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Abstract: In research on membranes, the addition of co-solvents to the polymer dope solution is
a common method for tuning the morphology and separation performance. For organic solvent
nanofiltration (OSN) applications, we synthesized polybenzimidazole (PBI) membranes with high
separation properties and stability by adding acetonitrile (MeCN) to the dope solution, followed by
crosslinking with dibromo-p-xylene. Accordingly, changes in the membrane structure and separation
properties were investigated when MeCN was added. PBI/MeCN membranes with a dense and
thick active layer and narrow finger-like macrovoids exhibited superior rejection properties in the
ethanol solution compared with the pristine PBI membrane. After crosslinking, they displayed
superior rejection properties (96.56% rejection of 366-g/mol polypropylene glycol). In addition,
the membranes demonstrated stable permeances for various organic solvents, including acetone,
methanol, ethanol, toluene, and isopropyl alcohol. Furthermore, to evaluate the feasibility of the
modified PBI OSN membranes, ecamsule, a chemical product in the fine chemical industry, was
recovered. Correspondingly, the efficient recovery of ecamsule from a toluene/methanol solution
using the OSN process with PBI/MeCN membranes demonstrated their applicability in many fine
chemical industries.

Keywords: organic solvent nanofiltration; polybenzimidazole; nonsolvent-induced phase separation;
co-solvent; evaporation; crosslink

1. Introduction

Organic solvent nanofiltration (OSN) is a pressure-driven membrane filtration tech-
nology that separates solutes dissolved in various organic solvents. The separation mech-
anism of OSN is based on size exclusion, and the membrane has a molecular weight
cut-off (MWCO) between 200 and 1000 g/mol [1,2]. Conventional separation technolo-
gies, including distillation, evaporation, chromatography, and extraction, are energy- and
cost-intensive, generate hazardous wastes, and degrade heat-sensitive products during
distillation and evaporation at high temperatures [3]. Accordingly, OSN has been studied
as a suitable alternative to traditional separation technologies, such as solute separation [4],
solvent recovery [5,6], purification [7], extraction and concentration, because of the numer-
ous advantages of OSN. These include: (1) simple pressure-driven process; (2) cost and
energy efficiency; and (3) reduced thermal damage to high-value chemical products [8].
OSN application studies, such as refining active pharmaceutical ingredients and genotoxic
impurities and removing free fatty acids generated in food production, have demonstrated
the feasibility of OSN processes in various industries, including the pharmaceutical, food,
petrochemical, and fine chemical sectors [4,6,9,10].
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An OSN membrane requires an excellent separation performance and high chemical
stability under harsh environmental conditions in various chemical industries. The out-
standing separation features of the OSN membrane, such as high rejection, permeance, and
long-term stability, and the sturdiness of the materials in various solvents, including polar,
acidic, and basic solvents, are of primary interest. For OSN membranes, numerous poly-
meric materials, such as polyimide [11,12], poly(ether ketone) [13,14], polyamide [15,16],
and polybenzimidazole (PBI) [17,18], have been explored. These polymers, which con-
tain aromatic or imide groups in their chemical structure, are stable in various organic
solvents [19]. Among them, PBI, an aromatic polymer with strong hydrogen bonding with
benzimidazole groups [8,20], has been used as a membrane material in several membrane
separation processes, including gas separation [21], forward osmosis [22], and nanofiltra-
tion for water treatment [23]. In addition, PBI has been explored for use in OSN owing to
its exceptional chemical, thermal, and physical stability [24].

For OSN applications, integrally skinned asymmetric PBI-based membranes are fab-
ricated via the nonsolvent-induced phase separation (NIPS) method. The membrane
structure influences the separation qualities, such as solute rejection and solvent perme-
ability. Adding co-solvents or additives to polymer dope solutions is a typical technique
for controlling the membrane structure during NIPS fabrication. Chen et al. fabricated
a PBI membrane by adding a volatile solvent and showed an increase in the active layer
thickness and selectivity of the PBI membrane [25]. When a volatile solvent is added as a
co-solvent, the solvent on the surface of the membrane evaporates to generate a polymer-
rich phase before immersion in the coagulation bath. This results in the formation of a
dense and thick active layer, which enhances solute rejection [26]. Wang et al. fabricated a
poly(m-phenylene isophthalamide) hollow fiber membrane by adding acetone as a volatile
non-solvent into the spinning solution; the membrane exhibited a structure with reduced
macrovoids and enhanced salt rejection [27]. When a co-solvent with a good affinity with
the polymer is added to the polymer dope solution, the viscosity of the dope solution
decreases [28], which makes it difficult to prepare the mechanically robust membrane.
However, as the solvent with low affinity with polymer is added to the polymer dope
solution, the polymer solubility of the solvent decreases, and the interaction between the
polymer chains increases. As a result, the polymer chain assumes a tightly coiled configura-
tion, preventing the solution in the polymer chain from diffusing to the coagulation solvent
and exhibiting a membrane structure with macrovoid suppression [29,30].

Although the membrane is fabricated using a polymer with high chemical and physical
stability, most polymer membranes prepared using NIPS may be dissolved in polar aprotic
organic solvents, including N,N-dimethylacetamide (DMAc), N,N-dimetyformamide, and
N-methyl pyrrolidone. Owing to the need for a process that increases the chemical and
physical stability of the membrane for use in the chemical industry with various organic
solvents, various crosslinking methods for the NIPS-based polymeric membrane have
been documented. PBI membranes with an amine group can be crosslinked using a
variety of crosslinkers, including glutaraldehyde, 1,2,7,8-diepoxyoctane, sulfuric acid,
and trimesoyl chloride [20,31–33]. Some crosslinked PBI membranes have exhibited an
increased separation performance and chemical resistance, but they are difficult to apply
to the OSN field due to their solubility in organic solvents and limited permeability [34].
Among the various crosslinkers, PBI membranes crosslinked with dibromo-p-xylene (DBX)
demonstrated high chemical stability in polar aprotic solvents and an enhanced separation
performance, making them suitable for OSN applications [35,36].

In this study, we demonstrate a PBI membrane with both a better separation perfor-
mance and improved mechanical stability, fabricated through acetonitrile addition and
crosslinking. The effect of a solvent additive with a low affinity with PBI on the membrane
structure and separation properties has not been reported. Accordingly, we synthesized PBI
membranes via NIPS using acetonitrile (MeCN), a volatile solvent with a low affinity for
PBI, as a co-solvent. The membranes were then subjected to nanofiltration crosslinked with
DBX to improve their chemical stability and separation properties. To make the membranes
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practically usable, they were subjected to a nanofiltration test using an ecamsule solution,
from which ecamsule was rejected.

2. Materials and Methods
2.1. Materials

To fabricate the membranes, Celazole S26 (PBI Performance Products, Charlotte,
NC, USA) was used. It contained 25.8 wt% PBI and 1.5 wt% lithium chloride in DMAc.
DMAc (99.5% Samchun Co., Pyeongtaek, Republic of Korea) and acetonitrile (MeCN,
99.5%, Duksan C&P, Daejeon, Republic of Korea) were used as solvent to dissolve PBI.
Polypropylene (PP) nonwoven (Novatexx 2471, Freudenberg Filtration Technologies, Wein-
heim, Germany) was used as a support layer. The fabricated membranes were stored in
isopropyl alcohol (IPA, 99.5%, Duksan C&P, Daejeon, Republic of Korea). As a crosslinker,
α,α′-dibromo-p-xylene (DBX, 97%, Sigma-Aldrich Co., St. Louis, MO, USA) was used. For
the OSN performance test, anhydrous ethyl alcohol, acetone, methanol, and toluene were
purchased from Duksan C&P (Daejeon, Republic of Korea); poly(propylene) glycol (PPG)
(average Mn: 425, 725, and 1000 g/mol) was purchased from Sigma-Aldrich (St. Louis,
MO, USA). The ecamsule solution was provided by Withel (Iksan, Republic of Korea).

2.2. Membrane Fabrication

The PBI membranes were fabricated using the NIPS technique. First, the Celazole
S26 PBI solution was diluted with DMAc and MeCN. Then, the PBI dope solution was
stirred for 6 h and used after 12 h of stabilization. The fabrication of the PBI membrane was
conducted in an enclosed room with a temperature of 22 ◦C and humidity of 30–35%. The
PBI dope solution was cast on a PP support using an automatic film applicator at 75 mm/s
with a casting thickness of 200 µm. The PBI film had an evaporation time of 20 s; it was
submerged in a deionized water bath to coagulate for 1 h and left for 24 h in an exchanged
deionized water. The PBI membranes were then rinsed with, and stored in, IPA.

To crosslink the fabricated PBI membranes, a DBX/MeCN solution was prepared
by dissolving 3 wt% of DBX in MeCN for 1 h at 80 ◦C. Accordingly, the PBI membranes
were immersed and stirred in a prepared DBX/MeCN solution at 80 ◦C for crosslinking.
After 24 h, the crosslinked PBI membranes were washed for 1 h with IPA and then stored
in IPA until use. The dope compositions of the membranes developed for this study are
summarized in Table 1.

Table 1. Membrane dope composition.

Membrane
Materials

DBX Crosslink
PBI (wt%) DMAc (wt%) MeCN (wt%)

M1 18 82 0 No
M1-X 18 82 0 Yes

M2 18 72 10 No
M2-X 18 72 10 Yes

M3 18 67 15 No
M3-X 18 67 15 Yes

M4 18 62 20 No
M4-X 18 62 20 Yes

2.3. Membrane Characterization

The viscosity of the dope solutions containing varying concentrations of MeCN was
determined using a Brookfield DV2 T® Viscometer and SC4-21 Spindle (Brookfield Ametek,
Middleboro, MA, USA). The tests were performed at 22 ◦C, the temperature at which
the membrane was fabricated, at a spindle speed of 10 rpm. To observe the membrane
morphology, environmental scanning electron microscopy (E-SEM, Quattro S, Thermo
Fisher Co., Waltham, MA, USA) was used. The membranes were dried in a vacuum oven
and sliced in liquid nitrogen before being coated with platinum using a sputtering device
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(JEOL JFC-1300, Tokyo, Japan). The chemical structure of the membranes before and after
crosslinking were investigated and confirmed via Fourier transform infrared spectroscopy
(FT-IR, Nicolet 5700, Thermo Fisher Co., Waltham, MA, USA) in the wavelength range of
400–4000 cm−1 with 32 scans for each membrane and X-ray photoelectron spectroscopy
(XPS, K-Alpha+, Thermo Fisher Co., Waltham, MA, USA).

2.4. OSN Test

To evaluate the OSN performance of the membranes, both the dead-end and crossflow
filtration systems, illustrated in Figure 1, were used. Before the test, the membranes were
submerged for 1 h in a filtering solvent to remove any leftover IPA. The effective area of
the membrane used in the crossflow system was 14.8 cm2. Three distinct PPG products
with various average molecular weights (~400, ~725, and ~1000 g/mol) were dissolved
in ethanol at a concentration of 1 g/L. The filtration was performed at 30 ◦C and 15 bar.
For the dead-end filtration systems, the effective area was 19.6 cm2, stirred filtration was
performed at 15 bar, and the stirrer speed is determined as 250 rpm.
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Figure 1. Schematic of (a) dead-end filtration system and (b) crossflow filtration system.

In both filtration systems, the solution permeance (J, L m−2 h−1 bar−1) and solute
rejection (R, %) were calculated by Equations (1) and (2), respectively:

J = V/At∆P (1)

R =
(
1− cp/cf

)
× 100 (2)

where V(L) is the permeated volume through the membrane, A(m2) is the effective area
of the membrane, t(h) is permeated time, and ∆P the operating pressure (bar). Cp and
Cf are the concentrations of the permeated solution and feed solution (g/L), respectively.
The Cp and Cf were analyzed via high-performance liquid chromatography (1260 Infinity
II, Agilent Technologies Co., Santa Clara, CA, USA) and an evaporative light scatter-
ing detector (SEDEX 75, SEDERE Co. Olivet, France). The columns used in the high-
performance liquid chromatography are the Kinetex® C18 Column (50 × 4.6 mm, 2.6-µm
particle size, Phenomenex Co., Torrance, CA, USA) for PPG analysis and the Poroshell
120 EC-C18 Column (150 × 4.6 mm, 4-µm particle size, Agilent Technologies Co., Santa
Clara, CA, USA) for ecamsule solution analysis.

3. Results and Discussion
3.1. Effects of MeCN Concentration
3.1.1. Membrane Morphology

Table 2 shows the solubility parameters and boiling point of the PBI and the solvents.
The solubility parameters consider three main types of interaction between molecules:
dispersion forces (δd), polar forces (δp), and hydrogen bonding forces (δh). The affinity of
the solvents with polymer was evaluated using RHSP, which represents a distance in the



Membranes 2023, 13, 104 5 of 14

Hansen solubility parameters between solvent (A) and polymer (B). RHSP is calculated by
the following Equation (3):

RHSP =
√

4(∂dA − ∂dB)
2 +

(
∂pA − ∂pB

)2
+ (∂hA − ∂hB)

2 (3)

Table 2. Hansen solubility parameters and boiling points of polybenzimidazole and solvents [37–39].

Materials
Hansen Solubility Parameter (MPa0.5) RHSP (Mpa0.5) Boiling

Point (◦C)δd δp δh δS-P

PBI 20.4 6.6 7.5 - -
DMAc 16.8 11.5 10.2 9.7 165
MeCN 15.3 18.0 6.1 16.0 82

Increased RHSP values indicate a reduced interaction between the solvent and poly-
mer [40]. Compared with DMAc, the RHSP between MeCN and PBI was higher, indicating
a low affinity of MeCN with PBI. In a mixed solvent of DMAc and MeCN, the PBI solubility
decreased, thus increasing the interactions between the PBI polymer chains. These increas-
ing interactions resulted in a tightly coiled conformation of the PBI polymer chains, thereby
increasing the viscosity of the PBI dope solution (Figure 2) [30,41]. By decreasing the PBI
solubility in the mixed solvent with further MeCN addition, the PBI hardly dissolved in a
solvent including 25 wt% MeCN. Therefore, the PBI dope solution was prepared with a
solvent containing up to 20 wt% of MeCN. The PBI dope solution with low viscosity perme-
ated further into the PP support as the evaporation time increased during the evaporation
process after casting; therefore, the PBI membrane formed by giving an evaporation time
of 20 s. The morphology of the PBI membrane was observed through E-SEM.
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Figure 3 shows the cross-sectional SEM images of the membranes. The thickness of
the PBI membrane and the active layer increased with the increasing MeCN concentration.
The cross-sectional image of M1 revealed numerous macrovoids and a very thin active
layer (0.31 µm). In contrast, M4 has a dense structure, narrow macrovoids, and a thick
active layer (1.95 µm). Before immersing the membrane in the coagulation bath, the solvent
on the membrane surface is evaporated, thereby forming a polymer-rich phase [42]. As
shown in Table 2, MeCN is a more volatile solvent than DMAc. As the concentration of
MeCN increased, the solvent on the surface of the membrane evaporated more, resulting in
a thicker and more compact active layer.
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Due to the high viscosity of PBI, the attraction between the PBI molecules is strong.
As shown in Figures 2 and 3, the increased MeCN concentration led to an increase in the
viscosity of the PBI dope solution, thus increasing the total thickness of the PBI. Due to the
strong attraction between the PBI chains, in the process of casting the PBI solution onto
the PP support, the penetration of the PBI solution into the PP support was slowed and
the total thickness increased. In addition, compared with M1, the PBI/MeCN membranes
possessed narrower macrovoids and exhibited sponge-like porosity morphologies toward
the skin layer. Owing to the increased viscosity of the PBI solution and the tighter and
thicker surface layer caused by the evaporation of the volatile solvent, the solvent in the
membrane was prevented from diffusing into the nonsolvent in the coagulation bath, and
the demixing between the solvent and nonsolvent was delayed, resulting in the formation
of a membrane with a sponge-like structure [43].

3.1.2. OSN Performance of PBI Membranes

Figure 4 presents the results of the ethanol and ethanol–PPG solution filtration experi-
ments using a crossflow filtration system. M1 displayed the highest permeance and the
lowest rejection qualities, whereas M4 demonstrated the lowest permeance and highest
rejection qualities. As the MeCN concentration increased, the ethanol permeance of the
membrane decreased from 10.22 Lm−2h−1bar−1 to 3.76 Lm−2h−1bar−1. From M1 to M4,
the rejection of PPG 366 g/mol increased from 23.03% to 65.93%. The membrane formed by
the immediate demixing of the solvents and non-solvents had a thin, porous surface layer,
whereas the membrane formed by the delayed demixing of the solvents and non-solvents
had a dense, thick surface layer [44]. The addition of MeCN delayed the demixing of
the solvents and non-solvents and, as shown in Figure 3, the membranes fabricated with
dope solutions with a higher MeCN concentration had thick and compact active layers.
As the thick and dense outermost layer of the membrane increased the solvent’s perme-
ation resistance, the ethanol permeance decreased as the MeCN concentration increased.
Further, because the evaporation of MeCN resulted in a denser membrane surface, the
rejection property of the membrane was significantly strengthened. The MWCO of the
M1 was >1000 g/mol. The increased MeCN concentration increased the PPG rejection; M3
had an MWCO of 949.4 g/mol and M4 had an MWCO of 716.2 g/mol.
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3.2. Crosslinking Effect on Membrane Properties
3.2.1. FT-IR/XPS Analysis

Crosslinking the membranes with DBX improved their separation properties and
chemical stability. The FT-IR investigation confirmed that DBX reacted with the amine
group in the PBI imidazole rings (Figure 5a) [34,36]; the FT-IR spectra of the membrane
before and after crosslinking are shown in Figure 5b. In addition, –NH–, –N=C–, and N–H
were attributed to the remarkable alterations following crosslinking, detected in the peak at
1285 cm−1 and the broadband at 1440 cm−1, which appeared at ~3150 cm−1 [45]. Compared
with the spectra of M1, the intensity of the –N=C– transmittance peak decreased, whereas
the –NH– peak and the N–H band disappeared in the M1-X spectra. This phenomenon was
a result of the formation of a new covalent bond between the nitrogen functional groups in
PBI and the Bromo functional groups in DBX.
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Figure 5. (a) Crosslinking reaction of PBI with DBX (red, blue, green circles mean pyridinic nitrogen,
pyrrolic nitrogen, and Graphitic nitrogen, respectively) (b) Fourier transform infrared spectroscopy
spectra and (c) X-ray photoelectron spectroscopy N 1 s spectra of M1 and M1-X.

In addition, the XPS analysis confirmed the chemical composition of the surface of the
crosslinked PBI membrane. As shown in Figure 5c, the M1 spectra contain both pyrrolic
and pyridinic nitrogen atom signals, which are attributed to the amine group and the
imine of PBI. Following crosslinking, the concentration of pyrrolic and pyridinic nitrogen
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decreased. The area ratio of the pyrrolic peak decreased from 60.29% to 13.04%, whereas
that of the pyridinic peak decreased from 39.71% to 21.75%. The reaction of the pyrrolic
and pyridinic nitrogen atoms in the amine and imine group of PBI with bromine in DBX
resulted in the formation of a new peak containing a large number of graphitic nitrogen
atoms in the M1-X spectra. The presence of graphitic nitrogen atoms suggests that the PBI
membrane was successfully crosslinked with DBX.

3.2.2. Membrane Morphology

The cross-sectional SEM images of the crosslinked membrane are displayed in Figure 6.
Compared with the pristine membranes (Figure 3), the crosslinked membranes exhibited a
narrowing of the macrovoids and an increase in the total membrane thickness. In addition,
as illustrated in Figure 6e–h, the active layer on the surface of the membrane became thicker.
Following crosslinking with DBX, the active layer increased from a minimum of 1.57 times
to a maximum of 2 times, and the total thickness increased from a minimum of 1.35 to a
maximum of 1.98 times. These increases are a result of the MeCN membrane swelling. The
membranes were immersed in a DBX/MeCN solution, resulting in membrane expansion.
The PBI polymer chains were crosslinked with DBX to form a network structure, increase
membrane thickness, and preserve the expanded membrane. In the case of the dense active
layer, in which the polymer concentration was more than that of the sublayer, a greater
volume expansion was observed along with a marginally higher growth rate [46].
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Figure 6. SEM images of membranes (a,e) M1-X (b,f) M2-X, (c,g) M3-X, and (d,h) M4-X.
(a–d) Cross-section SEM images with 40-µm scale bars and (e–h) enlarged cross-section images
with 4-µm scale bars.

3.2.3. OSN Performance of Crosslinked Membranes

Figure 7 shows the separation performance, including the pure solvent permeance
and PPG (dissolved in ethanol) rejections, measured at 15 bar. Compared with the pristine
membranes, all of the crosslinked membranes demonstrated decreased ethanol permeance
and increased PPG rejection. Although crosslinking increased the separation properties
of M1, the MWCO of M1-X was >1000 g/mol, making its nanofiltration use challenging.
M3 demonstrated a pure ethanol solution permeance of 4.49 Lm−2h−1bar−1. After crosslink-
ing, the pure ethanol permeance of M3-X was 3.41 Lm−2h−1bar−1. The MWCO of the
crosslinked M3 membrane decreased from 949.4 g/mol to 774.5 g/mol in the ethanol–PPG
solution. The M4-X with the thickest active layer exhibited the lowest ethanol permeance
and the lowest MWCO, which was <366 g/mol. Through crosslinking, the generated
polymer network decreased the flexibility of the PBI polymer chain and reduced the pore
size, thus making it more difficult for the solvent to permeate [47] and decreasing the
ethanol permeance of the membranes. Simultaneously, the rejection of solutes increased
due to the reduction in the pore size by the crosslinked three-dimensional polymer net-
work structure [34]. Thus, the crosslinked membranes had a lower MWCO range than the
pristine membrane, enhancing their selectivity. In Table 3, the OSN performance between
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the PBI-based membranes fabricated in this study and the commercial OSN membranes
are listed for a comparison of the membranes’ performance. The M4-X shows an excellent
separation performance and a much higher rejection for low molecular weight solutes than
most of the reported OSN membranes due to the tight and thick PBI/MeCN selective layer.
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Figure 7. Separation performance of the membranes. (a) Pure ethanol permeance, (b) polypropylene
glycol (dissolved in ethanol) rejection of membranes with crosslinking, (c) long-term OSN test in
ethanol PPG solution of M1-X, (d) long-term OSN test in ethanol PPG solution of M4-X, (e) organic
solvent permeance, and (f) solvent permeances test at 15 bar vs. reciprocal of viscosity (η) of solvent
for M4-X.
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Table 3. Comparison of OSN performance of pure ethanol permeance and solute rejection between
PBI based membranes and commercial OSN membrane.

Membrane
Ethanol

Permeance
(L m−2 h−1 bar−1)

Solute Rejection
(%) Ref.

PBI/MeCN-DBX 2.7 PPG
(366 g/mol) 96.56 This work

MPF-50 a 4.2 Raffinose
(504 g/mol) 41 [48]

STAPMEMTM 122 a 2.4 Sudan black
(456 g/mol) 94.1 [49]

DuraMem® 300 a 0.3 Methyl orange
(327 g/mol) 94.5 [50]

PEI2K-GA 1.4 Methyl orange
(327 g/mol) 89.6 [50]

PBI-PXDC 0.3 Crystal violet
(408 g/mol) 75.7 [24]

PBI-50sPPSU-DBX-
HPEI25k 4.24 Tetracycline

(444 g/mol) 83 [51]

PBI-NGDGE 19 Methyl orange
(327 g/mol) 14.12 [52]

a Commercial OSN membranes.

Long-term nanofiltration experiments with an ethanol-PPG solution using the M1-X
and M4-X were conducted for 96 h at 15 bar and are illustrated in Figure 7c,d. For 96 h,
the solution permeance of the M1-X declined by approximately 43%. However, the M4-X
showed over 95% of the rejection for 366 g/mol PPG, and the solution permeance decreased
from 2.14 Lm−2h−1bar−1 to 1.73 Lm−2h−1bar−1. The membranes were compressed for a
long time, resulting in a decrease in the solvent permeance. As the membrane has more
macrovoid in its membrane structure, the membrane has lower resistance to pressure [53,54].
The M1-X showed a loose structure even after crosslinking and showed that the permeability
of the M1-X decreased significantly due to low compression resistance during long-term
operation. In contrast, the M4-X had a rigid structure with narrow pore size distribution
after crosslinking, showing a slight decrease in solvent permeability.

The OSN performances of the crosslinked membranes evaluated with ethanol, IPA,
methanol, acetone, and toluene are shown in Figure 7e. The relationship between the perme-
ances of pure solvents and solvent viscosity is depicted in Figure 7f. Several variables affect
solvent permeation, including viscosity, solubility parameters, and molecular diameter.
Among these, viscosity had a strong association with solvent permeability [48,55–57]. The
sequence of the permeance of different solvents is as follows: acetone > methanol > ethanol
> toluene > IPA. With the exception of the nonpolar toluene, the polar solvent permeances
have a proportional correlation (R2 = 0.9758) with the reciprocal of solvent viscosity. In
general, a solvent with low viscosity causes less disruption while permeating through the
membrane. The permeance of acetone with the lowest viscosity was the highest, whereas
that of IPA with the highest viscosity was the lowest. These findings indicate that viscosity
is an important factor in solution permeability and the prediction of the permeance of PBI
membranes in other polar solvents is possible.

Through crosslinking, the chemical stability of the membrane in several organic sol-
vents was increased, as was its separation capability. To confirm that the membrane has
potential applications in the chemical industry, a nanofiltration test was performed using
the ecamsule solution, a strong base solution comprised of ecamsule, toluene, methanol, and
tert-butoxide. Considering that the molecular weight of ecamsule is 562.69 g/mol, Figure 8
shows the results of the dead-end filtration experiment conducted at 15 bar using the M3-X
and M4-X. M3-X and M4-X exhibited low permeance values of 0.83 Lm−2h−1bar−1 and
0.52 Lm−2h−1bar−1, respectively. M3-X rejected 77.04% of the ecamsule, whereas M4-X
rejected 90.22%. Toluene and methanol present in the ecamsule solution inflated the mem-
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branes, resulting in lower rejection than the PPG rejection with a similar molecular weight,
and ecamsule was deposited inside the membrane throughout the filtering process, result-
ing in low solvent permeability. Despite the deterioration of the separation performance,
an exclusion rate of >90% was observed for strongly basic solvents without membrane
defects. This indicates that the crosslinked PBI-MeCN membrane has great potential ap-
plications for actual OSN implementations of solvent purification and valuable chemical
product recovery.
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4. Conclusions

In this study, to fabricate membranes with superior separation properties, membranes
were synthesized using a PBI dope solution with MeCN as a co-solvent, and they were
crosslinked with DBX to improve their chemical stability and separation property for
OSN application. With the addition of MeCN, solvent evaporation at the membrane
surface and viscosity increased, resulting in the formation of membranes with sublayer-
suppressed microvoids and a thick active layer. The OSN experiment of the membranes
was conducted using ethanol and PPG in a crossflow filtering system. As the concentration
of MeCN increased, the altered structure exhibited reduced permeance and enhanced
PPG rejection. After crosslinking with DBX, the chemical structure of the membranes
was validated via FT-IR and XPS analysis, and they were successfully crosslinked. The
total and active layer thickness of the crosslinked membranes increased; however, the
macrovoids shrunk due to the irreversible swelling that occurred in the crosslinking so-
lution. All of the crosslinked membranes exhibited a superior separation performance
compared with the pristine membranes. The membranes containing 20 wt% MeCN had a
2.69 Lm−2h−1bar−1 ethanol permeance and 96.56% PPG rejection at 366 g/mol, which is
a 30% improvement over the pristine membranes. Using various organic solvents, the
membranes were subjected to a nanofiltration test, and the permeability of the solvents in-
creased in the following order: acetone > methanol > ethanol > toluene > IPA. A correlation
was observed between the permeability and viscosity of the solvents, except in the case of
toluence, which is a nonpolar solvent.

In addition, the membranes were tested using the ecamsule solution, which is used in
the fine chemical industry. The membranes had a permeance of 0.52 Lm−2h−1bar−1 and
an ecamsule rejection rate of 90.22%. The ecamsule solution nanofiltration was conducted
without membrane defects, indicating that the crosslinked PBI/MeCN membranes with su-
perior separation properties have the potential for application in solvent purification, reuse,
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and the recovery of the valuable chemical product, as well as indicating that additional
research is required to improve the OSN performance.
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