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Abstract: The membrane biofilm reactor (MBfR) is a novel wastewater treatment technology, garner-
ing attention due to its high gas utilization rate and effective pollutant removal capability. This paper
outlines the working mechanism, advantages, and disadvantages of MBfR, and the denitrification
pathways, assessing the efficacy of MBfR in removing oxidized pollutants (sulfate (SO4

−), perchlorate
(ClO4

−)), heavy metal ions (chromates (Cr(VI)), selenates (Se(VI))), and organic pollutants (tetra-
cycline (TC), p-chloronitrobenzene (p-CNB)), and delves into the role of related microorganisms.
Specifically, through the addition of nitrates (NO3

−), this paper analyzes its impact on the removal
efficiency of other pollutants and explores the changes in microbial communities. The results of the
study show that NO3− inhibits the removal of other pollutants (oxidizing pollutants, heavy metal
ions and organic pollutants), etc., in the simultaneous removal of multiple pollutants by MBfR.

Keywords: microbial communities; denitrification; MBfR; composite pollutant

1. Introduction

Nitrate (NO3
−) is the predominant pollutant found in Chinese water bodies, im-

pacting 90% of shallow groundwater, with concentrations typically ranging from 10 to
100 mg/L. It is noteworthy that 70% of the Chinese population depends on this contam-
inated groundwater as their primary drinking water source [1,2]. In addition to NO3

−,
common pollutants include oxidizing pollutants (perchlorate (ClO4

−), sulfate (SO4
−)),

heavy metal ions (chromate (Cr(VI)), selenate (SeO4
2−)), and organic pollutants (tetra-

cycline (TC), para-chloronitrobenzene (p-CNB)). Despite the low concentrations of these
pollutants in water, they persist and pose a long-term threat to both the environment and
human health [3–5].

The membrane biofilm reactor (MBfR) is an emerging water treatment technology that
offers an effective solution to address water pollution problems. MBfR primarily utilizes
hydrogen (H2) or methane (CH4) as electron donors to facilitate pollutant removal from
water through microbial activity [6]. This technology offers not only high gas utilization
efficiency and effective pollutant removal ability but also the advantages of simple operation
and low energy consumption [7]. Currently, research on MBfR for the removal of individual
pollutants is well-developed; however, in practical applications, it encounters complex
combinations of multiple pollutants [8]. Denitrification, serving as a reduction pathway
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for NO3
−, has undergone extensive research. Increasingly, researchers are focusing on the

influence of NO3
− coexisting with other pollutants on the removal of these pollutants in

MBfR [9,10]. The ongoing advancement of research on MBfR technology under complex
combinations of pollutants is expected to yield significant advancements in the removal of
micro pollutants, enhancement of sewage treatment efficiency, and overall improvement
of water quality. Furthermore, the development and application of MBfR technology
will provide crucial technical support for the realization of more sustainable and efficient
sewage treatment systems.

2. The Basic Principles and Advantages and Disadvantages of MBfR
2.1. The Basic Principles of MBfR

The membrane biofilm reactor (MBfR) represents a novel approach to water treatment,
integrating membrane separation technology with bioprocessing techniques. This method
involves the arrangement of multiple hollow fiber membranes in a specific manner within
a container to form a complete set of filtration and separation membrane components [11].
Hydrogen (H2) or methane (CH4) serves as the electron donor to facilitate the reduction of
oxidative pollutants in water. Depending on the application of the MBfR and the pore size
of the hollow fiber membranes, these membranes can be categorized into microfiltration
(MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) membranes [12].
MF membranes are used to remove larger particles such as suspended solids, while UF
membranes can eliminate certain viruses, bacteria, and some high-molecular-weight so-
lutes. NF membranes, positioned between UF and RO, are capable of removing organic
substances, some inorganic ions, and microbes. RO membranes, with the smallest pore
sizes, can nearly remove all dissolved solids, organic materials, and microbes, making them
suitable for the preparation of high-purity water, such as in desalination processes [13–15].
Depending on the membrane material, hollow fiber membranes can be divided into organic
and inorganic membranes, as shown in Table 1. Given that the MBfR process primarily
involves the separation of biomass and suspended solids in wastewater, the applications
require high biocompatibility, effective filtration performance, and anti-fouling capabilities.
Therefore, the hollow fiber membranes used in MBfRs are predominantly polymer organic
membranes [16].

Table 1. Characteristics of common organic and inorganic hollow fiber membranes.

The Membrane Materials Feature Reference

Organic membranes

Polysulfone
(PSF)

It exhibits excellent chemical stability and mechanical
strength, rendering it applicable for diverse water

treatment applications.
[17]

Polyethersulfone
(FES)

It possesses outstanding heat resistance and chemical
resistance, along with good film-forming performance

and cost-effectiveness.
[18,19]

Polyvinylidene fluoride
(PVDF)

It exhibits excellent chemical and physical durability, as
well as biocompatibility. [20,21]

Polyaniline
(PANI)

It exhibits high electrical conductivity and is frequently
utilized as a component in blends/composites or as a

coating on polymer films.
[22]

Polypropylene
(PP)

It is a lightweight, low-cost thermoplastic polymer that
exhibits good chemical stability and

mechanical performance.
[23]

Inorganic membranes

Ceramic

It is known for its high-temperature stability, excellent
chemical stability, and long service life, making it suitable
for filtration in high-temperature processes and aggressive

corrosive environments.

[24]

Metal
Due to its exceptional mechanical strength and

temperature resistance, it is frequently employed in gas
separation and certain specific chemical processes.

[25]
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The MBfR system, as depicted in Figure 1, directs H2 or CH4 from the top end of the
reactor into the hollow fiber membranes that are secured within the tube to be utilized by
microorganisms attached to the hollow fiber membranes in the left main pipe. Wastewater
circulates through both columns, and as contaminants enter the main pipe, microorganisms
are capable of effectively converting them into substances of lower toxicity or non-toxicity,
concurrently producing harmless water and carbon dioxide. The branch on the right is
tasked with separating the treated water and gases, facilitating the collection of samples for
observation of the biofilm microorganisms. The water, subjected to microbial treatment,
undergoes filtration through a hollow fiber membrane, while the generated gases are
collected and discharged, enabling the recovery of valuable gases. This design not only
ensures water quality compliance but also facilitates the valorization of gases [26–28].
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Figure 1. Schematic diagram of H2/CH4-MBfR.

2.2. Advantages of Membrane Biofilm Reactor (MBfR)

(1) Efficiency: The MBfR, through microbial metabolism and adsorption mechanisms,
is capable of efficiently removing various types of pollutants, including oxidizing
pollutants, heavy metal pollutants, and organic pollutants [29,30].

(2) Cost-effectiveness: Compared to traditional physical–chemical methods, MBfR has
lower energy consumption and chemical usage. Additionally, by utilizing CH4 and
H2 as electron donors, the demand for external carbon sources is further reduced,
resulting in lower treatment costs [31].

(3) High gas utilization efficiency: Compared to the gas utilization efficiency of 5–50%
in traditional wastewater treatment plants, MBfR achieves close to 100% utilization
of electron donors (such as CH4 and H2) by utilizing a hydrophobic membrane and
bubble-free aeration method [9,32].

2.3. Limitations of Membrane Biofilm Reactor (MBfR)

(1) High technical requirements: Due to the membrane biofilm reactor (MBfR) being an
emerging technology involving multiple engineering and biological fields, strict con-
trol of parameters such as gas pressure, pH value, and biofilm thickness is necessary
during operation to ensure higher removal efficiency [33].

(2) Stability issues of the biofilm: In the membrane biofilm reactor (MBfR), the biofilm
is susceptible to environmental factors such as temperature, nutrient composition,
and flow rate, which may result in membrane fouling, clogging, or failure, thereby
affecting the treatment efficiency [7].

(3) Microbial balance risk: In the membrane biofilm reactor (MBfR), the stability of the
microbial community is crucial for system performance. However, factors such as
aeration pressure, reaction temperature, and changes in dissolved oxygen concentra-
tion in wastewater can lead to microbial imbalance. This imbalance may cause the
overgrowth of dominant bacteria or the suppression of beneficial bacteria, thereby
affecting the system’s stability and efficacy [34,35].
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2.4. Comparison between H2-MBfR and CH4-MBfR

H2-MBfR and CH4-MBfR are both gas-permeable membrane-based bioreactor tech-
nologies. The difference lies in the utilization of different gases, H2 and CH4, as electron
donors to facilitate the biodegradation of pollutants in wastewater. As a result, H2-MBfR
and CH4-MBfR exhibit significant differences in terms of treatment efficiency, microbial
community, and environmental impact. Regarding processing efficiency, comparing the
NO3

− removal flux between CH4-MBfR and H2-MBfR, the results indicate that the NO3
−

removal flux in CH4-MBfR is below 1.0 g N·m−2 d−1, while the NO3
− removal flux in H2-

MBfR ranges from 1.1 to 3.9 g N·m−2 d−1; the data indicate that CH4-MBfR exhibits a nearly
4-fold lower NO3

− removal flux compared to H2-MBfR, as shown in Table 2. [36,37]. Under
similar environmental pressures, introducing H2 as the electron donor in NO3

−-polluted
aquifers results in immediate and rapid absorption of H2. Denitrifying bacteria have an
advantage in utilizing H2 for autotrophic growth [33,38,39], which accounts for the lower
NO3

− removal flux in CH4-MBfR compared to H2-MBfR; Additionally, polydimethylsilox-
ane (PDMS) membranes have superior gas permeation characteristics compared to PP
fibers [40,41]. The increased gas permeability allows the electron donor gas (such as H2) to
transfer more effectively from the membrane to the biofilm where denitrification occurs,
providing electrons for the denitrification pathway. Conversely, in the removal process
of ClO4

−, SO4
2−, Cr(VI), and Se(VI), the removal flux of CH4-MBfR often exceeds that of

H2-MBfR. Firstly, as seen in Table 2, during the removal process of ClO4
−, SO4

2−, Cr(VI),
and Se(VI), the influent pollutant concentration or influent flux in CH4-MBfR is typically
higher, directly resulting in higher removal flux. Secondly, as indicated in Table 3, methane
oxidation generates higher energy, supporting robust microbial growth and contaminant
reduction. Regarding microbial communities, in H2-MBfR, H2 is utilized as an electron
donor to facilitate the growth of specific microbial communities, such as sulfate-reducing
bacteria, methane-producing bacteria, and hydrogen-oxidizing bacteria [42,43]. In contrast,
in CH4-MBfR, anaerobic methane-oxidizing bacteria, especially strains belonging to the
Methylocystis genus, demonstrate significant growth advantages. Methanol-oxidizing
denitrifying bacteria, such as Methloversatilis and Methylophilus, also play an important
role in the denitrification process by utilizing intermediate organic compounds, such as
methanol, produced during methane oxidation [44]. In terms of environmental benefits,
H2-MBfR performs well in removing nutrients such as nitrogen and phosphorus from
wastewater, thereby helping to prevent the occurrence of water eutrophication [44]. As
the electron donor in MBfR, CH4 is generally more readily available and cost-effective
compared to H2 [45,46]. CH4 is a byproduct of many natural processes and industrial
activities, such as biogas production, while the production of H2 typically incurs higher
costs and requires specialized manufacturing processes. Therefore, due to its low cost and
wide availability, CH4 as an electron donor is attracting researchers’ attention in the field of
biological reduction processes [47].
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Table 2. Comparison of H2-MBfR and CH4-MBfR in terms of removal flux.

Hollow Fiber
Membrane Types

Shared
Pollutants

Environmental
Pressure

(MPa)
pH T (◦C) HRT (h)

Influent
Concentration

(mg/L)

Influent Flux
(g·m−2 d−1)

Removal Flux
(g·m−2 d−1) References

NO3
− H2-MBfR Non-porous PDMS fibers None 0.104 7–8 22 4 - 13.6 3.300 [37]

CH4-MBfR Non-porous PP fiber None 0.114 - - 12 25 - 0.460 [48]

ClO4
−

H2-MBfR Non-porous PP fiber 3 mg/L NO3
−

30 mg/L SO4
2− 0.223 7.4–7.8 - - 0.09 0.0065 0.0065 [49]

CH4-MBfR Microporous
polyethylene fiber None 0.020 7.2–7.6 31 ± 1 24 - 0.1068 0.093 [50]

SO4
2−

H2-MBfR Non-porous PP fibers None 0.138 8–8.86 21 ± 3 - - 1.9 0.830 [51]

CH4-MBfR

Mitsubishi Rayon (model
MHF-200TL, Mitsubishi
Rayon Co., Ltd., Tokyo,

Japan)

1 mg/L Cr(VI) 0.069 7.0–7.5 29 ± 1 - 1 2.55 1.004 [52]

Cr(VI)

H2-MBfR

Mitsubishi Rayon
(Model MHF 200TL,

Mitsubishi Rayon Co.,
Ltd., Tokyo, Japan)

5 mg/L NO3
−

80 mg/L SO4
2− 0.017 - - - 0.25 - 0.034 [53]

CH4-MBfR

Mitsubishi Rayon
(Model MHF 200TL,

Mitsubishi Rayon Co.,
Ltd., Tokyo, Japan)

None 0.069 6.8–7.5 35 ± 1 - 2 - 0.070 [46]

Se(VI)

H2-MBfR

Mitsubishi Rayon
(Model MHF 200TL,

Mitsubishi Rayon Co.,
Ltd., Tokyo, Japan)

5 mg/L NO3
−

80 mg/L SO4
2− 0.017 - - - 0.25 - 0.031 [53]

CH4-MBfR Microporous
polyethylene fiber None 0.069 7.0–7.4 35 ± 1 2.7 5 0.529 0.182 [54]
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Table 3. Gibbs free energy of reduction reaction for removal of common pollutants.

Pollutants Chemical Reaction ∆Go’ (kJ e−1)

Nitrate (NO3
−) 2NO3

− + 6H2 → N2 + 6H2O −112
Nitrate (NO3

−) 8NO3
− + 5CH4 + 8H+ → 5CO2 + 4N2 + 14H2O −765

Perchlorate (ClO4
−) ClO4

− + 4H2 → Cl− + 4H2O −118
Perchlorate (ClO4

−) ClO4
− + CH4 → Cl− + 2H2O + CO2 −941

Sulfate (SO4
2−) SO4

2− + 5H2 → H2S + 4H2O −19
Chromate (Cr(VI)) CrO4

2− + 1.5H2 + 2H+ → Cr(OH)3 + H2O −9
Chromate (Cr(VI)) 8CrO4

2− + 3CH4 + 16H+ → 3CO2 + 4Cr2O3 + 14H2O −708
Celenate (SeO4

2−) SeO4
2− + CH4 → Se0 + 2H2O −71

Tetracycline (TC) C22H24N2O8 + 43H2 → 22CH4 + 2NH3 + 8H2O /
p-chloronitrobenzene (p-CNB) p-CNB +2H2 → p-CAN + 2H2O −122.7

3. Pathways for Nitrate (NO3
−) Reduction

In contemporary society, the use of agricultural fertilizers, animal excrement, and the
discharge of various industrial and urban waste contribute to the continuous increase in
nitrate (NO3

−) concentrations in water bodies, becoming a widely prevalent environmental
issue [55–57]. Especially in developing countries, the infiltration of NO3

− from septic tanks
into groundwater has become a serious environmental challenge [58]. High environmental
concentrations of nitrogen, such as NO3−, can cause eutrophication of water bodies. This
eutrophication further promotes excessive growth of algae, leading to the occurrence of
harmful algal blooms (HABs) and negatively impacting water quality and ecosystem
health. In addition, high concentrations of NO3

− intake are associated with various health
problems, including methemoglobinemia (blue baby syndrome), diabetes, and increased
risk of infectious diseases [59]. To address these issue, various treatment methods for NO3

−

in water bodies have been extensively studied, including physical methods such as ion
exchange, reverse osmosis, and adsorption, chemical methods such as electrodialysis and
electrochemical treatment, as well as biological methods such as microbial remediation and
phytoremediation [60].

In MBfR, the denitrification process involves a series of reduction reactions catalyzed
by various enzymes, including Nar/Nap, NirS/NirK, NorB/NorC, and NosZ, and these
enzymes catalyze a series of reduction reactions by accepting electrons supplied from H2
or CH4. Specifically, the H2-MBfR supports autotrophic denitrifying bacteria attached to
hollow fiber membranes in utilizing H2 to reduce NO3

−, while the CH4-MBfR requires
methanotrophic bacteria within the biofilm to oxidize methane in order to drive the denitri-
fication process [33]. The denitrification process is shown in Figure 2, in which the Nar and
Nap enzymes play a role in reducing NO3

− to NO2
−. Specifically, the membrane-bound

NO3
− reductase Nar is a trimer composed of the following three subunits: NarG, NarH,

and NarI. It receives electrons produced by autotrophic denitrifying bacteria or methan-
otrophic bacteria from the denitrifying bacteria’s quinone pool through NarI, then transfers
them to the molybdenum cofactor (MoCo) active site of NarG via Fe-S clusters to achieve
the reduction of NO3

−. Similarly, the periplasmic NO3
− reductase Nap transfers electrons

to the activation site of NapA through NapC and NapB, achieving a similar function [8].
According to the research by Wang et al. [61], the Nar enzyme tends to respire under
high concentrations of NO3

− compared to low levels, while the Nap enzyme exhibits the
opposite behavior to achieve effective reduction of NO3

− at complementary concentrations.
Furthermore, since the active site of Nar enzyme is located in the cytoplasm, NO3

− needs
to be transported into the cytoplasm for denitrification through transport proteins. Under
aerobic conditions, electrons may be captured by oxygen and participate in oxidation
reactions, making the Nar enzyme more active in anaerobic environments. On the other
hand, the activation site of Nap enzyme is located in the periplasm, making it more active
in aerobic environments [62]. NirS and NirK are key enzymes that catalyze the reduction
of NO2

− to the gaseous compound NO. Among them, NirK is a copper-containing NO2
−

reductase, whereas NirS is a nitrite reductase containing cytochrome cd1. Despite their
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different catalytic mechanisms, NorB and NorC have the same function. NorB and NorC
catalyze the reduction of NO to N2O, with NorB transferring electrons to the active site of
NorC to facilitate the reaction [63]. Finally, the NosZ enzyme catalyzes the reduction of
N2O to N2 [64,65].
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Fe-S, and cyt d1-c are primarily involved in electron transfer. Elements such as Mo and Cu mainly
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4. The Impact of NO3
− on the Removal of Water Pollutants in MBfR

4.1. Oxidizing Pollutants
4.1.1. Perchlorate Ions (ClO4

−)

In recent years, there has been increasing attention paid to the potential impact of
ClO4

− on human health due to their widespread use in the aerospace industry, illuminating
flare, and firework manufacturing, among others [66]. The rising levels of ClO4

− in
wastewater have raised concerns regarding its potential effects on human health. ClO4

− is
recognized as one of the major pollutants in surface water and groundwater. It possesses
significant oxidizing properties and has the potential to disrupt the endocrine system in the
human body, particularly affecting thyroid function. Even at low concentrations, ClO4

−

can potentially have adverse effects on human health [67,68]. Additionally, the coexisting
pollutant commonly found with ClO4

− is NO3
−. The impact of NO3

− presence on ClO4
−

removal in MBfR has been extensively studied and discussed [69].
Lv et al. [69] discovered that in the CH4-MBBR system, when CH4 supply is abundant,

the removal efficiency of 18 mg/L ClO4
− approaches 100%. After the addition of 15 mg/L

NO3
−, the reduction rate of ClO4

− decreased to 0.64 mmol/m2·d. However, after complete
degradation of NO3

− at a rate of 2.76 mmol/m2·d, the reduction rate of ClO4
− increased to

1.68 mmol/m2·d, surpassing the rate observed in the presence of ClO4
− alone. Li et al. [70]

investigated the impact of NO3
− reduction on ClO4

− removal in a H2/CO2-MBfR system
under specific conditions. The reactor conditions included a H2 pressure of 0.04 MPa, CO2
pressure of 0.01 MPa, and a pH value of 7.2. They found that ClO4

− removal remained
effective when the influent NO3

− concentration reached 10 mg/L. However, a further
increase in NO3

− concentration, even with sufficient H2 supply, significantly decreased the
efficiency of ClO4

− removal. It is worth noting that the removal rate of ClO4
− increased

when the NO3
− concentration increased from 1 mg/L to 5 mg/L, possibly due to NO3

−

acting as a nitrogen source that promotes microbial respiratory metabolism. Zhao et al. [71]
reported that in a H2-MBfR system, when the electron donor H2 is limited, NO3

− competes
with ClO4

− as an electron donor. In contrast, NO3
− inhibits the reduction of ClO4

− due
to its adsorption advantage in the competition for adsorption sites and the adaptation
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caused by the prevalence of NO3
−, as shown in Figure 3. According to these studies,

an increase in NO3
− leads to the upregulation of denitrification genes narG, nirS, and

ClO4
− reduction-related gene pcrA. However, when the electron donor is limited, a further

increase in NO3
− does not induce changes in the related genes [69,71], indicating that the

microbial growth in the system has reached its limit. Due to the lack of denitrification
ability in the pcrA gene [72], an increase in NO3

− leads to a decrease in the ClO4
− reduction

rate. However, after complete removal of NO3
−, the increase in the ClO4

− removal rate
may be attributed to the stimulation of rapid growth of perchlorate-reducing bacteria (PRB)
by NO3

−, resulting in a lag effect in ClO4
− reduction [73]. In a system where only ClO4

− is
present, the presence of denitrification genes suggests that denitrifying bacteria can also
participate in ClO4

− reduction [50]. A summary of the main enzymes, genes, and bacterial
genera involved in the removal of various pollutants is provided in Table 4.
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Table 4. Enzymes related to the removal of common pollutants.

Functional Enzymes Gene Genus References

Nitrate reductase NapA, NarG Thauera [74,75]
Nitrite reductase NirK, NirS Thauera, Mesorhizobium, Cycloclastes [75,76]

Nitric oxide reductase NorB, NorC Ps. Stutzeri,
Paracoccus denitrificans [75]

Nitrous oxide reductase NosZ Paracoccus pantotrophus [75,77]
Perchlorate reductase PcrA Dechloromonas [78]
Sulfate reductase DsrA Desulfovibrio, Desulfomicrobium [79,80]
Chromate reductase ChrR Pseudomonas putida [81]
Selenite reductase SerA T. Selenatis, Pseudoxanthomonas [82,83]
Tetracycline-degrading enzyme Tet(X) Pichia pastoris [84]
Nitroreductase Psntr Psychrobacter sp. [85]
Dehalogenase (enzyme) PcbA4, PcbA5 Dehalococcoides, Dehalobacter [86]

4.1.2. Sulfate-Free (SO4
2−)

In various industrial activities, such as mining, textile manufacturing, dye production,
and flue gas desulfurization, the generation of wastewater containing SO4

2− ions is a com-
mon occurrence [79]. In drinking water, excessive levels of SO4

2− content can potentially
lead to health issues such as allergic reactions and diarrhea [87,88]. Furthermore, this type
of industrial wastewater often contains various metal pollutants. The biological process
employed for treating this wastewater primarily involves the transformation of SO4

2− into
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hydrogen sulfide (H2S). This process not only aids in the precipitation of certain metals but
also facilitates the further oxidation of H2S into elemental sulfur (S0), effectively removing
SO4

2− from the wastewater [51].
According to the study conducted by Alex Schwarz et al. [79], they found that in a

H2-MBfR system with a surface loading of 2.1 g/m2-d, the removal efficiency of SO4
2−

was close to 100%. However, when the influent load is doubled, the removal efficiency
significantly decreases due to the limitation of H2 concentration. Upon increasing the
H2 pressure from 2 psig to 10 psig, the removal efficiency is restored. Zhou et al. [89]
successfully achieved simultaneous removal of nitrate (NO3

−), sulfate (SO4
2−), and selenate

(Se(VI)) in the H2-MBfR system. They found that while almost complete removal was
achieved for NO3

− and Se(VI) at load rates of 10 mg/L and 2 mg/L, respectively, the
effluent concentration of SO4

2− was close to 50 mg/L at a load rate of 50 mg/L. Upon
extending the hydraulic retention time (HRT) from 5.2 h to 10.4 h, the electron consumption
rate of SO4

2− increased from 1.4 mmol e/day to 4.7 mmol e/day. It is understandable that
with a longer reaction time, a higher removal rate of SO4

2− can be achieved. Compared to
NO3

− and Se(VI), the lower removal rate of SO4
2− is mainly due to its lower Gibbs free

energy, which thermodynamically hinders the forward progress of the reaction. Table 3
shows the Gibbs free energy changes of various pollutant reactions and Figure 3 shows
the energetic advantages of NO3

−. During the initial stage of the H2-MBfR reaction,
Aura Ontiveros-Valencia [90] and colleagues observed that when the concentrations of
NO3

− and SO4
2− were 10 mg/L and 46 mg/L, respectively (Stage 1), the removal rate of

NO3
− was close to 100%, while the effluent concentration of SO4

2− was close to 46 mg/L.
NO3

− exhibits a significant inhibitory effect on the reduction of SO4
2−. As the influent

NO3
− concentration changed to 20 mg/L (Stage 2), the population of denitrifying bacteria

(DB) increased, while the sulfate-reducing bacteria (SRB) slightly decreased. When the
NO3

− concentration was reduced to 5 mg/L (Stage 3) and 1 mg/L (Stage 4), compared
to Stage 1, the quantity of DB did not decrease, but the NO3

− concentration was lower.
The higher ratio of denitrification genes to NO3

− concentration indicated the upregulation
of denitrification genes, leading to the rapid reduction of NO3

− and the alleviation of the
inhibitory effect on SRB [91]. Therefore, it can be observed that the removal rate of SO4

2−

in Stage 3 is greater than 75%, while in Stage 4, it is greater than 90%.

4.2. Heavy Metal Ions
4.2.1. Chromate (Cr(VI))

Chromium (VI) in water poses significant risks to human health due to its carcinogenic,
mutagenic, and teratogenic properties. Specifically, the excessive presence of Cr(VI) in
drinking water can severely impact liver function, kidney function, and cognitive func-
tion [92,93]. Certain specific microorganisms are capable of biologically reducing Cr(VI) to
Cr(III), which subsequently precipitates as Cr(OH)3, enabling effective removal. Similarly,
denitrifying bacteria can also reduce NO3

− to N2(g). Compared to traditional physical
and chemical remediation methods, the bioreduction processes of Cr(VI) and NO3

− offer
economic and environmental advantages, attracting widespread attention [94].

Chung et al. [95] found that in the H2-MBfR system, as the influent NO3
− concentration

increased from 0 mg/L to 10 mg/L, the reduction rate of Cr(VI) decreased from 80% to
40%, while the effluent NO3

− concentration remained relatively stable. Under conditions
of 29 ± 1 ◦C, pH of 7.0–7.5, and sufficient CH4 supply, Zhong et al. [96] investigated the
impact of NO3

− on the removal of Cr(VI) by CH4-MBfR. Research has shown that in the
CH4-MBfR system with Cr(VI) as the sole electron acceptor and a removal rate of 100%
(Stage 1), the introduction of 2.2 mg/L of NO3

− leads to a significant decrease in the
quantity of Meiothermus and a reduction in Cr(VI) removal rate to less than 25% (Stage 2).
However, after removing the surface load of NO3

−, the removal rate of Cr(VI) recovers to
70% (Stage 3), and the quantity of Meiothermus also shows some recovery. Subsequently,
when reintroducing 0.7 mg/L of NO3

− (Stage 4), Meiothermus sharply decreases again, and
the removal rate of Cr(VI) drops to approximately 60%. By increasing the liquid circulation
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rate in the reactor 1.5 times to reconstruct the biofilm, the reduction rate of Cr(VI) stabilizes
at 80% (Stage 6). Although there are currently no reports on the interaction between
NO3

− and Meiothermus, the data suggest that NO3
− may have a significant inhibitory

effect on the growth of Meiothermus. Compared to the dominant role of Meiothermus in
Stage 1, Pelomonas gradually enriches after the addition of NO3

− and reaches its peak
in Stage 6, indicating the potential of Pelomonas as a Cr(VI) reducer after the addition of
NO3

− [96]. The reduction of Cr(VI) is the result of synergistic interactions among various
microorganisms. In the CH4-MBfR system, CH4 generates intermediate products such
as methanol, lactic acid, and acetic acid under the action of methane-oxidizing bacteria.
Chromium-reducing bacteria like Meiothermus utilize these intermediate products to
reduce Cr(VI) [31]. The reduction products of Cr(VI) mainly form extracellular polymeric
substances (EPS) or Cr(OH)3. Additionally, a small amount of Cr(III) ions combine with
negatively charged groups inside Meiothermus cells, forming intracellular precipitates.
Studies have shown that the introduction of NO3

− can affect the community structure of
Cr(VI)-reducing bacteria, thereby altering the rate of Cr(VI) reduction [97].

4.2.2. Selenate (Se(VI))

Selenium is a trace element that is crucial to human health, and its intake needs
to be balanced between maintaining health and environmental exposure [98]. Selenate
(Se(VI)) and selenite (Se(IV)) are the primary soluble forms of selenium, and their biological
reduction pathway typically involves the conversion from Se(VI) to Se(IV) and further
to Seo [99]. In recent years, the increasing industrial activities have led to a continuous
rise in selenium levels in water environments, which has raised significant concerns due
to its substantial potential for bioaccumulation. The high toxicity of soluble forms of
selenium in water to organisms has prompted extensive research on the removal of Se(VI)
in MBfR [100,101].

In the study conducted by Xia et al. [99], the initial removal efficiency of Se(VI) in
a H2-MBfR influent system containing 10 mg/L of NO3

− and 2 mg/L of Se(VI) was
approximately 75%. After 20 days, it increased to around 95%. The anaerobic biofilm
community in this system was capable of simultaneous removal of Se(VI) and NO3

−. In
the study conducted by Lai et al. [102], it was found that after the addition of 10 mg/L of
NO3

− and 1 mg/L of Se(VI) (Stage 2), there was a restructuring of the microbial community
compared to the situation without the addition of NO3

− (Stage 1) and it was found that the
proportion of β-Proteobacteria increased from an initial 55% to 90%, while the proportion
of Methyloversatilis decreased. In Stage 3, where the influent contained only 1 mg/L of
Se(VI) without NO3

−, the quantity of Methyloversatilis increased several-fold, indicating
its preference for respiratory Se(VI) over NO3

−. Due to limitations in electron donor flux,
the removal efficiency of Se(VI) decreased to less than 10% in Stage 2, where NO3

− was
present. However, in Stage 3 without NO3

−, the removal efficiency of Se(VI) recovered to
60%. As mentioned earlier, Dechloromonas can utilize ClO4

− for metabolism, and during
the reduction process of Se(VI), Dechloromonas also produces Se(VI) reductase. In the
CH4-MBfR system, Lai et al. [103] discovered that 70% of Se(VI) could be reduced to Se0.
In contrast, the conversion rate using H2 as the electron donor was only 40%. When
the influent contained 10 mg/L of NO3

− and 1 mg/L of Se(VI), due to limited CH4
flux, 50% of Se(VI) was converted to Se(IV), and 10% was converted to SeO, resulting
in a total removal of 60% of Se(VI), while the removal efficiency of NO3

− was 70%. In
comparison to the other pollutants mentioned earlier, the removal efficiency of NO3

−

remained higher when the electron donor was limited, and the removal efficiencies of Se(VI)
and NO3

− decreased in parallel. Comamonadaceae is an important bacterial genus in the
process of Se(VI) reduction. Compared to SRB (sulfate-reducing bacteria), the abundance
of Comamonadaceae decreased synchronously with an increase in NO3

− concentration,
while SRB remained relatively stable due to their metabolic diversity [90].
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4.3. Organic Matter
4.3.1. Tetracycline (TC)

TC is a widely used antibiotic in humans and animals, and reports have shown that
tetracycline can enter the environment through human and animal urine and feces. This
emission process resulted in tetracycline pollution in the environment. The presence
of tetracycline may pose a potential threat to aquatic or soil ecosystems. For instance,
high concentrations of tetracycline exhibit toxicity to algae and zooplankton in aquatic
environments, which may disrupt their growth and reproduction processes [104,105]. In soil
environments, tetracycline affects the structure and function of soil microbial communities
through processes such as adsorption, degradation, and migration. Currently, the removal
efficiency of tetracycline in wastewater treatment plants is not satisfactory. However,
research on the MBfR technology has shown promising progress [106,107].

Salman et al. [108] researchers compared the efficiency of H2-MBfR and O2-MBfR
in removing TC by adjusting the HRT. The researchers found that when the HRT was
decreased from 10 h to 1 h, TC removal decreased from 92% to about 16% or so in H2-MBfR,
whereas in O2-MBfR, removal decreased from 52% to 0%. In addition, the researchers
found that denitrification and nitrification rates were stable at 85% to 99% in all cases except
for HRT of 1 h. This indicates that the microbial community responsible for denitrification
and nitrification in the MBfR system remained relatively resilient and was able to maintain
its metabolic activities under different HRT conditions. Taşkan et al. [109] found that
TC removal was around 63% at an HRT of 18 h and O2 pressure of 0.41 bar. Reducing
both HRT and aeration pressure resulted in a decrease in TC removal, while nitrification
remained relatively intact. In another study of H2-MBfR, a similar pattern was found by
Taşkan et al. [5]. H2-MBfR, as a system with H2 as an electron donor, was superior in
tetracycline removal than TC removal with O2 as an electron acceptor. And the longer the
contact time of microbial biofilm with TC, the higher the removal rate. On the other hand,
lowering the HRT in the O2-MBfR system resulted in a drastic decrease in TC removal
from 52% to 0. These findings emphasize the importance of optimizing the HRT in the
MBfR system for maximum TC removal. Pseudomonas was mentioned above as a Cr(VI)-
reducing bacterium. Certain strains of the genus Pseudomonas also exhibit resistance and
metabolism to TC. They are able to utilize TC as a carbon source for growth and efficiently
remove TC from water. Similar to the removal of oxidizing and metal pollutants, NO3

−

also exhibits the stronger competition shown in Figure 3 in the removal of tetracycline. The
major transformation products of TC are ETC, EATC and ATC [109].

4.3.2. p-Chloronitrobenzene (p-CNB)

A significant risk to the environment due to its persistence and high toxicity is p-
CNB. It is also associated with methemoglobinemia in humans [110]. p-CNB is present
in industrial wastewater in a highly stable and low biodegradable form. It has significant
carcinogenic and mutagenic properties [111,112]. In the H2-MBfR system, p-CNB can
be bioreduced to p-CAN and further dechlorinated to produce aniline (AN). The low
environmental and human health hazards of these AN compounds make the H2-MBfR
technology a promising approach for treating p-CNB pollution in industrial wastewater.

Li et al. [113] discovered that under the conditions of an influent NO3
− concentration

of 5 mg/L and a p-CNB concentration of 1000 µg/L, the effluent p-CNB concentration
from the H2-MBfR system was approximately 60 µg/L, achieving a removal rate of 94%.
Furthermore, with increasing NO3

− concentration, the concentrations of p-CNB and p-
CAN in the effluent increased while the AN concentration decreased. When the influent
NO3

− concentration was 50 mg/L, the effluent p-CNB concentration was 130 µg/L, with a
removal rate of 87%, while the NO3

− removal rate was only 60%. According to Table 3,
the conversion of p-CNB to p-CAN exhibits a higher change in free energy, which thermo-
dynamically explains why the removal rate of p-CNB is higher than denitrification. Xia
et al. [114] observed that in a H2-MBfR system with a H2 pressure of 0.04 MPa and an
HRT of 4.8 h, the removal rate of NO3

− exceeded 90%. However, when 2 mg/L of p-CNB
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was added, the removal rate of NO3
− gradually decreased to 70%, while the removal rate

of p-CNB reached 85%. With the addition of 2 mg/L of p-CNB, the removal of NO3
−

gradually decreased to 70%, while the removal of p-CNB reached 85%. During the reduc-
tion of p-CAN to AN, NO2

−, NO and N2O produced by denitrification may react with
heme and non-heme iron-containing proteins to form harmful substances [115,116] such as
heme-NOx. These toxic substances may inhibit the reductive dechlorination of p-CAN and
this is the potential toxicity shown in Figure 3. In addition, N2O accumulation due to the
fact that many microorganisms do not possess N2O reductase [8] is one of the reasons [117]
for the inhibition of p-CAN reductive dechlorination. Hydrogenophilic bacteria play a key
role in p-CNB removal, as these bacteria first adsorb p-CNB on their surface and then use
H2 as an electron donor to convert p-CNB to the safer compound p-CAN through a series
of biochemical reactions. During this process, the bacteria are able to generate ATP, which
allows them to obtain energy to support their growth and reproduction.

In summary, the inhibitory effect of NO3- on the removal of other pollutants is illus-
trated in Figure 3.

5. Conclusions and Outlook

This review article provides insight into the effectiveness of MBfR in eliminating oxi-
dizing pollutants, heavy metal ions, and organic contaminants. Although MBfR technology
is quite mature in treating single pollutants, it faces challenges when multiple pollutants
coexist. Specifically, NO3

− tends to inhibit the removal of other pollutants for several
reasons, as outlined below:

(1) NO3
− is more advantageous in competing with other pollutants for the same adsorp-

tion sites, thus reducing the removal efficiency of other pollutants.
(2) Reactions involving NO3

− typically have higher Gibbs free energies, making them
more attractive for microbial metabolism.

(3) Given the prevalence of nitrate, many microbial communities may have adapted to
use NO3

− as their primary electron acceptor due to its higher affinity coefficient.
(4) Denitrification intermediates such as NO2

−, NO, N2O, and their complexes formed
with metal ions or proteins may poison microorganisms, affecting the efficiency of
MBfR in removing pollutants.

For future MBfR research, the focus could shift to understanding the interactions
between different pollutants, constructing multi-pollutant systems, and elucidating syn-
ergistic and antagonistic mechanisms. Studying changes in microbial communities when
treating multiple pollutants, identifying potential mechanisms of action, and analyzing
microorganisms capable of producing a range of catalytic enzymes could all contribute
to improving wastewater treatment efficiency. Although research on MBfR treatment of
oxidizing and metal pollutants is relatively mature, the mechanisms of organic pollutant
removal by MBfR still require in-depth study. Upcoming studies could examine the prin-
ciples of organic pollutant removal, how various chemical bonds are broken, removal of
organic and inorganic pollutants under coexistence, and the role of relevant microbial
communities in the removal of organic pollutants.
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