism of MDA-modified proteins, and the detrimental effects of this protein modification.
We also propose that MDALys is an indicator of the rate of aging based on findings which demonstrate
that (i) MDALys accumulates in tissues with age, (ii) the lower the concentration of MDALys the
greater the longevity of the animal species, and (iii) its concentration is attenuated by anti-aging
nutritional and pharmacological interventions.

Keywords: advanced lipoxidation end-products; aging; carbonyl-amine reaction; cytotoxicity; dietary
restriction; longevity; metabolism; reactive carbonyl species

1. Introduction

An enzymatic post-translational modification (PTM) is a chemical modification of one or more
amino acids of a protein in a given biological system [1]. These modifications can be, either irreversible
or reversible. Examples of PTMs are protein acetylation, glycosylation, methylation, phosphorylation,
sumoylation, and ubiquitylation. Indeed, several hundred types of enzymatic PTMs have been
described as affecting a significant portion of the cell proteome [2]. PTMs alter the structure and
function of proteins in the cells [1]. All cells of living organisms utilize the PTMs to control their
signaling networks and physiological processes, further expanding their protein functions. Among these
functions are: Determination or regulation of catalytic activity, interaction with ligands, protein-protein
interaction, protein folding, protein turnover, signaling function, and targeting specific subcellular
compartments [1,3,4].

In contrast, a non-enzymatic PTM is a chemical modification, reversible or irreversible, mediated by
reactive compounds on one or more amino acids of proteins, but as an inescapable event of endogenous
chemical cell damage. Examples of non-enzymatic PTMs are glycation, glycoxidation, nitrosylation,
oxidation, succination, and lipoxidation [5–7]. In this review article, we will focus on the chemical
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adduction of the reactive compound malondialdehyde to lysine residues in proteins, designated as
lipoxidation, its meaning in biology, and its putative role as indicator of aging and longevity.

2. The Protein Adduct Malondialdehyde-Lysine

The reaction of malondialdehyde (MDA) with the amino group of the side chain of lysine (Lys)
residues in proteins via a Schiff base reaction (reversible covalent adduct) leads to the formation of
the malondialdehyde-lysine (MDALys) adduct and the lys-MDA-lys cross-link [8–15]. MDA can also
generate a Lys fluorescent adduct and Arg–Lys cross-link adduct [10,13,16–18]. This non-enzymatic
reaction is called protein lipoxidation [5] and the generated products are called Advanced Lipoxidation
End-products (ALEs) [5,19]. Figure 1 shows the formation of the MDALys adduct and the lys-MDA-lys
cross-link by the reaction of malondialdehyde with lysine residues in proteins.
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Figure 1. Formation of lysine-MDA adducts in protein. MDA is a dicarbonyl compound, which can
form both mono- and di-Schiff-base adducts with lysine residues in protein, as well as enolate anions
and other resonance structures. This is modified with permission from [11].

Although, MDA can be also generated enzymatically as a byproduct of the cyclooxygenase reaction
in thromboxane and prostaglandin biosynthesis, this compound results mainly from the oxidative
degradation of polyunsaturated fatty acids (PUFAs), being arachidonic (20:4n6) and docosahexaenoic
(22:6n3) acids the main precursors [20]. In biological systems, MDA is a product of lipid peroxidation
of cell membranes as a consequence of reaction of PUFAs and radical species [20–23]. Therefore,
lipid peroxidation generates hydroperoxides, which undergo fragmentation to produce the reactive
intermediate with three carbons in length called MDA [20]. More specifically, MDA is a reactive
di-aldehydes (alkanedial) characterized by two carbonyl groups (the common group R-CHO consisting
of a carbonyl center bonded to hydrogen), able to form two Schiff bases.

MDA is a ubiquitously generated product since lipid rich bilayers - for example both plasma and
mitochondrial membranes - are present in all cells and provide an optimal environment for producing
a large abundance of this compound. Compared with reactive oxygen species (ROS), MDA has a
relatively long half-life (minutes-hours) and a non-charged structure, which makes it a potentially
more destructive compound. The reason is that MDA can affect cell structures, located in its vicinity,
and also distant macromolecular targets from the MDA source [24].

Under physiological conditions, MDA is not a highly reactive compound, increasing its reactivity
at lower pH. At strong acidic conditions, MDA can react with amino acids such as glycine, leucine,
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valine, and the guanidino group of arginine, to yield different adducts. In vitro experiments, with
conditions more similar to physiological ones, showed that MDA can react with a broad variety of
amino acids such as histidine, tyrosine, and arginine exclusively at the alpha amino group, and even
cysteine. However, the reaction of MDA with cysteine at pH 7.4 is virtually non-existent. Findings
from different experimental conditions indicate that MDA is low reactive, and its reaction with the
alpha-amino groups of amino acids is in fact not favored [8,9,20]. In the reaction of MDA with secondary
amines, the epsilon amino group of lysine is the main target [10,20]. In comparison with free amino
acids, proteins seem to be more readily modified by MDA under physiological conditions, probably
due to the more favorable (but undetermined) environmental conditions provided by proteins [9,10,20].
In vitro experiments incubating MDA with proteins, such as albumin and RNase, demonstrated that
the free epsilon-amino group of lysine is the main target of MDA, although other amino acids like
histidine, tyrosine, arginine, and methionine might also be altered to some extent [9–11,20]. In vivo,
the main compounds detected, characterized, and quantified in proteins are the adduct MDALys and
the cross-link lys-MDA-lys (see next sections). Figure 2 shows the lipid peroxidation process leading to
the formation of MDA from the PUFA arachidonic acid, as well as reaction mechanisms of formation
for the MDA-based adducts and cross-links with nucleophilic sites.
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Figure 2. Mechanism of malondialdehyde formation from the polyunsaturated fatty acid arachidonic
acid under oxidative conditions (modified with permission from [25]), and reaction mechanisms of
formation of MDA-protein adducts and cross-links (modified with permission from [26]). Abbreviations:
Arg, arginine; Cys, cysteine; Lys, lysine; MDA, malondialdehyde.

MDA can generate a diversity of adducts and intra- and inter-molecular cross-links resulting of the
chemical and non-enzymatic modification of nucleophilic groups in macromolecules like proteins, but
also nucleic acids and aminophospholipids (phosphatidylethanolamine (PE) and phosphatidylserine
(PS)). Therefore, MDA can also react with the exocyclic amino groups of nucleosides to form alkylated
products. Among DNA bases, the high nucleophilicity of guanine results in a higher vulnerability to
generate adducts, MDA-deoxyguanosine (M1dG) being the most common [27–29]. Finally, MDA can
also react with amino groups of aminophospholipids to generate adducts as MDA-PE [30]. Figure 2
shows a scheme for the formation of the MDALys adduct and the lys-MDA-lys cross-link by the
reaction of malondialdehyde with lysine residues in proteins.

Considering the origin of MDALys, it is plausible to postulate that MDALys is an integrator
biomarker of oxidative stress and lipid peroxidation [11,14,19,20,31].

3. Methods to Detect and Quantify MDALys in Proteins

Although the most used methods to detect MDALys adducts are based on mass spectrometry
(MS)-based and antibody-based techniques (for more details, see [15]), other approaches which are
currently in use are fluorescence-based methods [32,33], high-performance liquid chromatography
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(HPLC) [11], or nuclear magnetic resonance [13]. MS is the preferred method for the detection of
MDA-dG detection, whereas MDA-aminophospholipids are analyzed using both fluorescence and MS
based methods [30].

When an antibody-based technique is chosen, the recognition site is crucial. Thus, there are a
number of antibodies (monoclonal and polyclonal) that recognized MDA-modified proteins which
have been used for immunohistochemistry [34–36], immunoblot analysis [37–41], two-dimensional
PAGE analysis [42], and ELISA [36,43,44]. All these approaches have the limitation that they do not per
se provide information about the specific modified protein or the precise site of modification within
the protein [15]. However, its excellent sensitivity allows a semi-quantitative approach to the degree of
protein modification in a biological system, as well as visualizing the selectivity of modified proteins,
which will require additional methods for their identification.

Among mass spectrometry (MS)-based techniques, gas chromatography-MS (GC/MS) has been
extensively used to determine the steady-state level of MDALys at both subcellular and tissue levels
(for references, see tables in next sections). Specifically, MDALys concentration was analyzed in a
given sample (protein content 0.5–1 mg) as TFAME (trifluoroacetic acid methyl esters) derivatives.
The samples were previously reduced with NaBH4 to stabilize the adducts to the conditions used.
Then, acid hydrolysis was applied and derivatized samples were injected to GC coupled to an MS
using an HP-5MS column (30 m × 0.25 mm × 0.25 µm), and a specific temperature program ranging
from 110 ◦C to 300 ◦C. Finally, quantification was made by internal and external standardization using
standard curves of deuterated and non-deuterated standards. If the analyses are performed using
SIM-GC/MS (selected ion-monitoring GC/MS) the specific ions used for detection and quantification
are lysine and d8-lysine, m/z 180, and 187, respectively; and MDAL and d8-MDALys, m/z 474 and 482,
respectively. Thus, the amount of product can be expressed as mili- or micromoles of MDALys per
mol of lysine. The high sensitivity, resolution, and throughput of this method allows an unambiguous
detection of the MDALys adduct, as well as the precise quantification of the MDALys concentration in
a biological system. However, this approach poses a limitation in that it does not provide information
about the specific proteins that have been modified or the precise site of modification within the protein.

Other techniques, such as liquid chromatography-electrospray ionization or matrix-assisted
laser desorption/ionization-MS (LC-ESI or MALDI-MS)-based proteomics analysis would be useful
to overcome these limitations and obtain information about the specific site of MDA adducts
formation [15,45]. This approach would be an excellent source of information in order to learn
about the molecular mechanism, features related to specificity, and the meaning of the non-enzymatic
modification. However, more advances in MS techniques are needed to shed light on this field,
currently technically limited due to the low abundance of this non-enzymatic modification.

4. The MDA-Lipoxidized Proteome

Despite the fact that any protein is potentially a target for modification by MDA – as studies
carried out in vitro in proteins, such as hemoglobin, albumin, RNase, insulin B-chain, spermidine,
and ubiquitin, among others, seem to suggest – our knowledge on the MDA-modified proteome is
currently very limited, and is restricted to studies basically carried out in human brain and plasma
(Table 1).

Although MDA-modified proteins are mainly located in the mitochondria, they are also described
in other locations like nucleus, cytosol and cell membrane, as well as extracellular compartments such
as plasma. These observations demonstrate the facility of migration of MDA due to their chemical traits.

The analysis of the MDA-lipoxidized proteome indicates that these modifications are not specific
of a biological process or molecular function and suggest a wide-ranging effect of this product in
cell structure and metabolism. Therefore, proteins involved in energy metabolism (glycolysis, TCA
cycle, oxidative phosphorylation, energy transduction, and fatty acid beta-oxidation), cytoskeleton,
neurotransmission, proteostasis, plasma transport, and structural components of extracellular matrix
are modified (Table 1). These results reinforce the heterogeneity of this specific PTM and suggest
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that not all Lys residues can interact and react with MDA to generate MDALys. In line with this, it
can be postulated that the specific structural traits and spatial location of Lys residues determine the
generation of MDALys and, consequently, the molecular damage.

Table 1. Malondialdehyde-lipoxidized proteins identified by redox proteomics.

Protein Species Tissue Main Location Biological Process Reference

alpha-Enolase Human Brain Cytosol, cell membrane,
nucleus

Energy metabolism
(glycolysis) [42]

gamma-Enolase Human Brain Cytosol, cell membrane Energy metabolism
(glycolysis) [42]

Gamma-Enolase Human Brain Cytosol, cell membrane Energy metabolism
(glycolysis) [46]

Aconitase Mouse Heart Mitochondrion Energy metabolism
(TCA cycle) [47]

Glutamate
dehydrogenase 1 Human Brain Mitochondrion Energy metabolism

(TCA cycle) [42]

alpha-ketoglutarate
dehydrogenase Mouse Heart Energy metabolism

(TCA cycle) [47]

Ubiquinol-cytochrome c
reductase complex core

protein 1
Human Brain Mitochondrion Energy metabolism

(ETC) [42]

ATP synthase subunit beta Human Brain Mitochondrion Energy metabolism
(OxPhos) [42]

ATP synthase Mouse Heart Mitochondrion Energy metabolism
(OxPhos) [47]

Creatine kinase B-type Human Brain Cytosol Energy metabolism
(energy transduction) [42]

Very long chain acyl
coenzyme A

dehydrogenase
Mouse Heart Mitochondrion

Energy metabolism
(Mitochondrial fatty
acid beta-oxidation)

[47]

Dihydropyrimidinase-related
protein 2 Human Brain Cytosol, cytoskeleton,

membrane Neurotransmission [42]

Glutamine synthetase Human Brain Cytosol, mitochondrion Neurotransmission [42]

Alpha-Synuclein Human Brain
Nucleus, cytoplasm,
membrane, synapse,

secreted
Neurotansmission [48]

beta-Actin Human Brain Cytosol (cytoskeleton) Cytoskeleton [42]
Glial fibrillary acidic

protein Human Brain Cytosol (cytoskeleton) Cytoskeleton [42]

Glial fibrillary acidic
protein Human Brain Cytosol (cytoskeleton) Cytoskeleton [46]

Glial fibrillary acidic
protein Human Brain Cytosol (cytoskeleton) Cytoskeleton [38]

Neurofilament light
polypeptide Human Brain Cytosol (cytoskeleton) Cytoskeleton [42]

Tubulin alpha 1B chain Human Brain Cytosol (cytoskeleton) Cytoskeleton [42]
Tubulin beta chain Human Brain Cytosol (cytoskeleton) Cytoskeleton [42]
Tubulin beta chain Human Brain Cytosol (cytoskeleton) Cytoskeleton [46]

Vimentin Human Brain Cytosol (cytoskeleton),
nucleus Cytoskeleton [42]

Heat shock protein 60 KDa Human Brain Mitochondrion Proteostasis [42]
Guanine

nucleotide-binding protein
G(I)/G(S)/G(T) subunit

beta1

Human Brain Not described Signal transduction [42]

Low density lipoproteins
(LDL) Human Plasma Extracellular (plasma) Lipid metabolism [11,49–52]

Albumin Human Plasma Extracellular (plasma) Transport [51]

Albumin Human Peritoneal dialysis
fluid Extracellular (plasma) Transport [53]

Collagen Human Cartilage Extracellular matrix Structural [54]
Collagen Human Vascular system Extracellular matrix Structural [8]

Fjbrinogen Human Plasma Extracellular (plasma) Coagulation [51]

Main location, and biological process are based on what was reported in the UniProt database (http://www.
uniprot.org/). Abbreviations: TCA cycle, tricarboxylic acid cycle; ETC, electron transport chain; OxPhos,
oxidative phosphorylation.

http://www.uniprot.org/
http://www.uniprot.org/
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5. Metabolism of MDA-Modified Proteins

The MDALys concentration of a particular cell type, or even of a specific subcellular compartment,
tissue, organ or animal species, is the result of a complex system of interactions with the participation
of multiple mechanisms. As a starting point, there are two determining factors: the lipid composition
of a cell membrane, and the homeostasis of oxidative stress. In relation to membrane lipids, we know
that there is a direct relationship between the degree of unsaturation and their susceptibility to lipid
peroxidation [24]. Therefore, the cell tries to maintain the integrity of the membrane without giving up
its composition by using defense, repair, and replacement systems to reduce its vulnerability and the
impact of oxidative stress [55,56]. This will determine the MDA levels generated. Regarding oxidative
stress, the net flow of free radicals generated at the mitochondrial level plays a key role since these
free radicals are responsible for damaging cellular components and, among them, lipids. These two
biological characteristics are determinants of the MDA levels generated [20,24], and both traits are
related to the aging process and the determination of longevity [56–59].

Once MDA is formed, a cellular response to maintain basal concentration of this and other
aldehydes within physiological limits is initiated. This adaptive response involves different mechanisms,
such as enzyme-mediated detoxification, urinary excretion, and antioxidant responses [23,24].
In relation to the latter, carbonyl species can work by sending regulatory signals to activate specific
protein targets in order to decrease lipoxidation-derived damage and improve antioxidant defenses.
This adaptive response is, at least, partially mediated by the carbonyl compound hydroxynonenal that
(i) modifies and activates the uncoupling proteins (UCPs), resulting in a reduction in mitochondrial
ROS production [60]; and (ii) induces the activation of the antioxidant response signaling pathway
Nrf2 that includes, among others, the expression of enzymes such as glutathione-S-transferase (GST),
specifically designed to detoxify reactive carbonyl compounds, and GPx4 (phospholipid hydroperoxide
glutathione peroxidase), designed to restore reduced states of membrane fatty acids from phospholipids
to ensure membrane lipid homeostasis [61–63]. To date, this hydroxynonenal mediated antioxidant
response is not described in MDA. In fact, the low or null reactivity of MDA with cysteine suggests
that MDA does not have a regulatory signal activity. Although, the potential effects under special
conditions of concentration or environment cannot be dismissed, it seems that MDA possesses a
preponderantly cytotoxic role instead of a regulatory function. Furthermore, the non-reactivity of
MDA toward glutathione significantly limits the capacity of enzymes designed to detoxify carbonyl
compounds via conjugation with glutathione (GSH) to degrade it. Consequently, MDA demands
alternative enzymatic detoxification ways. Among them are the enzymes aldehyde dehydrogenase
and aldoketoreductases [20,64,65], which participate in the maintenance of MDA levels within
physiological levels.

Despite these protective mechanisms, MDA reacts with lysine and generates MDALys in proteins
and other cellular components. Specifically in protein terms, the degree of modification will be
determined by numerous factors: Structural aspects of the protein related to the exposure and ease
of access of MDA to the functional groups of amino acids capable of being modified, functional
aspects derived from the microenvironment where the amino acid is located and is conditioned
by the rest of amino acids in its immediate environment, the cellular location of the protein and
proximity to potential sources of MDA, and its turnover rate. There is, however, a lack of studies
analyzing MDALys site features. Regarding the latter, the turnover rate that is specific to the protein
can also be conditioned by its regulation at the endocrine level. Therefore, it has been observed that
glucocorticoids [66], insulin [67], and thyroid hormones [68] affect the steady-state level of MDALys
by basically modifying the turnover rate at the cellular level, the membrane unsaturation and the
mitochondrial free radical generation.

The fact that MDALys is an adduct or a cross-link depends on whether the protein can be
degraded [69] or accumulated forming aggregates. In line with this, evidence showed that MDALys
can be degraded, as it has been detected in the urine of various animal species, such as mice, rats and



Antioxidants 2020, 9, 1132 7 of 20

humans [20,69–72]. Therefore, the balance between all these factors will determine the concentration
of MDALys in a given biological system.

6. Cytotoxic Effects of MDALys Adducts

The molecular consequences of MDALys adducts formation in proteins mostly include
detrimental structural and functional changes. Thus, MDALys formation induces alterations in
physico-chemical properties such as conformation [5], charge [73], and solubility [48], formation
of intra- and inter-molecular protein cross-links and aggregates [11,48,51], loss of enzymatic
activity [15,47], and accelerated rate (for MDALys) or resistance to proteolysis (cross-links) [69].
When biological effects are considered, deleterious consequences such as immunogenicity (MDA
generates immunoreactive materials in proteins) [43,51], binder to the receptor for advanced glycation
end-products (RAGE) [73], and induction of monocyte activation and vascular complications [74]
have been described. Additionally, MDA-adducts formation on nucleic acids induces DNA damage
and mutagenesis [27–29], as well as alterations in physico-chemical and biological properties of the
lipid bilayer when aminophospholipids are modified [30]. As an in vivo example of their cytotoxic
effects at cellular level, a relevant recent study demonstrated that MDA causes neuronal mitochondrial
dysfunction by directly promoting ROS generation and modifying mitochondrial proteins [75].

7. Protein Lipoxidation by MDA in Physiological and Pathological Models

Previous data showed that MDA-lipoxidation is detected in all tissues analyzed using
immunoblotting and MS techniques, although the degree of modification varies significantly among
them. In line with this, the presence of MDALys was described at both mitochondrial and tissue levels
in a diversity of animal species. A relation of tissues, includes the brain, heart, liver, kidney, skeletal
muscle, and plasma. Table 2 shows the steady-state levels of MDALys measured by GC/MS in different
tissues and species. Importantly, the steady-state level of MDALys is in the range of micromoles
MDALys/mol lysine, clearly indicating the low abundance of this post-translational modification at the
tissue level. Furthermore, the findings from the immunoblotting approach also confirm the selectivity
of MDA-lipoxidized proteins.

Notably, the higher MDALys concentration seems to be more present at mitochondrial levels
in comparison to the tissue as a whole, probably as an expression of specific traits in mitochondria
(high lipid content, high degree of membrane unsaturation, and high free radical generation) favoring
MDALys formation. Likewise, it is remarkable that the higher MDALys concentration is reported in
long-lived tissues like brain and heart which, in addition, have higher energy demands, and share
identical traits to mitochondria: High lipid content, high degree of unsaturation, and high flux of
mitochondrial free radical generation.
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Table 2. Steady-state levels of MDALys measured by GC/MS in different tissues and species.

Biological System Animal Species Concentration Reference

Mitochondria (Brain) Rat 571 ± 30 [76]
Mitochondria (Heart) Pigeon 74 ± 5 [77]
Mitochondria (Heart) Rat 452 ± 17 [78]
Mitochondria (Heart) Rat 366 ± 18 [77]
Mitochondria (Heart) Mouse 805 ± 60 [79]

Mitochondria (Kidney) Rat 427 ± 17 [76]
Mitochondria (Liver) Rat 387 ± 14 [78]

Mitochondria (S. Muscle) Mouse 2357 ± 110 [80]
Mitochondria (S. Muscle) Mouse 392 ± 29 [79]

Brain (whole) Mouse 374 ± 23 [37]
Brain (whole) Parakeet 305 ± 27 [37]
Brain (whole) Canary 259 ± 22 [37]
Brain (whole) Rat 337 ± 18 [81]

Brain (Amygdala) Human 431 ± 32 [81]
Brain (Cerebellum) Human 203 ± 20 [81]

Brain (Entorhinal cortex) Human 283 ± 28 [81]
Brain (Frontal cortex) Human 185 ± 12 [81]
Brain (Hippocampus) Human 221 ± 25 [81]

Brain (Medulla oblongata) Human 340 ± 19 [81]
Brain (Occipital cortex) Human 219 ± 16 [81]

Brain (Spinal cord) Human 352 ± 11 [81]
Brain (Striatum) Human 450 ± 52 [81]

Brain (Substantia nigra) Human 590 ± 29 [81]
Brain (Temporal cortex) Human 164 ± 9 [81]

Brain (Thalamus) Human 481 ± 42 [81]
Heart Mouse 558 ± 22 [82]
Heart Rat 381 ± 39 [82]
Heart Guinea Pig 165 ± 36 [82]
Heart Rabbit 143 ± 15 [82]
Heart Sheep 129 ± 7 [82]
Heart Pig 136 ± 22 [82]
Heart Cow 113 ± 15 [82]
Heart Horse 107 ± 7 [82]
Liver Rat 184 ± 10 [67]
Liver Mouse 274 ± 11 [83]

Kidney Rat 228 ± 25 [84]
Plasma Low Density Lipoproteins (LDL) Human 120 [11]

Skeletal muscle Rat 282 ± 9 [85]
Skeletal muscle Pigeon 239 ± 12 [85]

Whole fly D. melanogaster 121 ± 2 [86]

Data are from healthy young/adult individuals or specimens. Units: µmol MDALys/mol lysine. Values are means± SEM.

During the last 30 years, this post-translational modification has also been detected in several
pathological models including metabolic diseases such as chronic iron overload [87], metabolic
syndrome [88], and type 2 diabetes and its complications [44,52,89,90]; in vascular diseases like
atherosclerosis [50,91,92]; and in a diversity of neurodegenerative diseases such as Alzheimer’s
disease [34,42], Incidental Lewy Body Disease [35], Creutzfeldt-Jakob Disease [93], Pick’s disease [38],
Lewy Body diseases [48], familial Parkinson’s disease [46], and X-adrenoleukodystrophy [94,95]. In all
these cases the pathological state presented increased steady-state levels of MDALys ascribed to
alteration in lipid profiles and/or oxidative stress.

Together, these findings indicate that increased MDALys content in tissue proteins is a direct
consequence of increased intracellular MDA concentration. For this reason, MDALys can be proposed
as a biomarker of lipoxidative stress.

8. Malondialdehyde-Lysine in Aging and Longevity

Studies based on different experimental paradigms link MDALys to aging and longevity.
These paradigms include studies performed (i) On individuals during aging, (ii) using species
with different longevity, or specific strains and mutants within a species with different species, and (iii)
applying physiological treatments that modified the aging rate and longevity.
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8.1. Changes in MDALys During Aging

There are several studies that directly relate the aging process with MDA lipoxidation-derived
molecular damage accumulation (Table 3). Globally, this lipoxidation damage, measured in tissue
homogenate and mitochondria, increases with age, with tissues composed of long-lived, postmitotic
cells (brain, heart, and skeletal muscle) being the most affected. Notably, in reference to the brain,
the accumulation of MDALys seems to be region-specific but the reasons for this fact remain to be
elucidated. Reinforcing these findings, lipofuscin, a complex age-pigment derived from lipoxidation
reactions (including reactions derived from MDA) and considered a hallmark of aging [32], also shows
an accumulation that correlates with age [96,97]. This age-related accrual of molecular oxidative
damage is concomitant with the increase PUFA content during aging described in several tissues
and animal species, as well as detrimental changes in oxidative stress, both factors favoring lipid
peroxidation and the subsequent formation of the lipoxidation derived products MDALys. This increase
in MDALys concentration at the tissue level can also be extended to changes with age in MDA-dG [98],
and MDA-aminophospholipids (reviewed in [30]). Importantly, the degree of change with age varies
in a tissue-dependent way. The changes described could occur on the basis of the age-related changes
in membrane physico-chemical properties, such as fluidity leading to an increased membrane rigidity
and loss of function, which has been systematically described in diverse studies [30,99–103]. As a
consequence of this accumulation of MDALys with age, and considering the selective pool of proteins
that seem to be modified, it can be proposed that specific cellular biological processes such as energy
production and proteostasis, biological functions, which require the participation of cytoskeleton,
and functional properties of the extracellular matrix may be preferentially affected during aging by
this nonenzymatic modification. The answer as to whether the link between MDALys and agingg is
causation or correlation requires of additional studies, but it must be considered that MDALys is only
one of many indicators of more widespread chemical damage in biological systems.

Table 3. Effect of aging on the steady-state level of MDALys in tissues from different species.

Experimental Model Tissue Change in MDALys
Concentration with Aging

Method for MDALys
Determination References

Human (young adults vs.
elderly subjects) Hippocampus Increased IHQ [34]

Rat (young vs. old
animals) Heart mitochondria Increased GC/MS [104]

Rat (young, middle-age,
old animals) Liver mitochondria Increased GC/MS [105]

Rat (adult vs. old animals) Heart, liver Increased GC/MS [106]
D. melanogaster Whole fly Increased GC/MS [86]

Rat (young vs. old) Liver mitochondria Increased GC/MS [107]
Mouse (young vs. old

animals) Brain, spleen Increased GC/MS [108]

Mouse (young vs. old) Heart mitochondria Increased GC/MS [79]

Mouse (young vs. old) Skeletal muscle
mitochondria Increased GC/MS [79]

Mouse (young vs.
middle-age) Liver Increased GC/MS [83]

Human (adults vs.
old subjects)

Frontal cortex
Parietal cortex

Cingulate gyrus
Temporal cortex
Entorhinal cortex

Hippocampus
Thalamus

Caudate nucleus
Putamen

Visual cortex
Substantia nigra

Vermis

Increased
Increased

Unchanged
Decreased
Decreased
Increased
Increased
Increased
Increased

Unchanged
Unchanged
Unchanged

WB [41]

Rat (adult vs. old animals) Kidney Unchanged GC/MS [84]

Abbreviations: GC/MS, gas chromatography/mass spectrometry; IHQ, immunohistochemistry; WB, western blot.
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8.2. MDALys and Animal Longevity

The connection between lipoxidation-derived damage and animal longevity was first reported by
Pamplona and collaborators [77]. The study demonstrated that the MDALys concentration of heart
mitochondria from a long-lived pigeon was significantly lower than the one detected in a short-lived
rat. Later, these results were observed in a wide range of tissues and animal species, including both
vertebrates (mammals and birds) and invertebrates, where a lower concentration of MDALys at both,
mitochondria and tissue was detected in long-lived vertebrates (birds and mammals), compared to
short-lived ones (Table 4). In agreement with this, it was described that longevous species have a
low degree of total tissue and mitochondrial fatty acid unsaturation resulting in a low sensitivity to
in vivo and in vitro lipid peroxidation and a low mitochondrial free radical production [24,104,109].
Furthermore, lipofuscin also showed an accumulation rate that inversely correlates with longevity [97].
Altogether, these results suggest that the lipoxidative damage is an optimized feature associated with
animal longevity.

In this context, the study of the steady-state levels of MDALys in physiological systems from
exceptionally long-lived specimens is of particular relevance. Thus, in a recent work [108], the MDALys
concentration of both brain and spleen from adult (28 weeks), old (76 weeks) and exceptionally old
(128 weeks) BALB/c female mice was analyzed. The study described significantly lower levels of
MDA protein damage in the brain and spleen from exceptionally old animals when compared to old
specimens. Interestingly, the levels found in exceptionally old animals were in the same range of
adult animals. Therefore, the maintenance of a MDALys concentration at an adult-like level could be
key factors for achieving longevity. This is especially important if we consider that all animals have
been fed the same diet so the differences observed in molecular damage and lipid composition were
genetically regulated.

Flies (D. melanogaster) provide another example of variation in longevity within a species
that extends to invertebrates previous findings in vertebrates. In this study, wild type strains of
D. melanogaster of varying longevity and long-lived mutants were compared [110,111]. The results
showed that the greater the longevity of the Drosophila strain, the lower the MDALys concentration.

In additional comparative studies in invertebrate species using mutant worms of varying
longevities [112], queen and worker honey bees [113], or bivalves with exceptional longevities [114],
results certified that long-lived animals possess peroxidation-resistant membranes. However, in this
case, there is a lack of information about the degree of MDA-lipoxidation-derived damage to their
cellular components.

Interestingly, all these comparisons performed using animals with different longevity demonstrate
a relationship between longevity, the membrane unsaturation and the content of lipid peroxidation
products, being lower in long-lived animals compared to short-lived ones [59]. Yet, it is unknown if
MDA-mediated damage, and particularly MDALys, is in agreement with the data offered by lipid
composition and peroxidation.

Despite the limited information in potentially relevant comparative studies and animal models
that differ in their longevities, all comparisons that have been currently carried out support the notion of
an important role for membrane fatty acid composition and lipoxidation-derived molecular damage in
the determination of longevity, and point out to MDALys as a potential biomarker of animal longevity.
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Table 4. Relationship between lipoxidative damage measured as MDALys by GC/MS and animal longevity.

Animal Species Longevity
Tissue

(or Subcellular
Organelle)

MDALys Concentration
in Long-Lived

Animal Species
References

Rat vs. pigeon 4 vs. 35 years Heart
mitochondria Lower [77]

7 mammalian species From 3.5 years to 46 years Liver Lower [115]
Rat vs. pigeon 4 vs. 35 years Skeletal muscle Lower [85]

Mouse, parakeet, canary 3..5, 21, and 24 years Brain Lower [37]
8 mammalian species From 3.5 years to 46 years Heart Lower [82]

D. melanogaster
(long-lived mutant strains) 71 vs. 87 days Whole fly and

mitochondria Lower [110]

Exceptionally old mice 28, 76, and 128 weeks Brain, spleen Lower [108]
D. melanogaster

(short-lived Dahomey vs.
long-lived Oregon R flies)

49 vs. 74 days Whole fly Lower [111]

8.3. MDALys in Experimental Studies of Longevity Extension by Nutritional and
Pharmacological Interventions

The study of how “anti-aging” nutritional and pharmacological interventions affect the
lipoxidation-derived molecular damage associated with aging rate and longevity is crucial to
establishing a causative role for membranes, oxidative stress and lipoxidation-derived damage
in the determination of longevity. In line with this, several studies applying dietary modification have
been performed, and membrane fatty acid composition and lipoxidative-derived damage have been
evaluated [116–118]. These studies were specifically designed to partially circumvent the homeostatic
system of compensation of dietary-induced changes in membrane unsaturation which operates at
cellular level. The findings obtained demonstrate that lowering the membrane unsaturation of cellular
membranes protects tissues against lipid peroxidation and MDALys formation.

Available evidence from both nutritional and pharmacological interventions that extend longevity
in experimental models reinforces the relationship between MDA-derived lipoxidation damage and
longevity. So, dietary interventions such as caloric- (CR), protein- (PR) and methionine (MetR)
restriction and pharmacological interventions such as rapamycin decreased the degree of membrane
unsaturation (reviewed in [59,102,119,120]) and especially the level of MDALys in a variety of tissues
(for instance, liver, heart, and brain) and animal species (mainly rodents) (Table 5). Furthermore,
it has been demonstrated that CR is able to reduce the levels of lipofuscin in tissues of rodents and
C. elegans [97,121–124].

These studies showed that although the changes observed in membrane unsaturation are moderate
(2.5–10%), the reduction of lipoxidation-derived molecular damage is much larger (20–40%). This could
be explained by other factors, such as the lower mitochondrial ROS generation, also induced by
these nutritional interventions. Interestingly, these interventions showed a correlation between the
magnitude of the dietary restriction applied and the changes observed in membrane unsaturation.

Therefore, the dietary manipulation and pharmacological intervention with anti-aging effects
seem to trigger an adaptive response protecting the most basic requirements of membrane integrity
and avoiding the cytotoxic effects of MDA-derived lipoxidation reaction, by attenuating the
MDALys formation.
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Table 5. Effect of pro-longevity and anti-aging nutritional and pharmacological interventions on
MDALys concentration in different tissues and species.

Species Tissue DR Type (%) DR Duration Effect on
MDALys References

Rat Liver mitochondria CR 8.5% 7 weeks Decreased [125]
Rat Liver mitochondria CR 25% 7 weeks Decreased [125]
Rat Heart mitochondria CR 40% 4 months Decreased [126]
Rat Heart mitochondria CR 40% 1 year Decreased [127]
Rat Liver mitochondria CR 40% 22 months Decreased [105]
Rat Liver CR 40% 6 weeks Decreased [67]

Mouse Liver CR 40% 8 weeks Decreased [128]
Rat Liver PR 40% 7 weeks Decreased [129]
Rat Liver mitochondria MetR 40% 7 weeks Decreased [130]
Rat Liver mitochondria MetR 80% 7 weeks Decreased [78,130]
Rat Heart mitochondria MetR 80% 7 weeks Decreased [78]
Rat Brain MetR 80% 7 weeks Decreased [81]
Rat Brain mitochondria MetR 40% 7 weeks Decreased [131]
Rat Kidney mitochondria MetR 40% 7 weeks Decreased [131]
Rat Heart mitochondria MetR 40% 7 weeks Decreased [132]

Mouse Brain MetR 80% 4 months Decreased [120]
Rat Liver mitochondria MetR 40% at old age 7 weeks Decreased [107]
Rat Heart mitochondria MetR 40% 7 weeks Decreased [133]
Rat Kidney MetR 80% at old age 7 weeks Unchanged [84]
Pig Liver mitochondria MetR 30% 2 weeks Unchanged [134]
Rat Liver mitochondria Fasting 1 week Increased [135]

Mouse Liver mitochondria EOD (Every Other Day) 7 weeks Decreased [136]

Rat Liver mitochondria
40% restriction of dietary

amino acids (except
methionine)

7 weeks Decreased [131]

Rat Liver Methionine dietary
supplementation 7 weeks Unchanged [137]

Rat Heart Methionine dietary
supplementation 7 weeks Unchanged [137]

Rat Liver mitochondria Cysteine dietary
supplementation 7 weeks Decreased [138]

Rat Liver Corticosterone 4 weeks Decreased [66]
Rat Liver Thyroid Hormones 10 days Decreased [68]
Rat Liver Insulin 2 weeks Increased [67]
Rat Liver Growth hormone 2 weeks Increased [67]
Rat Heart mitochondria Atenolol 7 weeks Decreased [133]

Mouse Heart mitochondria Atenolol 16 months Decreased [79]

Mouse Skeletal muscle
mitochondria Atenolol 16 months Decreased [79]

Mouse Heart Atenolol 2 weeks Decreased [139]
Mouse Brain Pioglitazone 2 months Decreased [95]
Mouse Liver Rapamycin 7 weeks Decreased [83]

Abbreviations: CR, caloric restriction; DR, dietary restriction; MetR, methionine restriction; PR, protein restriction.

9. Conclusions

Non-enzymatic posttranslational modifications are an inexorable part of cellular metabolism.
Malondialdehyde-lysine (MDALys) is an adduct with cytotoxic properties that integrates the degree of
unsaturation of a biological membrane and oxidative stress. Among the wide variety of techniques and
methods that allow its detection and quantification, immunological and mass spectrometry methods
currently stand out. The low concentration of this modification in the different cellular components –
found in a wide diversity of tissues and animal species – is indicative of the presence of a complex
network of cellular protection measures to avoid its deleterious effects. The findings in different
experimental paradigms such as: (i) Increase in the concentration of MDALys with age within an
animal species, (ii) the presence of a lower concentration of MDALys the greater the longevity of
the animal species, (iii) its accumulation above physiological levels in a wide variety of pathological
conditions, and (iv) the downward modulation of its concentration by nutritional and pharmacological
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interventions that have shown an extension of longevity, make the MDALys adduct a potential
biomarker of aging and longevity.
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