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Abstract: According to the WHO target product profile for COVID-19 vaccines, the vaccine in
development should be indicated for active immunisation in all populations. Therefore, PT Bio
Farma developed a candidate vaccine in a subunit protein recombinant platform to help overcome
the issue. This trial was an observer-blind, randomised, prospective intervention study. This study
targeted individuals who had received complete primary doses of the authorised/approved COVID-
19 vaccine. The groups were divided into the primary inactivated vaccine (CoronaVac®) group,
the primary viral vector vaccine (ChAdOx1) group, and the primary mRNA vaccine (BNT162b2)
group that received the recombinant protein (IndoVac®). The groups were compared with the control
and primary mRNA vaccine (BNT162b2). The participants enrolled in the study were from two
primary care centres in Bandung City and three primary care centres in Denpasar City. A total of
696 participants were enrolled from 1 September to 31 October 2022. The demographic characteristics
of the all-vaccine group showed a uniform distribution. The results showed that, compared with
the control, the investigational product had inferior effectiveness 14 days after the booster dose
was administered. However, 28 days after the booster dose, the investigational product exhibited
non-inferior effectiveness compared with the primary groups that received CoronaVac® (GMR 0.76
(0.57–0.99)) and ChAdOx1 (GMR 0.72 (0.56–59.93)), but the BNT162b2 group (GMR 0.61 (0.39–0.94))
was inferior to the control. At 12 months follow-up after the booster dose, three serious adverse
events (SAEs) were reported in three participants, with causality not correlated with the investigated
products. Neither AEs of special interest nor severe COVID-19 cases were reported throughout the
follow-up period; thus, the IndoVac® vaccine as a booster was immunogenic and safe. Until the
6-month follow-up after the booster dose, the IndoVac® vaccine was well tolerated and all reported
AEs resolved. This vaccine is registered and can be included in the immunisation programme.
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1. Introduction

According to the WHO target product profile for COVID-19 vaccines, the vaccine in
development should be indicated for active immunisation in all populations, including the
elderly, in areas with an ongoing COVID-19 outbreak, and should be used in conjunction
with other control measures to curtail or end such an outbreak [1–4]. The investment in
SARS-CoV-2 vaccine development will contribute to the stabilisation of the supply of safe
and affordable COVID-19 vaccines in the global market, particularly for distribution in
low- and middle-income countries [2,4–6]. The COVID-19 pandemic and the precipitously
increased number of deaths worldwide necessitate the urgent development of SARS-CoV-2
vaccines, hence requiring a new pandemic paradigm [1,3–5].

In Indonesia, 30 clinical trials for COVID-19 vaccines were conducted, and 13 vaccines
were subsequently approved for use [5–9]. The national vaccination campaign for COVID-
19 was introduced in January 2021, prioritising healthcare workers in the first stage and
continuing to essential public service workers and older people [5,6,10]. Indonesia targeted
to vaccinate at least 80% of its population by the end of 2023. Regarding the COVID-19
vaccination status in Indonesia, >80% of the population are vaccinated with the first dose
and >70% with the second dose; however, <40% have received the first booster and only
2% have received the second booster [6–10].

The Ministry of Health in Indonesia was involved in the development and imple-
mentation of the COVID-19 vaccination programme, including the IndoVac® vaccine [11].
IndoVac® is a domestically produced COVID-19 vaccine developed by PT Bio Farma, a
state-owned enterprise in Indonesia [11,12]. PT Bio Farma developed a candidate vaccine
using a subunit protein recombinant platform to help overcome the issue. IndoVac® has
recently been authorised for use in Indonesia following clinical trials [11–13]. In a phase 3
clinical trial comparing the primary doses of IndoVac® with Covovax, 2070 participants
were included in the immunogenicity group [11–13]. IndoVac® demonstrated non-inferior
immunogenicity to Covovax when assessed for neutralising antibody titres against the delta
variant. The results of the clinical trial of IndoVac® as a booster are now available [11–13].
As a locally produced vaccine, IndoVac® has clear benefits for use in Indonesia [11–13].

Preclinical animal studies and controlled trials have demonstrated the potential utility
of subunit protein vaccines, making them one of the most viable options for resource-
limited settings because they can be stored in refrigerators and distributed easily [14,15].
This study aimed to evaluate the non-inferiority of the immune response of the SARS-CoV-2
neutralising antibody in IndoVac® to the control vaccine 14 days after administration of the
booster dose.

2. Materials and Methods
2.1. Study Design

This multicentre, observer-blind, randomised, prospective intervention study was
planned for 900 individuals who had received complete primary doses of the autho-
rised/approved COVID-19 vaccine. They willingly participated in the booster study and
signed consent forms. Participants were divided into six groups, each with 150 participants
per arm who had received a complete primary dose of an inactivated vaccine (CoronaVac®),
mRNA vaccine (BNT162b2), or viral vector vaccine (ChAdOx1). Furthermore, they received
one booster dose of the SARS-CoV-2 subunit protein recombinant vaccine (IndoVac®) or
the active control mRNA vaccine (BNT162b2). This study is registered at clinicaltrial.gov,
ID number NCT05525208.

2.2. Study Participants

A total of 900 participants were enrolled in the study and divided into the primary
inactivated vaccine (CoronaVac®) group, the primary viral vector vaccine (ChAdOx1)
group, and the mRNA vaccine (BNT162b2) group, with 300 participants each. After being
informed about the study, signed informed consent or signed assent and informed consent
was obtained from the participants. The primary inclusion criteria were adults aged
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≥18 years and compliance with study instructions and trial schedules. The exclusion
criteria were as follows: presentingta fever (axillary temperature ≥ 37.5 ◦C), history of
uncontrolled asthma, history of allergy to vaccines or vaccine ingredients, and severe
adverse reactions to vaccines, such as urticaria, dyspnoea, and angioneurotic oedema. The
participants were enrolled from two primary healthcare (PHC) centres in Bandung City
(Ibrahim Adjie PHC and Dago PHC) and three PHCs in Denpasar City (Denpasar Selatan
PHC and two Denpasar Utara PHC) between September and October 2022.

2.3. Randomisation and Blinding

The participants were randomised into each treatment group. The investigator strictly
followed the randomisation list provided by PT Bio Farma. Treatment was allocated based
on the randomisation list so that each randomisation number corresponded to only one
strictly randomly assigned treatment. A total of 900 participants were randomised, with
the following inclusion numbers and allocated vaccines: 001–300 (CoronaVac®), 301–600
(ChAdOx1), and 601–900 (BNT162b2), and randomisation codes (A or B).

2.4. Vaccines

The investigational product was IndoVac® (SARS-CoV-2 subunit protein recombinant
vaccine). Each 0.5 mL dose of the vaccine contains 25 µg of SARS-CoV-2 RBD subunit
recombinant protein, 750 µg of aluminium as an adjuvant, 750 µg of CpG 1018 as an
adjuvant, 2.226 mg of NaCl, and 0.923 mg of tris(hydroxymethyl)aminomethane (Batch no.
24800222 and 24800422). The comparative product was the Pfizer-BioNTech® COVID-19
vaccine. One dose (0.3 mL) contains 30 µg of COVID-19 mRNA vaccine (embedded in
lipid nanoparticles).

Single-stranded 5′-capped messenger RNA (mRNA) was produced using cell-free
in vitro transcription from the corresponding DNA templates encoding the viral spike (S)
protein of SARS-CoV-2. Sterile concentrate was used for dispersion. The Batch no. were
FT5335 and P0001431.

2.5. Sample Size and Study Analysis

The sample size was calculated based on noninferiority tests for the ratio of two means
(log-normal data) using PASS. Based on WHO Guidelines on ‘Considerations for Evaluation
of COVID-19 Vaccines’ (30 March 2022 version) [13], noninferiority to the comparator (EUL
listed COVID-19 vaccine) was defined as the lower bound (LB) of 95% confidence interval
(CI) in geometric mean titre (GMT) ratio (GMT in the new vaccine/GMT in the comparator
vaccine) of >0.67. If the LB of the 95% CI in the GMT ratio of the vaccine candidate to the
active control (R0) is 0.675, the actual ratio (R1) is 0.9, the coefficient of variation (COV)
is 0.8, and the power is 90%, thus the minimum sample size required is 127 subjects per
arm. With a vaccine-to-control ratio of 1:1 and a dropout rate of 10%, each arm required
140 participants. The sample size was also calculated using the assumption that the vaccine
arm will show at least 88% seropositivity rate and assuming a maximum seropositivity rate
among active controls of 98%, the study needs 135 and 135 participants in the SARS-CoV-2
vaccine and active control groups, respectively, to be able to reject the null hypothesis
that the seropositivity rates for the experimental and control participants are equal with
probability (power) of 0.9 and one-sided alpha of 0.025. Assuming a dropout rate of
10%, each arm would require 149 participants. To accommodate the minimum sample
size required for the aforementioned evaluations, the study will require approximately
150 participants per arm. This phase II study had six treatment arms; therefore, the total
sample size planned was 900 subjects. To evaluate this null hypothesis, uncorrected chi-
squared statistics were used for each primary series vaccine group.

2.6. Immunogenicity Measurements

For primary evaluation criteria, antibody titres in subjects were measured at baseline
(pre-vaccination) and 14 days after booster vaccination. For secondary evaluation criteria,
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additional blood samples were collected 28 days, 3 months, and 6 months after booster
vaccination. IgG antibody titres were evaluated using CMIA (Chemiluminescent Micropar-
ticle Immunoassay) by the Prodia Laboratory located in each centre. The neutralizing
antibody titres were evaluated using the surrogate Virus Neutralization Test (sVNT) and
microneutralization assay by the clinical trial laboratory at Bio Farma. Seroconversion was
evaluated following immunization with the SARS-CoV-2 vaccine and an active control. The
neutralization assay and sVNT were conducted against a SARS-CoV-2 variant of concern
(Omicron strain).

2.7. Safety Measurements

For safety measurements, the investigator assessed the intensity (code 1, 2, or 3), dura-
tion, and relation of each adverse event to the trial vaccines. Local and systemic reactions,
expected or not, occurring within 30 min and 28 days after each immunization were evalu-
ated by interviewing the subjects during post-surveillance visits. Serious adverse events
were evaluated during the study, until 6 months after booster vaccination. Particularly, the
body temperature was measured (using a thermometer) for seven days after vaccination,
in the evening, and/or at the peak febrile time and the highest temperature was recorded
in the diary card in degrees Celsius. The trial team then recorded the information in the
electronic CRF.

3. Results

In this study, 743 participants were screened, of which 47 were excluded because of
pregnancies, comorbidities, acute illness, plan to change domicile, and primary vaccina-
tion < 6 months. A total of 696 participants were enrolled in the study from 1 September to
31 October 2022 for the primary inactivated vaccine (CoronaVac®) group, the primary viral
vector vaccine (ChAdOx1) group, and the primary mRNA vaccine (BNT162b2) group.

3.1. Demographics and Baseline Characteristics

The CoronaVac® primary vaccine group was composed of 300 participants, including
112 male (37.3%) and 188 female (62.7%) participants, with a mean age of 37.93 ± 13.46 years.
Most of the participants had finished senior high school (55.3%) and (68.3%) were employed.
The participants came from various ethnic groups, mostly Sundanese (48.3%), Balinese
(26.3%), and Javanese (14.3%).

The ChAdOx1 primary vaccine group had 300 participants, of which 139 were male
(46.3%) and 161 were female (53.7%), with a mean age of 37.21 ± 12.33 years. Most of
the participants had completed senior high school (53.3%) and were employed (73.3%).
The participants came from various ethnic groups, mostly Balinese (46.7%), followed by
Sundanese (31.7%) and Javanese (12.7%).

A total of 96 participants were enrolled in the BNT162b2 primary vaccine group:
37 male (38%) and 59 female (62%) participants with a mean age of 36.42 ± 11.56 years. The
majority of the participants were senior high school graduates (52%) and employed (65%).
The participants came from various ethnic groups, mostly Sundanese (73%) and Javanese
(21%). The demographic characteristics of participants in all vaccine groups showed a fair
distribution with regard to age, BMI, sex, previous education, employment, and ethnicity
(Table S1).

3.2. Immunogenicity

Immunogenicity was analysed in each group, with 95% CI provided, and the pro-
portion of participants with seropositivity and seroconversion at each time point between
the IndoVac® vaccine and the control groups was compared using the chi-square test.
Antibody persistence was evaluated by comparing neutralising and IgG antibody titres
against the omicron strain 3 and 6 months after the booster dose in all primary vaccine
groups (CoronaVac®, ChAdOx1, and BNT162b2) (Figure 1).
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Overall, the results of this study showed that the IndoVac® vaccine was inferior to
the control 14 days after the booster dose. Moreover, 28 days after the booster dose, the
IndoVac® vaccine exhibited non-inferior effectiveness compared with the primary groups
of CoronaVac® (GMR 0.76 (0.57–0.99)) and ChAdOx1 group (GMR 0.72 (0.56–59.93)), but
the BNT162b2 group (GMR 0.61 (0.39–0.94)) was inferior to the control.

The seropositivity rate in all primary vaccine groups (CoronaVac®, ChAdOx1, and
BNT162b2) was still maintained compared with 14 or 28 days after the booster dose.
The GMT was still above the cutoff value for seropositivity of the neutralising antibody
(≥46.03) IU/mL and IgG antibody (≥7.1 BAU/mL). Regarding antibody persistence, no sig-
nificant difference was observed for seropositive rates and GMT between the investigational
product and control groups at 14 days, 28 days, 3 months, and 6 months.

A. CoronaVac® primary vaccine group

In the CoronaVac® primary vaccine group, the neutralising antibody GMTs (IU/mL)
in the IndoVac® vaccine group at baseline and 14 days, 28 days, 3 months, and 6 months
after the booster dose were 147.52, 1266.69, 1455.61, 717.36, and 758.54, respectively. In the
control group, the neutralising antibody GMTs (IU/mL) at baseline and 14 days, 28 days,
3 months, and 6 months after the booster dose were 151.75, 1982.51, 1926.17, 665.46, and
589.70, respectively. The seropositive rates at baseline and 14 days, 28 days, 3 months,
and 6 months after the booster dose in the IndoVac® vaccine group were 76.87%, 98.64%,
98.63%, 99.31%, and 99.29%, respectively. In the control group, the seropositive rates were
82.31%, 100%, 100%, 98.64%, and 99.31%, respectively (Figure 2).

In the CoronaVac® primary vaccine group, the IgG antibody GMTs (BAU/mL) in
the vaccine group at baseline and 14 days, 28 days, 3 months, and 6 months after the
booster dose were 266.20, 2817.08, 2663.47, 1804.82, and 1090.63, respectively. In the
control group, the neutralising antibody GMTs (BAU/mL) at baseline and 14 days, 28 days,
3 months, and 6 months after the booster dose were 266.39, 3482.59, 2546.08, 1135.17, and
629.27, respectively. The seropositive rates at baseline and 14 days, 28 days, 3 months,
and 6 months after the booster dose in the IndoVac® vaccine group were 98.64%, 100.00%,
100.00%, 100.00%, and 100.00%, respectively. In the control group, the seropositive rates
were 99.32%, 100.00%, 100.00%, 100.00%, and 100%, respectively (Figure 2).

B. ChAdOx1 primary vaccine group
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In the ChAdOx1 primary vaccine group, the neutralising antibody GMTs (IU/mL) at
baseline and 14 days, 28 days, 3 months, and 6 months after the booster dose were 251.46,
1320.43, 1039.13, 1352.34, and 533.37, respectively. In the control group, the neutralising
antibody GMTs (IU/mL) at baseline and 14 days, 28 days, 3 months, and 6 months after
the booster dose were 250.80, 2142.50, 1445.64, 1115.78, and 503.63, respectively. In the
IndoVac® vaccine group, the seropositive rates at baseline and 14 days, 28 days, 3 months,
and 6 months after the booster dose were 86.58%, 99.33%, 98.66%, 98.63%, and 98.62%,
respectively. In the control group, the seropositive rates were 85.14%, 100.00%, 100.00%,
100.00%, and 99.31%, respectively (Figure 2).
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Figure 2. Evaluation of immunogenicity over 6 months after administration of booster dose.

In the ChAdOx1 primary vaccine group, the IgG antibody GMTs (BAU/mL) in the
vaccine group at baseline and 14 days, 28 days, 3 months, and 6 months after the booster
dose were 409.33, 2318.75, 2137.70, 1640.16, and 953.66, respectively. In the control group,
the neutralising antibody GMTs (BAU/mL) at baseline and 14 days, 28 days, 3 months,
and 6 months after the booster dose were 396.45, 3122.96, 2328.21, 1270.84, and 765.02,
respectively. In the IndoVac® vaccine group, the seropositive rates at baseline and 14 days,
28 days, 3 months, and 6 months after the booster dose were 100.0%, 100.0%, 100.00%,
100.00%, and 100.00% respectively. In the control group, the seropositive rates were 100.0%,
100.00%, 100.00%, 100.00%, and 100.00%, respectively (Figure 2).

C. BNT162b2 primary vaccine group

In the BNT162b2 primary vaccine group, the neutralising antibody GMTs (IU/mL) at
baseline and 14 days, 28 days, 3 months, and 6 months after the booster dose were 237.49,
1012.50, 1019.69, 956.81, and 463.94, respectively. In the control group, the neutralising
antibody GMTs (IU/mL) at baseline and 14 days, 28 days, 3 months, and 6 months after
the booster dose were 254.56, 2332.31, 1661.66, 1033.56, and 416.53, respectively. In the
IndoVac® vaccine group, the seropositive rates at baseline and 14 days, 28 days, 3 months,
and 6 months after the booster dose were 89.80%, 100.00%, 100.00%, 100.00%, and 100.00%,
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respectively; in the control group, the rates were 86.96%, 100.00%, 100.00%, 97.78%, and
95.56%, respectively (Figure 2).

In the BNT162b2 primary vaccine group, the IgG antibody GMTs (BAU/mL) in the
IndoVac® vaccine group at baseline and 14 days, 28 days, 3 months, and 6 months after
the booster dose were 433.70, 2396.66, 2476.90, 1809.55, and 1012.94, respectively. In the
control group, the neutralising antibody GMTs (BAU/mL) at baseline and 14 days, 28 days,
3 months, and 6 months after the booster dose were 500.11, 4531.76, 3699.89, 1937.69, and
973.59, respectively. The seropositive rates at baseline and 14 days, 28 days, 3 months,
and 6 months after the booster dose in the vaccine group were 100.00%, 100.00%, 100.00%,
100.00%, and 100.00%, respectively; in the control group, the rates were 100.00%, 100.00%,
100.00%, 100.00%, and 100.00%, respectively (Figure 2).

3.3. Safety
3.3.1. Adverse Events (AEs)

A. AEs in the CoronaVac® primary vaccine group

The most reported solicited AE until 28 days after the booster dose in the CoronaVac®

primary vaccine group was local pain (vaccine group, 34%; control group, 40%), followed
by myalgia (IndoVac® vaccine group, 28%; control group, 39%). The incidence rates of
unsolicited AEs were <6% in the vaccine group. Most of the AEs in all the groups were
mild (Figure 3).
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B. Aes in the ChAdOx1 primary vaccine group

The most reported solicited AE until 28 days after the booster dose in the ChAdOx1
primary vaccine group was local pain (vaccine group, 25%; control group, 35%), followed
by myalgia (both groups, 23%). The incidence rates of unsolicited AEs were <5% in the
IndoVac® vaccine group. Most of the AEs in all the groups were mild (Figure 4).
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C. AEs in the BNT162b2 primary vaccine group

The most reported solicited AE until 28 days after the booster dose in the BNT162b2
primary vaccine group was local pain (vaccine group, 45%; control group, 47%), followed
by myalgia (IndoVac® vaccine group, 33%; control group, 43%). The incidence rates of
unsolicited AEs were <5% in the IndoVac® vaccine group. Most of the AEs in all the groups
were mild (Figure 5).
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3.3.2. Serious AEs (SAEs)

In total, three SAEs occurred in the study; however, they were not related to the
investigational products. No AEs of special interest were observed during the follow-
up period. No deaths were reported. SAEs were evaluated by the Data Management
Safety Board.

4. Discussion

Indonesian people’s perspectives of booster programmes show the dominance of
positive sentiments towards vaccine boosters compared with negative sentiments [5,16].
A study found a significant difference in vaccination coverage and vaccination timing
between cities and rural areas [5,16]. Because of national mandatory regulations and the
demand for COVID-19 booster vaccinations in Indonesia, PT Bio Farma has developed
a COVID-19 vaccine to help accomplish target vaccination for all populations globally,
particularly in Indonesia [11,12].

This vaccine candidate is based on SARS-CoV-2 recombinant protein-based RBD
protein developed by Texas Children’s Hospital Center for Vaccine Development at Baylor
College of Medicine. It is based on the sequence of the wild-type SARS-CoV-2 RBD amino
acid, representing residues 331–549 of the spike (S) protein (GenBank: QHD43416.1) of the
Wuhan-Hu-1 isolate (GenBank: MN908947.3) [17–19].

In this vaccine design, RBD was formulated with CpG 1018 and aluminium hydroxide
adjuvants to effectively induce antibodies that neutralise wild-type live viruses while
minimising Th2-biased responses with no vaccine-related AEs [14,15,17–19]. Recombinant
protein vaccine containing SARS-CoV-2 RBD elicited a potent immune response, with
neutralising antibodies reaching 99% seroconversion, although the response was lower in
the group aged ≥65 years compared with the younger group. This vaccine also induced
persistent antibody responses, lasting >6 months [20–22]. As RDB contains multiple
conformational and conserved neutralising epitopes, the vaccine was predicted to have
cross-neutralisation potency against virus variants [20–22].

The results of this study showed that the investigational products were inferior 14 days
after the booster dose compared with the control. At 28 days after the booster dose, the
investigational product was non-inferior in the primary group of CoronaVac® (GMR 0.76
(0.57–0.99)) and the ChAdOx1 group (GMR 0.72 (0.56–59.93)) compared to the control.
Based on the seropositive and seroconversion rates 28 days after the booster dose, no
statistical difference was found between the IndoVac® vaccine and the control vaccine
despite the difference in GMT. A heterologous booster study was also conducted for
Biological E’s Corbevax, another vaccine with a similar platform to IndoVac® Vaccine,
which has been approved by the Indian Regulatory Authority as a heterologous booster
for Covishield (ChAdOx1 vaccine) and Covaxin (inactivated vaccine) [21]. A study in Iran
showed a different result from our study [15]. The seropositive rate was only 30% after
28 days of the booster dose administration [15]. Other studies have also shown that antibody
levels after administration of a booster dose of the mRNA vaccine were higher than after
administration of the protein subunit recombinant and viral vector vaccine [22–24]. A study
in the UK evaluating different vaccine platforms as third-dose boosters also demonstrated
the potential of all the vaccines tested to boost immunity post-booster, as measured by
anti-spike IgG and neutralising assays [25]. All vaccines were shown to boost immunity
in older and younger populations [21–25]. However, marked differences were found in
response to specific booster vaccines [21–25].

The GMTs at baseline in the IndoVac® vaccine group were lower than those in the
control group for all primary vaccine groups, particularly in the CoronaVac® primary
vaccine group. At 14 days after the booster dose, the GMTs in all groups increased; those
in the control group were significantly higher than those in the IndoVac® vaccine group
(p < 0.05). However, the GMTs in the control group were still significantly higher than
those in the vaccine group. Previous studies have shown that individuals who received
the homologous inactivated virus vaccine as a primary vaccine exhibited lower binding
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antibodies than the other groups at baseline [20,21,24]. This result is consistent with
the findings of a previous study suggesting a lower decrease in neutralising antibody
titres after administration of the subunit protein vaccine booster compared with mRNA
vaccines [20,26]. In addition, a study showed that the neutralising antibody (nAb) titre
against SARS-CoV-2 variants after booster with mRNA vaccine was lower than the titres
with the inactivated virus (CoronaVac®) and the protein recombinant vaccine (ChAdOx1)
as the primary vaccine [20,21,24]. However, 28 days after the booster dose, all GMTs
decreased gradually, and IgG levels were slightly reduced at 28 days [20,21,24].

At 3 and 6 months, the investigational product showed higher GMTs than the con-
trol, showing a significant difference. The significant difference in GMTs for recombinant
COVID-19 vaccines at 3 and 6 months highlights the effectiveness of these vaccines in
boosting immune responses over time. Studies have shown that administering a recom-
binant protein subunit vaccine booster, such as ZF2001, at 3- to 9-month intervals after
the initial vaccination with an inactivated vaccine such as CoronaVac® can lead to robust
immune responses [27]. However, the NVX-CoV2373 vaccine has shown promising results
in adolescents; this vaccine is immunogenic and has significant GMTs [28]. The GMTs
of the recombinant COVID-19 vaccines at 3 and 6 months demonstrated sustained im-
munogenicity and efficacy of these vaccines, highlighting their role in boosting immune
responses over time and providing protection against severe COVID-19 outcomes and
emerging variants [27–29].

The development of recombinant COVID-19 vaccines and booster shots has shown
promising results in terms of immunogenicity, efficacy against different variants, and
durability of immune responses over time. These findings support the ongoing efforts to
combat the COVID-19 pandemic through vaccination strategies that enhance immunity
and provide long-term protection [30,31].

CoronaVac® and BNT162b2 as primary vaccines and the IndoVac® vaccine as the
booster exhibited an approximate increase in GMTs. A previous study in Indonesia revealed
results similar to those of this study: a significant increase in binding and neutralising
antibodies after boosting with protein subunit recombinant vaccine such as ChAdOx1-S
(ChAdOx1 heterologous booster), which means that the GMT obtained after a booster dose
of mRNA vaccine was higher than that obtained after a booster dose of protein subunit
recombinant and viral vector vaccine [26].

Antibody persistence 3 and 6 months after the booster dose was evaluated by analysing
neutralising antibodies against the omicron variant and IgG antibody titres in all primary
vaccine groups [32,33]. The neutralising antibody and IgG antibody titres in all primary
vaccine groups were still maintained compared with the values 14 and 28 days after the
booster dose. No significant differences were observed for seropositive rates and GMT
between the IndoVac® vaccine and control groups. Surprisingly, significant differences in
the seropositive rates and GMT between investigational product and control groups were
found in the CoronaVac® and ChAdOx1 primary vaccine groups at 3 and 6 months.

The significant difference in IgG results for recombinant COVID-19 vaccines at 3 and
6 months indicates sustained humoral immune responses over time [27,34]. Studies have
shown that recombinant protein subunit vaccines, such as ZF2001, can elicit robust IgG
antibody responses against SARS-CoV-2, with significant efficacy in preventing COVID-19
and related severe outcomes [27]. In addition, the NVX-CoV2373 vaccine, a recombinant
S protein vaccine co-formulated with a saponin-based adjuvant, demonstrated higher
IgG levels [28]. These findings highlight the importance of recombinant protein subunit
vaccines in boosting humoral immunity against COVID-19 and providing long-lasting
protection against the virus and its variants [27,28,34,35].

This study revealed that the seropositive rates against the omicron variant and IgG
antibody titres in all primary vaccine groups were still maintained compared with those
at 14 and 28 days after the booster dose. The results showed that the immune response,
which was evaluated by analysing neutralising antibodies against the omicron variant in
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all primary vaccine groups, gradually declined 12 months after the booster dose; however,
the rates were not significant in both booster groups [36–39].

Several studies have investigated the persistence of antibodies after a booster vaccine
for COVID-19 at 3, 6, and 12 months. In one study, the safety, immunogenicity, and
antibody persistence of a bivalent beta-containing booster vaccine against COVID-19 were
evaluated, revealing that the antibody response persisted for at least 3 months after the
booster dose [40]. In another study, the duration of detectable anti-spike antibodies after
COVID-19 vaccination was measured, indicating that participants maintained detectable
anti-spike antibodies until dropout or censoring, reflecting a highly durable antibody
response to COVID-19 vaccination [41]. A third study assessed the 3-month antibody
persistence of a bivalent omicron-containing booster vaccine, revealing that the omicron-
BA.1-containing bivalent booster consistently induced higher neutralising antibody titres
against omicron BA.1, with no decrement in the response against ancestral SARS-CoV-2
(D614G) [42]. Mechanistic modelling projections were utilised in a fourth study to estimate
antibody persistence after a single-dose vaccine, revealing that the projected overall 24-
month persistence after a single dose was 70.5% for binding antibodies and 55.2% for
neutralising antibodies [43]. These studies have provided insights into antibody persistence
following COVID-19 booster vaccination at 12 months, suggesting that homologous booster
regimens can lead to a significant increase in antibody persistence [40–43].

This study showed that the microneutralisation and IgG levels of the investigational
product were not different 28 days, 3 months, and 6 months after the booster dose compared
with the control. A significant difference was observed for the seropositive rates and GMTs
between the investigational product and the control groups at 3 and 6 months with the
primary vaccines CoronaVac® and ChAdOx1. A microneutralisation assay for the IndoVac®

vaccine showed a significant increment in immunogenicity against the omicron variant
compared to the prebooster baseline [36–39].

Local pain, followed by myalgia, was the most prevalent AE reported in both vaccine
and control groups of all primary vaccine groups. This finding was consistent with those of
several studies reporting that the most common side effects were pain at the injection site
(for local AEs) and myalgia (for the most common systemic AEs) [20–24,26,44]. Three SAEs
were reported, with causality not related to the study products.

Thus, based on this study, IndoVac® was safe during the safety follow-up 28 days
after the booster dose and showed mild-to-moderate, transient reactogenicity. No safety
concerns related to vaccination were seen, as indicated by the similar percentages of par-
ticipants reporting unsolicited AEs in the vaccine and control groups. IndoVac® (subunit
protein recombinant vaccine platform) can be a good candidate for booster doses of pri-
mary CoronaVac®, ChAdOx1, and BNT162b2 vaccines [11,12]. Considering similar results
from other studies, these data provide immunisation advisory committees and policy-
makers with additional immunological and reactogenicity information, which could allow
flexibility in deploying heterologous booster vaccines. Other considerations should in-
clude clinical, logistical, and supply considerations targeted to the populations with the
greatest need.

Limitations: This study used the BNT162b2 vaccine as a control product, which uses a
different platform from IndoVac®. The available COVID-19 booster vaccines that had been
authorised for emergency use in Indonesia at the time of the study were BNT162b2 and
ChAdOx1. ChAdOx1 was unavailable, and other subunit protein recombinant vaccines
(e.g., Covovax) had not received EUA as a booster dose in Indonesia. The minimum sample
size in the BNT162b2 primary vaccine group was not met because most of the population
in the study area did not receive the BNT162b2 vaccine as their primary COVID-19 vaccine.

5. Conclusions

IndoVac® has favourable immunogenicity and safety profile as a booster dose in par-
ticipants who previously received primary doses of CoronaVac®, ChAdOx1, or BNT162b2.
IndoVac® was inferior to the control 14 days after the booster but was non-inferior after
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the booster with primary CoronaVac® and ChAdOx1 vaccines. The vaccine has favourable
immunogenicity based on seropositive and seroconversion rates 14 and 28 days after the
booster dose. IndoVac® showed a significant increment in immunogenicity against the
omicron variant at 3 and 6 months based on the prebooster baseline. The IndoVac® vaccine
was well tolerated until the 6-month follow-up after the booster dose, and all reported
AEs resolved.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines12050540/s1, Table S1: Demographic characteristics.
Table S2: Serological results. Table S3: Geometric mean titre results.
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