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Abstract: Artificial intelligence (AI) has gained prominence in medical imaging, particularly in ob-
stetrics and gynecology (OB/GYN), where ultrasound (US) is the preferred method. It is considered
cost effective and easily accessible but is time consuming and hindered by the need for specialized
training. To overcome these limitations, AI models have been proposed for automated plane ac-
quisition, anatomical measurements, and pathology detection. This study aims to overview recent
literature on AI applications in OB/GYN US imaging, highlighting their benefits and limitations.
For the methodology, a systematic literature search was performed in the PubMed and Cochrane
Library databases. Matching abstracts were screened based on the PICOS (Participants, Interven-
tion or Exposure, Comparison, Outcome, Study type) scheme. Articles with full text copies were
distributed to the sections of OB/GYN and their research topics. As a result, this review includes
189 articles published from 1994 to 2023. Among these, 148 focus on obstetrics and 41 on gynecology.
AI-assisted US applications span fetal biometry, echocardiography, or neurosonography, as well
as the identification of adnexal and breast masses, and assessment of the endometrium and pelvic
floor. To conclude, the applications for AI-assisted US in OB/GYN are abundant, especially in the
subspecialty of obstetrics. However, while most studies focus on common application fields such as
fetal biometry, this review outlines emerging and still experimental fields to promote further research.

Keywords: systematic review; ultrasound imaging; artificial intelligence; deep learning; obstetrics;
gynecology; fetal echocardiography; application

1. Introduction

Artificial intelligence (AI) is known to be present in everyday life, and over the past
years it has gained considerable significance in medical imaging. The term AI refers
to various types of computer science technologies, which enable machines to perform
tasks simulating human intelligence. AI systems are typically dependent on the input of
vast amounts of data, e.g., for pattern recognition, in order to learn to create predictions,
classifications, recommendations, or decisions either supervised by humans or without
supervision. Terms like machine learning or deep learning represent two of the numerous
subcategories of AI [1].

Widely described advantages of AI usage include improved productivity, efficiency,
and reduction in human error. These benefits are what make AI exceptionally attractive
for application in health care and, particularly, in medical imaging [1]. To comply with the
growing demand for AI software in health care, the U.S. Food and Drug Administration

J. Clin. Med. 2023, 12, 6833. https://doi.org/10.3390/jcm12216833 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm12216833
https://doi.org/10.3390/jcm12216833
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-2201-1494
https://orcid.org/0000-0002-1892-790X
https://orcid.org/0000-0003-2157-2211
https://orcid.org/0000-0001-8284-4669
https://orcid.org/0000-0003-3625-7097
https://orcid.org/0000-0001-9135-4338
https://doi.org/10.3390/jcm12216833
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm12216833?type=check_update&version=1


J. Clin. Med. 2023, 12, 6833 2 of 31

has currently certified a list of 178 AI-enabled medical devices, which is continuously
growing [2].

The field of obstetrics and gynecology (OB/GYN) is known to be one of the most
applied imaging specialties using the diagnostic tools of ultrasound (US), magnetic reso-
nance imaging (MRI), computed tomography (CT), positron emission tomography (PET),
laparoscopy, and others. In particular, the subspecialty of obstetrics is profoundly de-
pendent on the diagnostic imaging tool of US because of its non-invasive, cost-effective,
real-time, and low-radiation characteristics for fetal scanning [3,4].

However, US imaging has limitations regarding its comparability and reproducibility.
Reasons for the high image variability can be low image quality, the need for real-time
interpretation, differences in US devices, and the dependence on the sonographer’s experi-
ence [4]. The limitations increase when US is performed during pregnancy, facing obstacles
such as imaging artefacts by maternal (e.g., thickened abdominal wall in obese patient) or
fetal (e.g., fetal position or movements) factors, reduced tissue contrast (e.g., with reduced
amniotic fluid), and characteristics of increasing gestational age (GA) (e.g., growing fetal
volume and increasing ossification of bones) [4]. In clinical settings, US is known to be time
consuming and can require a substantial amount of training and experience for specific
indications, such as fetal echocardiography or neurosonography [5–7].

To overcome these restrictions, the application of AI assistance in US imaging has
been shown to reduce examination time, clinician workload, and inter- and intra-observer
variability [8]. US imaging in OB/GYN represents a promising field of application for
AI models due to the wide range of indications and generation of high-volume data sets.
Various operators with different skill levels and different US devices are challenging aspects
influencing AI model performance.

However, the use of AI models is not without discussion about its ethical context [3].
Despite all efforts to automatize US imaging, existing literature still emphasizes the fact
that AI is not meant to replace human work and input, but should assist them and reduce
the increasing workload [3,6]. As stated in the state-of-the-art review by Drukker et al. [3],
to date, no AI method exists that can be generalized to different tasks compared with an
OB/GYN specialist capable of performing US scans of different organs and the fetus in
various GA periods. Therefore, the variety of AI models in the subspecialties of OB/GYN
is tremendous and is worth reviewing within the specific tasks.

So far, most original research articles and literature reviews in OB/GYN have focused
on the common fields of AI application in medical imaging, such as the identification of
breast or adnexal masses, automated fetal biometry, or fetal echocardiography. To the best
of our knowledge, this review is the first to systematically display the variety of fields of
applications among the subspecialties of OB/GYN.

The term ‘5D ultrasound’ is derived from the idea to expand the technological US
world with a further dimension. While 4D technology extends the 3D view of the scanned
object with a time frame, enabling motion visualization, or so-called ‘real-time 3D’ [9],
the term 5D is uncommonly used to describe AI-assisted US imaging including image
enhancement processing or automated calculations [10,11]. As there is no clear definition
for 5D US, we use the expression of the ‘5D ultrasound’ in this literature review to illustrate
the extend of AI models that can create a new dimension in US imaging in OB/GYN by
improving work efficacy, accuracy, and visibility in clinical settings.

This study aims at providing an overview of the recent literature on applications for AI
in US imaging in the medical field of OB/GYN by working out the benefits and limitations
of AI US support systems. Special focus is given to the distribution of research attention
among the subspecialties of OB/GYN and researching the emerging and still experimental
fields to promote further research for clinical applicability. Assessing the effectiveness of
applied AI models is not aim of this study; therefore, all AI technologies are summarized
by the term ‘AI’. By describing the current research emphasis, possible missing scopes of
application may be enlightened.
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2. Materials and Methods

This systematic literature review was developed in accordance to the updated Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [12,13]. The
study was prospectively registered at the International prospective register of systematic
reviews (PROSPERO) with registration number CRD42023434218.

For the literature research, the PubMed Database was searched on 14 May 2023 for
records using the following search query and using the text availability filter ‘abstracts’:

((artificial intelligence) OR (deep learning) OR (machine learning) OR (artificial neural
networks)) AND (ultrasound) AND ((obstetrics) OR (gynecology) OR (pregnancy)). Additionally,
the Cochrane Library was searched on 14 May 2023 with the following query:

(Artificial intelligence OR deep learning OR machine learning OR artificial neural networks)
AND ultrasound AND (obstetrics OR gynecology OR pregnancy) [Title Abstract Keyword]

No restriction for year of publication was applied. Relevant records in English or
German were independently screened based on the title and abstract by two authors for
their accordance with the eligibility criteria. Cases of incongruence were discussed in a
consensus meeting. For adequate comprehensiveness of the search process, the PICOS
search tool (Participants, Intervention or Exposure, Comparison, Outcome, Study type) was
applied and used for judgement [12,13]. Table 1 shows the relevant literature characteristics
presented as PICOS search tool headings. Records without the use of AI or US and
studies focusing on AI applications in specialties other than OB/GYN were excluded
in the screening process. Records describing AI calculations using data obtained from
US measures but not the image itself (e.g., crown-rump-length (CRL) or cervical length)
were excluded.

Table 1. PICOS search tool headings for literature evaluation [12].

PICOS Search Tool Headings for Literature Evaluation

Participants
Examiner: Healthcare professionals in OB/GYN or radiology, AI specialists
Patients: Healthy pregnant and non-pregnant women or women with any gynecological or obstetric
disease/complication, OB/GYN training models

Intervention or Exposure AI-assisted US applications
Comparison Comparison of AI US algorithms to human US examiners or another AI algorithm

Outcome Fields of AI applications in OB/GYN US imaging, benefits and limitations of AI usage, future aspects
for emerging fields of applications

Study type Published literature of any design, excluding trial protocols and reviews

After the initial screening process, full text copies were retrieved for further analysis
of the inclusion criteria. By extracting fields of applications, articles were distributed to the
sections of either obstetrics or gynecology. By reading all full text copies, the topic of AI
application (e.g., fetal neurosonography or identification of breast masses) and the specific
benefits and limitations of the AI application in the presented field were extracted. The
proportion of research topics for the included literature are illustrated in two figures for the
subspecialties of OB/GYN.

3. Results
3.1. Included Literature

Figure 1 depicts the PRISMA flow diagram for the screening process of reports in-
cluded in this review. A total of 737 records were identified from the searched databases,
resulting in 189 records considered adequate for inclusion in this review. Here, 148 records
described the application of AI in US imaging in the field of obstetrics compared with
41 records in the field of gynecology (Figure 1). The included articles are displayed in
Table S1 of the Supplementary Material for obstetric and Table S2 of the Supplementary
Material for gynecological applications. In the following Results section, included articles
are evaluated separately for both specialties.
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3.2.1. Fetal Biometry

The most common application of obstetric US examination remains the assessment of
fetal growth, followed by the sonographic examination maternal−fetal perfusion param-
eters, fetal malformations, placental morphology, or uterine abnormalities. Fetal growth
assessment represents a repeated standardized examination throughout pregnancy to mon-
itor fetal development and predict birth weight, and consequently may influence decision
making for the timing of delivery. Biometric calculations are based on the acquisition of
standard planes for measurements of fetal head circumference (HC), abdominal circumfer-
ence (AC), and femur length [14]. The accuracy of these measurements is often reduced as
a result of operator-, equipment-, patient-, and fetus-related factors.

• Operator-related factors: US in general and obstetric US in particular, are known
to require substantial experience and to be extremely training dependent [15]. US
examinations are known to inherit high intra- and inter-operator variability [16].

• Equipment-related factors: Especially in hospital settings, repeated examinations may
be performed with different US machines, resulting in heterogenous data. Furthermore,
image quality depends on resource availability and access to high-end US devices [17],
or the use of point-of-care devices [18].

• Patient-related factors: Maternal obesity is known to have an impact on image quality and
visualization of the fetus, and thus limits the accuracy of obstetric US examinations [19].

• Fetus-related factors: Fetal size, movements, and position, as well as multiple pregnan-
cies or reduced amniotic fluid resulting in low contrast to surroundings may decrease
the accuracy of measurements [20,21].

To minimize operator- and/or equipment-related influences, recently, there have been
attempts to automate measurements in obstetric US using AI algorithms. However, these
attempts are characterized by their complexity and limitations due to the inevitable patient-
and fetus-related constraints.

This review encompasses 27 research articles on the use of AI in the detection, mea-
surement, and assessment of standard planes in obstetric US, with years of publication
ranging from 2007 to 2023. Only three of the included studies investigated the use of
AI algorithms in 3D US images [22–24], while 24 focused on 2D images. Most studies
reported the combined analysis of various standard planes (13 studies, [15,17,23–33]) or
exclusively presented an algorithm for the analysis of HC (9 studies, [18,22,34–40]), AC
(4 studies, [21,41–43]) or femur length (1 study, [44]). Five studies used the freely available
‘HC18’ data set [45] for training and testing the algorithms, which contained 1334 2D images
from 551 women of the standard fetal head plane [18,34,37,38,40].

AI algorithms for the automated detection of various standard planes in US video scans
have been reported by Płotka et al. [25], Chen et al. [28], and Baumgartner et al. [15]. The
unique study of Sendra-Balcells et al. presented a deep-learning model to identify standard
planes in 2D images showing the transferability of the AI method to six low-income African
countries [17]. In comparison with the analysis of 2D US videos, Sridar et al. [26], Burgos-
Artizzu et al. [27], Rahman et al. [30], and Carneiro et al. [31,32] reported AI systems for
the automated detection or measurement of various standard planes in 2D US images.
Zhang et al. proposed an image quality assessment method for evaluating whether US
images of standard planes fully show the anatomical structures with clear boundaries [29].
To improve clinical workflow efficiency, Luo et al. evaluated the intelligent Smart Fetus
technique for its ‘one-touch’ approach to search and automatically measure the cine loop
for standard planes once the sonographers press the freeze button [33]. Pluym et al. and
Yang et al. analyzed 3D US volumes for the localization and measurement of various
intracranial standard planes, such as the transventricular, transthalamic, or transcerebellar
plane [23,24].

The automated detection and measurement of HC in 2D images was investigated by
the research groups Zeng et al. [18,34], Li et al. [36,40], Yang et al. [37], and Zhang et al. [38].
Likewise, Van de Heuvel et al. and Arroyo et al. presented a system for automated
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analysis of HC, particularity the use of a standardized sweep protocol for data collection
to eliminate the need for sonography experts and enable applicability in underserved
areas [35,39]. The only study to identify the HC and biparietal diameter from 3D US vol-
umes using the commercially available Smartplanes® software was presented by Ambroise
Grandjean et al. [22].

The acquisition and measurement of AC were considered in the studies of Jang et al.
and Kim et al. analyzing 2D images [21,41], as well as by Ni et al. and Chen et al. analyzing
2D videos acquired by graduate students [42,43].

Remarkably, only one study, from Zhu et al., reported the automated assessment
of femur lengths in 2D US images addressing the difficulties regarding femur lengths
acquisition due to the complex background in femur US images [44].

In conclusion, the automated acquisition and measurement of standard planes is
an increasingly investigated area, but still faces problems when it comes to clinical ap-
plicability and generalization. The benefits of AI usage in standard plane acquisition
were found to be the possibility of real-time applicability [15,25,32,33]; the incorporation
of clinical aspects into image interpretation [21,23,26]; the feasibility of biometric assess-
ment by non-experts [35,39,43]; the application of a lightweight algorithm in point-of-care
devices [18,34,37]; and, as a consequence of the latter two aspects, applicability for medi-
cally underserved areas [17,35].

The limitations of AI applications for fetal biometry were found to be reduced algo-
rithm accuracy in poor quality images due to high maternal BMI [22,23], low contrast of
anatomical structures [36], and higher GA with large fetuses [21]. Other reported limi-
tations were slow processing times [35,43] and the lack of training for algorithms with
pathological cases [28,35].

3.2.2. Fetal Echocardiography

For the detection of the most common congenital malformations, which are known to
be congenital heart diseases (CHDs), with an incidence of 6–12/1000 livebirths [46], fetal
sonographic examination is usually performed in the second trimester [47,48]. The prenatal
diagnosis of CHD is of substantial significance, resulting in improved neonatal outcomes
compared with postnatal diagnosis. It allows for appropriate counseling for parents, as
well as delivery and treatment planning, and, in some cases, even in utero therapy [49].

Fetal echocardiography is a highly challenging technique, even for experts, and is
primarily based on the acquisition of standard views, such as the four-chamber view (4CV),
three-vessel view, three-vessel trachea view, and left and right ventricular outflow tract
view. The combination of standard views allows for the detection of up to 90% of CHD;
however, in clinical practice, the detection rate is only about 30% [48,50]. Reasons for low
detection rates were described as insufficient sonographer interpretation and inadequate
acquisition of standard views, which were often due to fetus-related factors such as fetal
position, movements, and the small size of the fetal heart and its possible defects [50].

This review includes a total of 23 articles from 2007 to 2023 related to fetal echocar-
diography. Four of the included studies investigated the application of fetal intelligent
navigation echocardiography (FINE) as a reliable technique that enabled the automated
acquisition of nine standard echocardiographic views from specific 4D volumes of a single
cardiac cycle in motion [51–54]. It enabled operator-independent examination and con-
tributed to the standardization of fetal echocardiography [52]. While Yeo et al. reported
the time-saving benefits of workflows using FINE in 51 normal fetal cardiac anatomy
and 4 different CHD cases [51], Ma et al. confirmed the application of FINE in abnormal
anatomical hearts through the successful generation of three standard views in 30 fetuses
with double-outlet right ventricles [53]. In a case report, Veronese et al. reported the
successful detection of four atrioventricular septum defects using the FINE system [54].

Five of the included studies investigated the performance of AI models that can detect
structural abnormalities in cardiac anatomy. Dozen et al. presented a method specific to
the interventricular septum [55]; Han et al. focused on the assessment of the left ventricle
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and left atrium [56]; and Xu et al. aimed at identifying seven anatomical structures, namely
right and left atrium and ventricle, thorax, descending aorta, and epicardium [57]. The
automated detection of standard views was investigated by Wu et al., Yang et al., and
Nurmaini et al. [58–60], while CHD was effectively detected by AI models generated by the
research groups of Gong et al. and Nurmaini et al. [61,62], and selectively for the diagnosis
of total anomalous pulmonary venous connection by Wang et al. [63].

Three recent studies assessed fetal cardiac function. Yu et al. automatically measured
left ventricular volume in 2D US images [64], Herling et al. analyzed the automated
measurement of fetal atrioventricular plane displacement in US videos of cardiac cycles
using color tissue Doppler [65], and Scharf et al. evaluated the automated assessment of
the myocardial performance index as a tool to analyze fetal cardiac function [66]. Lastly,
two included studies developed AI models for model improvement itself by synthesizing
high-quality 4CV images for model training [67] and by providing existing models with
new input data and supporting learning process [68].

The complexity of fetal echocardiography itself is derived from the skill needed to
detect even the smallest anatomical abnormalities in a beating organ, which makes it an
interesting and challenging research area for AI applications. Advantages are the facilitation
of standard view acquisition [58,60] and CHD detection [53,61,62], as well as a significant
reduction in examination time [52,55]. Furthermore, Arnaout et al. outlined the benefits
of their AI model for telehealth approaches and diagnoses of rare diseases [50]. In case of
the study of Emery et al., an AI-based navigation system for needle tracking in fetal aortic
valvuloplasty promised increased safety, reduced intervention time, and transferability for
other fetal interventions such as amniocentesis [69].

As a result of AI models acquiring US images, the need for quality control mecha-
nisms has arisen to ensure image quality. This issue was addressed by Dong et al. and
Pietrolucci et al., who developed quality assessment AI models, of which one is already
commercially available, known as ‘Heartassist™’ [70,71]. Furthermore, to address the
‘black box problem’, which describes the complexity of algorithms impossible for human
understanding, Sakai et al. proposed a method to support fetal echocardiography through
‘explainable AI’ [7]. This technique aims at promoting the trustworthy use of AI methods
for clinicians through the development of specific AI modules for the explanation of the
algorithm behavior.

AI assistance in fetal echocardiography showed several limitations. First, most of
the studies only used 4CV images as the input for their algorithms [55,57,61–63,67,70],
although the detection rate of CHD could be increased by analyzing different standard
views [55]. These studies predominantly used apical 4CV, which resulted in AI model
limitations when analyzing 4CV from different scanning angles, such as the fetal dorso-
anterior position. This issue of the need for the correct identification of the region of interest
(ROI) for optimized AI model performance was addressed by the study of Xu et al. [57].
Second, analyzed images have often been obtained only from healthy fetuses with normal
cardiac anatomy and AI models lacked training with pathologic findings [52,55,57,64].
Furthermore, even with the assistance of AI methods, experienced sonographers were
required for rechecking and the interpretation of results [7,51]. Lastly, the recognition
of small CHD or small anatomical structures such as the trachea was limited in some
models [55,58].

In summary, fetal echocardiography extensively profits from AI assistance, but shows
limitations that need to be addressed in further research. Beside the aforementioned need for
the automated detection of ROI, which has been recently proposed in the literature [72,73],
other fields of application are of emerging interest. Not only the detection of structural
abnormalities in case of CHD, but also cardiac function analysis, is a future topic of AI
applications in fetal echocardiography using tissue Doppler US, which can be relevant, e.g.,
for fetuses diagnosed with hypoplastic left heart syndrome [74–76].
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3.2.3. Fetal Neurosonography

Fetal neurosonography focuses on the assessment of fetal brain development and the
identification of abnormalities [77]. For sonographic assessment, standard head planes
should be acquired following the international guideline of the International Society of
Ultrasound in Obstetrics and Gynecology (ISUOG) [77], which enables the detection of key
anatomical structures such as lateral ventricles, cavum septum pellucidum, cerebellum,
and cisterna magna. Sonographers performing neurosonography require an accurate
understanding of fetal neuroanatomy, the skill to interpret 2D planes in a complex 3D
structure, and, consequently, substantial clinical experience and training [78].

On the topic of neurosonography, 19 studies were included in this review, ranging
from 2017 to 2022 in years of publication. Almost half of the included studies investigated
AI applications in US using 3D volumes. Three of the included studies [78–80] used data
collected in the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project,
which aimed at developing international standards in fetal growth and size [81].

The research topics in this field are heterogenous, presenting a wide variety of ap-
plications for AI-assisted methods. The establishment of a plane localization system as
a 3D reference space for locating 2D planes was proposed by Yeung et al., Namburete
et al., Yu et al., and Di Vece et al. for improving the acquisition of standard planes and
facilitating anatomical orientation for sonographers [78,80,82,83]. In particular, the method
by Di Vece et al. used a 23-week synthetic fetal phantom for system development and
was the only study to estimate the 6D poses of US planes combining common 3D planes
with rotation around the brain center [82]. Xu et al. presented an AI method for authenti-
cally simulating third-trimester images from second-trimester images for deep-learning
researchers with restricted access to third-trimester images [84]. The automated detection of
brain structures and malformations was described by Lin et al. [85,86], Alansary et al. [87],
and Gofer et al. [88] in 2D images and videos, and in 3D volumes by Hesse et al. and
Huang et al. [79,89]. The image quality assessment of whether a standard plane was cor-
rectly acquired, either by human operators or by automated extraction from 3D images,
was effectively performed by models developed by the research groups of Lin et al. [90],
Yaqub et al. [91], and Skelton et al. [92]. Researchers Xie et al. [6,93] and Sahli et al. [94]
reported a method for classifying US images into a binary system of ‘normal’ and ‘abnor-
mal’ cases, in which Xie et al. additionally localized the structural lesions, which lead
the algorithm to declare it ‘abnormal’ and thus recommend the clinician to recheck the
labeled area. Lastly, the studies of Burgos-Artizzu et al. and Sreelakshmy et al. portrayed
AI methods for the estimation of GA through an analysis of transthalamic axial planes or
cerebellum measurements [95,96].

The benefits of the usage of AI algorithms in fetal neurosonography were, beside
a reduced workload for sonographers due to faster acquisition and measurements [86],
the development of guiding methods for skill training [78,83], the measurement of small
anatomical structures such as the fetal cortex in first trimester [88], and the accurate
estimation of GA in a pregnancy without a valid first trimester scan [95].

The primary limitation of AI US imaging in this topic was described to be the rapid
anatomical development of fetal brain structures due to brain maturation, increasing head
size and degree of ossification with rising GA [78,80,84]. Ossification of the fetal skull
provoked an increase in the shadowing of US images and thus reduced image quality and
visibility [80]. To address the heterogeneity in brain images from different GA, studies
described the need for matching GA of US images in algorithms [82,94]. Other study
limitations were the missing training of AI algorithms with images of pathologies [79,86,95]
and the problem of miscalculations when US images were not in accordance with the
guidelines for standard planes [6,80].



J. Clin. Med. 2023, 12, 6833 9 of 31

3.2.4. Fetal Face

With advances in obstetric US and the possibility of 3D and 4D US, the analysis of the
fetal face has become feasible and of rising interest. This section encompasses five articles
from 2018 to 2023, with heterogenous research topics.

Fetal facial malformations, such as cleft lip and palate, can be assessed by acquiring
standard planes such as the ocular axial, median sagittal, and nasolabial coronal plane [97].
Wang et al. and Yu et al. presented AI algorithms to automatically identify standard
planes in 2D images [97,98]. However, as facial malformations can be a phenotype of an
underlying genetic disorder, Tang et al. used 3D images of fetal faces to develop a novel
approach for the early, non-invasive identification of genetic disorders by analyzing key
facial regions, such as the jaw, frontal bone, and nasal bone [99].

Additionally, fetal movements and facial expressions were found to be correlated
with fetal brain activity and development state [100]. Facial expressions such as eye
blinking, mouthing, smiling, and yawning have been described to indicate fetal brain
maturation, in utero stress may result in scowling, while the meaning of tongue expulsion
and neutral expression remain unclear [101,102]. Miyagi et al. proposed an AI classifier
analyzing 4D US volumes to assess fetal facial expressions and classify them into different
categories [102,103], and showed that the identification of dense and sparse states of brain
activity is possible [104].

3.2.5. Placenta and Umbilical Cord

The placenta is known to play an important role in the pathogenesis of obstetric com-
plications such as placenta previa, abnormally invasive placenta, fetal growth restriction,
and hypertensive disorders of pregnancy [105]. Little evidence exists on the neglected role
of the placental characteristics and the prediction of these complications [106]. For example,
research has shown a correlation between early placental sonographic echogenicity and the
prediction of intrauterine growth restriction [107]. To date, sonographic placental assess-
ment is mainly restricted to the identification of placental location, adhesion, or insertion
site of umbilical cord [108], and further assessment is limited due to the impossibility to
detect minimal change in texture by routine scan and time-consuming examinations. The
use of AI imaging algorithms has recently enabled automated assessment of the placental
volume, tissue texture, and vascularization, and is thus of rising research interest.

In this review, 20 articles were included that were published from 1994 to 2023,
whereby the three studies from 1994–1996 investigated umbilical cord Doppler analysis and
studies from 2014–2023 focused on placental analysis. While part of the included studies
focused on the automated assessment of placental localization and volume, others reported
efforts to identify or predict the presence of placenta-related obstetric complications by
analyzing echogenic tissue texture.

Andreasen et al. and Schilpzand et al. presented an effective AI algorithm for pla-
cental localization, including heterogenous data through differences in sonographers’
expertise [109], or using a previous established sweep protocol in low-resource settings [110].
It is known that early reduced placental volume is associated with small-for-gestational-age
fetuses [111]. Schwartz et al. and Looney et al. presented an effective model to automati-
cally assess placenta volumes from 2D and 3D images in first trimester [112,113]. Hu et al.
performed an echotexture analysis in 2D placental images [108], while Qi et al. reported
successful automated localization of the placental lacunae in 2D images as a potential
tool for screening abnormally invasive placenta [114,115]. The automated classification
of placental maturity was proposed by Lei et al. and Li et al. [116,117]. Early and small
changes in placental tissue texture were detected by Gupta et al. and Sun et al. through
using AI-assisted US and microvascular Doppler imaging in women with hypertensive
disorders of pregnancy [118,119] and gestational diabetes [120].

Further examples of adverse pregnancy events with an often disastrous maternal and
fetal outcome are placental abruption and pernicious placenta previa. Yang et al., therefore,
investigated the predictive role of a scoring system for the occurrence of pernicious placenta
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previa [121], while the research group of Asadpour et al. reported a method for identifying
placental abruption [122].

In addition to placental characteristics, research exists on the role of umbilical cord
anatomy and blood flow. Pradipta et al. investigated the use of machine learning methods
to classify 2D color Doppler US images of umbilical cords along the umbilical coiling index
and its possible impact on fetal growth [123]. In the earliest studies included in this review,
Beksaç et al. and Baykal et al. presented an automated diagnostic, interpretation, and
classification method to analyze umbilical artery blood flow Doppler US images [124–126].

The importance of pre-operative planning for surgical interventions such as laser-
therapy in twin-to-twin-transfusion syndrome was addressed by the research group of
Torrents-Barrena et al. [127,128]. They proposed a new AI algorithm for the simulation and
planning of fetoscopic surgery through the detection and mapping of the maternal soft
tissue, uterus, placenta, and umbilical cord via MRI in combination with the detection of
the placenta and its vascular tree in 3D US. This model fully simulates the intraabdominal
environment and enables the correct entry point planning and surgeon’s training [127,128].

In summary, placental AI-based US diagnostic may propose a promising non-invasive,
predictive tool to improve patient counseling and management to prevent adverse preg-
nancy outcomes. Reported limitations in applications arose from the difficulty of identifying
the interface between the placenta and myometrium, especially in first trimester scans [113],
and low accuracy rates in the assessment of posterior wall placentas [109]. Further research
is necessary to identify the link between placental health and obstetric complications.

3.2.6. Fetal Malformations
First Trimester Scan

The timing of the first trimester scan is standardized to 11 + 0 and 13 + 6 weeks of
gestation and its performance of image acquisition is defined by a protocol of the Fetal
Medicine Foundation [129] and the ISUOG [130]. The purpose of this US examination
includes confirmation of viability; assessment of GA; screening for preeclampsia; and
detecting chromosomal anomalies such as trisomy 13, 18, or 21 or other malformations.
Combining clinical information (maternal age and serum parameters) with sonographic
assessment of fetal characteristics, predominantly the assessment of nuchal translucency
(NT), is recommended practice [131].

Seven studies included in this review focused on the AI application for first trimester
scans, ranging from 2012 to 2022. The research groups Walker et al. [132], Zhang et al. [133],
Sciortino et al. [134], and Deng et al. [135] addressed the time consuming process of NT
measurement by introducing AI models for its automated detection and measurement, in
particular for the diagnosis of trisomy 21 [133] or cystic hygroma [132]. Tsai et al. aimed
at facilitating the preliminary step for NT measurement, which was the automated detec-
tion of the correct mid-sagittal plane in 3D volumes [136], and Ryou et al. and Yang et al.
proposed a model for the assessment of the whole fetus in 3D volumes [137,138]. The po-
tential benefits of these models were the highly accurate non-invasive method for anomaly
screening [134] and reduced workload [133,135–137]. Limitations could be uncovered
when assessing fetal limbs due to its small anatomy and close surroundings [136–138],
small data sets in rare anomalies [132,133], and missing real-time application for clinical
applicability [133,134,138].

Second Trimester Scan

The timing of the second trimester scan is standardized to 18 + 0 to 23 + 6 weeks
of gestation and is intended for the evaluation of fetal growth and detection of fetal
malformations [139].

Four studies included in this review focussed on the detection of fetal malformations
in mid-trimester US scans. Matthew et al. prospectively evaluated a model for automated
image acquisition, measurements, and report production [140]. Cengizler et al. proposed
an algorithm for the identification of the fetal spine and proofed the model’s performance
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in cases of fetuses with spina bifida [141]. Furthermore, Meenakshi et al. focused on
the identification of fetal kidneys [142] and Shozu et al. presented an AI model for the
identification of the thoracic wall, which enabled plane detection for 4CV, but also allowed
for the detection of thoracic malformations [143]. All of the studies showed a reduction
in examination time, which helps sonographers concentrate on interpretation instead of
repetitive tasks [140].

3.2.7. Prediction of Gestational Age

The estimation of GA is one of the important indications for obstetric US in early
pregnancy that helps to adjust maternity care and identify complications such as prema-
turity or fetal growth disorders [144]. It is usually calculated using the last menstrual
period and is confirmed with fetal CRL and biometry. In low-resource countries, access to
medical care is constrained and ultrasonography and their operators are rare. In these areas
especially, pregnancy complications play an important role and improvement in diagnostic
resources for correct GA measurement as a prerequisite for adequate maternity care is thus
necessary [145].

This literature review includes 10 studies on the assessment of GA, starting in 1996
with a pioneering study of Beksaç et al. on the estimation of GA via the calculation of the
fetal biparietal diameter and HC [146]. In addition to this, the studies of Namburete et al.
and Alzubaidi et al. similarly used the anatomy and growth of the fetal head for GA
estimation [147,148]. Dan et al. developed a DeepGA model that used the three main
factors of fetal head, abdomen, and femur [149], while Lee et al. proposed a machine
learning method to accurately estimate GA with standard US planes [150]. The recent topic
of point-of-care-US was addressed in the research of Maraci et al., who successfully showed
automated head plane detection and GA estimation with point-of-care devices [151]. Lastly,
four studies used data from the Fetal Age Machine Learning Initiative (FAMLI), which is
an obstetrical US development project in low-income settings. The purpose of these studies,
which were based on US data from the US and Zambia, was the successful establishment
of an AI algorithm for GA estimation from simplified blind US sweeps of US novices
in low-resource countries [144,145,152,153]. The benefits of the GA AI models were the
possibility for application in low-resource countries [144,145,148,149,152], even without
internet connectivity [145], and in portable devices [148], promising high accuracy with
an error of 3.9 to 5 days in GA estimation [149,152]. An important limitation of the
AI models was described to be application in very early [144,147] or very late stages
of pregnancy [146,147,152], the latter of which was due to the thickened texture of the
fetal skull.

3.2.8. Workflow Analysis of Obstetric Ultrasound Scans

Over the past decades, obstetrics US has gained immense advances in US technology
and computational power, including AI processes, but the procedure of acquiring the image
itself by a bedside-acting clinician has remained unchanged. As it is known that acquiring
obstetric US skills is a long-lasting and highly demanding task, efforts have been made
to analyze the workflow of experienced sonographers and draw conclusions about the
interaction between the sonographer, probe, and image [154].

All eight included studies investigating this topic arose from the same working group
of the University of Oxford, UK. The PULSE (Perception Ultrasound by Learning Sonog-
rapher Experience) project, presented by Drukker et al., was designed to enable insights
into experts’ sonography workflow and to transform the learning process of obstetric US
using deep-learning algorithms [154]. Its data set was within the framework of all of the
included studies. While Drukker et al. analyzed eye and transducer movements, actions
during scanning, and audio recordings to generate automated image captioning of the
sonographer’s explanation, Sharma et al. added the pupillometric data to objectify not only
the localization of the sonographer’s gaze on the screen, but also the intensity of concentra-
tion in this focus [155]. Completeness, precision, and speed of sonographic performance
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were assessed by Wang et al. to quantify operator skill level [156]. Zhao et al. presented a
method for virtual-assisted probe movement guidance along a virtual 3D fetus model with
automatic labeling of the captured images [157]. Sharma et al. and Drukker et al. analyzed
full-length scanning videos to assess workflow by building timeline models illustrating
the scanning sequence of anatomical regions over time [155,158]. Lastly, Alsharid et al.
developed a novel video captioning model for the description of second-trimester US
scans by training an AI model with speech recordings and gaze-tracking information of
sonographers while performing US scans [159].

To sum up, the included studies on this topic showed clinical benefits of AI in scan
workflow through automating image labeling [154,157], enabling transfer learning for
US novices [160], reducing clinician’s mental workload, and optimizing workflow [155].
Limitations in application were reported to be the impossibility of the generalization of
workflow sequences due to maternal−fetal factors and different skill levels of sonographers
for different anatomical regions during a full routine scan [155,158].

3.2.9. Other Applications in Obstetrics
Fetal Lung Maturation

The maturation process of the fetal lung is an important aspect in clinical practice as it
implies the leading cause for neonatal morbidity and mortality [161]. The GA of the fetal
lung does not always correlate with the actual GA and can be influenced by pregnancy
complications disrupting lung maturation.

Five included studies analyzed fetal lung US images for the prediction of neonatal
outcomes. Du et al. proposed an AI model to classify the lung textures in pregnancies
affected by gestational diabetes or preeclampsia [162], while Xia et al. and Chen et al. devel-
oped a lung maturation grading model that can be implemented for identifying abnormal
development and evaluating the effectiveness of antenatal corticosteroid therapy [161,163].
The study of Bonet-Carne et al. and a further study of Du et al. showed that automated fetal
lung ultrasound was able to accurately predict neonatal respiratory morbidity [164,165].
While Du et al. analyzed lung images from healthy and affected pregnant women, the stud-
ies of Xia et al. and Chen et al. were limited by the analysis of only healthy fetuses [161,163].

Maternal Factors

US in OB/GYN usually focusses on the examination of the fetus; however, there are
several indications to evaluate maternal structures.

Four included studies were summarized in this section. The early study of Wu et al.
proposed a tool for preterm labor prediction by using computer-assisted measurement of
the cervix on transvaginal US images to overcome the issues of poor reproducibility and
sonographer dependency on manual cervical length measurements [166]. The model of
He et al. addressed the challenge of the identification and classification of intrauterine
pregnancy residues that had the potential to reduce associated complications and improve
surgical outcomes of curettages [167]. Wang et al. presented an algorithm to assess the color
Doppler US images of fetal and maternal vessels as an approach to facilitate the diagnosis
of severe preeclampsia linked to the medical outcome [168]. Lastly, Liu et al. proposed a
Doppler US model for the prediction of fetal distress in women with pregnancy-induced
hypertension [169]. These algorithms may improve medical diagnosis and potentially
reduce clinical workload by replacing the sonographer’s manual tracing [168].

Early Pregnancy

Three studies included in this review focused on the US examination in early preg-
nancy, which is often performed to confirm intrauterine localization and vitality of preg-
nancy, to estimate GA via measuring CRL, or to diagnose adverse pregnancy outcomes
such as miscarriages.

While Wang et al. prospectively analyzed an automated assessment of the gestational
sac as a predictor for early miscarriages in 2D images in pregnancies of 6–8 weeks of
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gestation [170], the research groups Sur et al. and Looney et al. proposed an 3D AI model
to provide volumetric measurements of the embryo, placenta, gestational sac, yolk sac, and
amniotic fluid [113,171]. The potential benefits of these models were the development of
fetal volume nomograms for precise fetal growth assessment [171] and the establishment of
an early screening method for the prediction of adverse pregnancy outcomes [113], which
facilitates adequate consultancy and recommendation for follow-up US examinations [170].
However, validation of the results is difficult in this field of application, which limits
clinical applicability.

Intrapartum Sonography

The application of US during the second stage of labor to assess the progression
of childbirth is a recent development to improve obstetric management. Transperineal
US is, therefore, used to objectivate vaginal digital examination when estimating fetal
head descent.

In a prospective, multicenter study, Ghi et al. established an AI model for automatically
classifying fetal head position and distinguishing between occiput anterior and non-occiput
anterior position of the fetal head, because the latter may result in protracted labor and
increased risk of a poor obstetric outcome [172]. In addition to this, Lu et al. and Bai et al.
proposed a method for the automated measurement of the angle of progression, which
allowed for the estimation of fetal head descent by identifying the symphysis and fetal
head contour [173,174]. All three studies showed promising results but lacked clinical
applicability for their missing real-time application.

Image Quality

In terms of the quality control of US images, four studies were included in this review
that applied their algorithms to different aspects.

Wu et al. proposed a computerized quality assessment scheme for quality control of
US images by identifying the ROI in fetal abdominal images [175]. Meng et al. established
a model for the classification of shadow-rich and shadow-free regions in various US
images [176] and Gupta et al. presented an algorithm for a better separation between the
fetus and surrounding information in fetal US, such as maternal tissue, placenta, or amniotic
fluid [177]. Lastly, Yin et al. showed improved image quality when using an AI algorithm
for image processing in US images of the pelvic floor [178]. Beside improved US image
quality [176–178], the benefits of automated quality control algorithms are the facilitation
of image acquisition by novices and experts, reduced workload, and the development of
toolkits for education [175].

Miscellaneous

Five studies investigating various areas are summarized in this section.
The study of Cho et al. proposed a model for the automated estimation of amniotic

fluid, as it is known to be a particular observer-dependent factor and, therefore, benefits
from automation [179]. Compagnone et al. presented a clinical case report of a successful
AI-image-guided placement of an epidural catheter in an extremely obese patient for
delivery [180]. The research group Maraci et al. developed an AI model to detect the
fetal position and heart beat from predefined US sweeps. Further, Rueda et al. aimed at
investigating the fetal nutritional status using AI-assisted assessment of the adipose and
fat-free tissue of the fetal arm in US images [181]. Lastly, an AI model for the automated
classification of fetal sex in 2D US images of the genital area was established by Kaplan
et al. that helped reduce misclassification and facilitate screening [182].

3.3. Applications in Gynecology

Focusing on the specialty of gynecology, 41 research articles were included in this review.
Figure 3 provides an overview of research topics on AI applications in gynecological US.
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3.3.1. Adnexal Masses

Adnexal masses are among the common reasons for US examination in gynecology
due to the importance of ovarian cancer detection. The assessment of adnexal findings is
crucial for further diagnostic steps and therapy planning, which differ significantly between
benign and malignant tumors. In the clinical setting, the examination of adnexal masses
is primarily performed via transvaginal US, combining grayscale 2D images with color
Doppler imaging to assess vascularization. The identification and especially classification
of adnexal findings represents a challenging task even for experienced examiners and thus
the International Ovarian Tumor Analysis (IOTA) group has established US-based rules for
classification of adnexal tumors [183]. In recent years, the automated analysis of US images
of adnexal masses has gained attention due to its advantage in supporting unexperienced
examiners and assisting experienced examiners in diagnostic decision making.

Of the 11 extracted articles, only two were designed as prospective studies [184,185].
Included studies were published from 2009–2023, whereby the research group Amor et al.
was the first to describe AI application in sonographic assessment using a non-specified
pattern recognition analysis to classify adnexal masses in a new reporting system [184].
All but one of the studies analyzed 2D images, with only three of them including color
Doppler images.

Enabling an automated discrimination between benign and malignant tumors was a
predominant focus of the current research, represented in six studies included [185–190].
Three studies assessed the performance of automated tumor classification [184,191,192],
one study developed a population-based screening method for BRCA mutations [193], and
one study focused on the automated elimination of artefacts and objects in US images to
increase the accuracy of the AI model [194]. Aramendía-Vidaurreta et al. was the only
group to investigate the automated discrimination of benign and malignant masses in 3D
US images [187] and Hsu et al. distinguished between transabdominal and transvaginal
US images [185].

All of the included studies showed a high accuracy and sensitivity of AI performance.
The study by Gao et al. used a large, multicenter, and heterogenous data set, which
disclosed that AI-enabled US outperformed an average trained radiologist in discriminat-
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ing malignant and benign ovarian masses and improved the examiner’s accuracy [189].
These findings were consistent with other studies [185,186], but there were also studies
with smaller sample sizes that showed a level of performance reaching those of human
experts [188,191,192].

Nevertheless, a described limiting aspect was the fact that clinicians using AI im-
age analyzing algorithms must still take clinical aspects into account [188,189]. Further-
more, metastases or secondary ovarian cancer in pelvic images may be misinterpreted
because of their different clinical presentation and their low representation in the data
set [189]. Frequent described limitations of studies on AI applications in US imaging
were homogeneity of data due to a single examiner or single center study [188,192],
a single investigated ethnicity [189], absent external validation [192,193], poor image
quality [186,190], and, most importantly, small sample sizes not sufficient enough to train
the algorithm [184,185,187,188,192,193].

3.3.2. Breast Masses

Breast cancer represents the most common malignancy in women worldwide and
its incidence still shows a rising tendency [195]. To address this health issue, screening
programs and early diagnosis are of the utmost importance. While primary screening is
often performed and recommend through mammography, the advantages of breast US are
numerous. Especially in women with dense breast tissue, e.g., predominantly in young
women or in Asian ethnicity, and for underserved areas, US diagnostics and screening
are crucial [196].

This review includes eight articles on AI application in US imaging of the breast, all of
which were published in the past three years and focused on 2D images.

All of the included studies worked on either the detection of breast lesions, clas-
sification, or both. Two studies used AI algorithms in combination with handheld US
devices [197,198]. Berg et al. pointed out the importance of training for sonographers
to obtain a reasonable image quality for AI analysis [197], while Huang et al. compared
handheld US to robotically performed AI-assisted US and showed reduced costs, shorter
examination times, and a higher detection rate in the latter [198]. The possibility of avoid-
ing unnecessary breast biopsies was the result of two further studies, of which one used
an AI-assisted multi-modal shear wave elastography model [199,200]. In a retrospective
study, Dong et al. promoted the importance of an increased confidence in AI assistance in
health care, which can be addressed by understanding the algorithm of the black box and
encouraging the concept of ‘explainable AI’ [201]. Limitations to AI usage in breast US were
the missing clinical context in unimodal approaches only focusing on image analysis [202],
small data sets for algorithm training, and a lower accuracy in borderline findings [201].

3.3.3. Endometrium

In gynecologic US examinations, evaluation of the endometrium is part of normal
routine and obtains its significance due to the frequency of endometrial abnormalities, e.g.,
endometrial fibroids, polyps, endometrial hyperplasia or atrophy, and carcinoma [203]. In
particular, endometrial thickness is known to show dynamics in premenopausal women
throughout the menstrual cycle, while an increase in thickness in postmenopausal women
represents a risk factor for the presence of malignancy [204]. However, the identification of
the endometrial−myometrial junction represents a challenging task due to heterogenous
textures, irregular boundaries, and different sizes of the endometrium in the menstrual
phases, which is why the application of AI in US is a field of research interest.

For this topic, five articles were extracted from the current literature. Publication years
ranged from 2019 to 2023. Wang et al. and Zhao et al. conducted their studies based on 3D
US images [205,206]. All but one study investigated the AI performance for the assessment
of endometrial thickness, texture, or uterine adhesions [205–208]. Moro et al. aimed at
establishing an AI model for risk stratification in endometrial cancer, but could not prove
increased performance [209].
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The application of AI US to assess endometrial characteristics showed a high accu-
racy and similar level of performance compared with human examiners [205,208], which
could be further increased by setting human-selected key points in the images as a de-
marcation of the ROI for the AI algorithm [207]. The only two studies using 3D imaging
outlined the superiority of this data to 2D imaging for its improved capability in iden-
tifying the endometrial−myometrial junction [205,206]. Extracted limiting aspects for
AI application were reduced accuracy in assessing endometria smaller than 3 mm [208],
operator-dependence, limited data for algorithm training [205,206], and the need for human
experts selecting images before analysis [205,207,209].

3.3.4. Pelvic Floor

The assessment of pelvic floor dysfunction is a highly essential and sensitive topic in
gynecological examination due to its consequences on women’s health-related quality of
life. Transvaginal US is the preferred diagnostic method, enabling the assessment of pelvic
organ integrity, dynamic of pelvic floor function during Valsalva maneuver, and diagnosis
of pelvic organ prolapse.

This review includes six articles on the introduced topic, with only one being designed
as a prospective, randomized-controlled clinical trial [210]. Publication years ranged from
2019 to 2023. Two studies used 3D US images [211,212], two 2D [213–215], two of them
derived 2D images from a 3D/4D data set [214,215], and one did not specify the type of
image [210].

The assessment of the pelvic floor muscles and measurement of pelvic anatomical
landmarks were addressed in all studies, while two focused on the diagnosis of pelvic
organ prolapse [212,213]. Reliable automated plane detection and measurements were
obtained results in all of the studies. Three studies were able to show the significantly
reduced time between manual and automatic image evaluation, from up to 15 minutes
to 1.27 seconds [211–213], concluding in saved clinician’s time for better bedside patient
care. Limiting aspects encompassed high operator dependency [211,212], homogeneity of
data when exclusively using cases of affected women [212,213], and the need for manual
selection of ROI before AI image processing [211,213,214].

3.3.5. Other Applications in Gynecology

Further fields of applications were found in the process of this literature review. In total,
11 articles were summarized in this section, including the topics of endometriosis [216,217],
premature ovarian failure [218,219], uterine fibroids [220,221], follicle tracking [222,223],
and ectopic pregnancies [224,225]. Another study addressed the issue of poor image
quality in 3D US images due to data processing and showed that AI image enhancement
methods could produce increased 3D image quality with user-preferential flexibility in
both gynecological and obstetric US images [226]. The retrospective study of Huo et al.
showed that AI-assisted US improved the accuracy of uterine fibroid assessment of young
sonographers, but, summarized that AI applications rather assist than replace human
observers [50].

Endometriosis

Two included articles discussed the sensitive topic of endometriosis, which can be prob-
lematic for both physician and patient due to complex clinical management and impaired
quality of life in affected women [216,217]. Both studies had the usage of transvaginal
2D US videos and the missing histopathological or surgical confirmation in common, but
focused on two different manifestations of endometriosis. Maicas et al. developed a highly
accurate AI model for the classification of the pouch of Douglas obliteration as a cause
of pelvic inflammation often seen in endometriosis via detection of the so-called ‘sliding
sign’ [216]. In comparison, the results of Raimondo et al. showed a low sensitivity of the
AI model to detect adenomyosis, but a high specificity, interpreted as a useful tool to rather
exclude than detect adenomyosis [217].
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Uterine Fibroids

In two of the included studies, the automated detection of uterine fibroids was an-
alyzed. The retrospective study of Huo et al. showed that AI-assisted US improved the
accuracy of uterine fibroid assessment of young sonographers, but, summarized that AI
applications rather assist than replace human observers [220]. Yang et al. proposed an
AI algorithm for the detection of fibroids, which facilitated pre-operative guidance and
interventional therapy [221].

Premature Ovarian Failure

Premature ovarian failure or insufficiency is defined by the interruption of ovarian
function before the onset of menopause, affects around 1% in women aged 40, and can cause
amenorrhea or infertility [227]. Beside anamnesis and laboratory results on the hormone
level, transvaginal US is the primary diagnostic tool to assess ovarian characteristics. This
review lists two studies on this topic, evidencing that ovarian artery flow parameters
obtained by AI analyzed color Doppler imaging can be used as a predictive factor, and
both AI models showed reliability for disease prediction [210,218].

Follicle Tracking

In reproductive medicine, the evaluation of follicles after ovarian stimulation or the
functional ovarian reserve in patients suffering from infertility is an important diagnostic
component performed via US. Two included studies, of which one had a prospective,
randomized-controlled design, showed increased accuracy of follicle evaluation and re-
duced examination time by using AI-assisted 2D and 3D US [222,223]. The mentioned
limitations included cost-intensified AI-assisted machines and possible reduced image
quality in obese patients [223].

Ectopic Pregnancy

In comparison with the use of AI in US for image analysis, two studies published an
approach to use US images of ectopic pregnancies to build an ontology with a reference
image collection for specific diagnostic signs (e.g., ‘ring of fire’). The prognosis of ectopic
pregnancy is known to be dependent on the correctness and timing of diagnosis, for which
the research groups Maurice et al. and Dhombres et al. showed that a knowledge base
for US image annotations as a clinical decision support system based on this ontology
significantly improved the timing of diagnosis [224,225].

4. Discussion

This systematic literature review presents an overview on applications for AI in US
imaging in the medical field of OB/GYN. Relatively more publications were found to
be suitable for inclusion that focused on applications in the field of obstetrics (148 versus
41 studies), possibly due to the predominance of US indications in this field. US is the
preferred imaging method during pregnancy for fetal and maternal disorders for its low
radiation exposure and possibility of real-time examination. In contrast with that, gy-
necological disorders such as different cancer entities and pelvis-related diseases benefit
from other imaging methods such as MRI or CT. In the current literature, not only US, but
also MRI applications profit from AI assistance, for example in fetal lung texture analy-
sis [228,229] or cervical cancer diagnosis [230]. In the following, the benefits and limitations
of AI application in OB/GYN US imaging are summarized.

4.1. Benefits

In general, AI in US imaging has the potential to reduce inter- and intra-observer
variability by automating processes of image acquisition and interpretation [8]. AI-assisted
US is able to significantly reduce examination time, showing decreased image acquisition
times from minutes to seconds [211,212], thus, minimizing clinician’s workload [33] and
enabling the sonographer to focus on the interpretation of the obtained images [140].
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These advantages are of the utmost importance, especially in the clinical setting and in
times of shortage of experienced health care personnel. In addition to this, AI models
have been designed for image acquisition and classification, but also for facilitating or
omitting repetitive work-intense tasks such as scan report production or captioning of US
videos [140,159].

Not only clinicians profit from AI usage in US, but also patients, as AI helps to improve
diagnostic accuracy and provides diagnostic safety. For example, the use of AI-assisted
US has been shown to reduce the amount of unnecessary hospital admissions due to
misdiagnosis and unnecessary breast biopsies [197,199,200]. This fact may reduce not only
heath care costs, but, more importantly, diminish psychological burden for patients with
unsecure diagnosis fearing the need for further diagnostic and intervention in inconclusive
imaging results. In this context, AI in clinical settings can positively impact an individual
patients’ life. Another example of direct patient benefit is the finding that in high-risk
patients with ectopic pregnancies, reduced timing of diagnosis may result in an improved
outcome [224]. AI models can also help to increase diagnostic accuracy, for example
when US image quality is impeded by a thickened abdominal wall in obese patients [180].
Moreover, the advantages in pre-operative risk stratification or intraoperative assistance
are described in both subspecialties of OB/GYN, e.g., in pre-operative endometrial cancer
staging [209] and for fetoscopic surgical interventions [69,127]. Because of its reduction
in examination time, AI-assisted US also has the potential to allow for cost-effective,
population-based screening methods, e.g., for breast US [193,198,199]. Remarkably, when
contextual clinical information is additionally incorporated in the AI model, the level of
misclassification and misdiagnosis has been shown to be reduced [23,26]. To sum up, AI is
not only a technical advantage when focusing on the imaging quality and accuracy, but,
even more importantly, there is a clear benefit for an individual patient’s health care.

Nevertheless, AI-assisted US also helps to improve clinical education, which is well
known to be neglected by a shortage of experienced clinicians and increased workload,
especially in the recent pandemic times. It can support US novices in skill training and
enables non-experts the acquisition of US images [160], e.g., for telehealth approaches in
times of shortage of expert sonographers [50]. It, therefore, is of public health relevance, by
reducing costs and the need for sonography experts [35,39]. In this framework, AI models
are additionally able to enhance image acquisition and diagnostic accuracy in point-of-care
US devices, which is of particular significance for application in low-resource settings and
medically underserved areas [34,145,148,199].

4.2. Limitations

The main limitation of AI models in US imaging described in the summarized literature
was the fact that most AI models still need experts for image acquisition, image or ROI selection
to obtain an adequate image quality for accurate model performance [6,205,209,216], and for
interpretation of the results [51,220]. In applications of tissue analysis such as assessment
of the endometrium in gynecology [207,209] and fetal lung texture [162], or identification
of the cervix [166] in obstetrics, manual selection of the ROI is still a limiting aspect in
AI performance. These findings are in accordance with the often noted statement that
AI models are primarily intended to assist the clinician, not to replace them [6,231]. This
limitation is of major importance to discuss as it underlines the requirement for humans in
performing, analyzing, supervising, interpreting, and taking clinical consequences of AI
produced results.

The irreplaceable need for experts will be understandable when working out other
limitations of AI usage. In pattern recognition tasks, some AI models can fail when
subtle differences are diagnosis-relevant, e.g., in borderline findings or in small regions of
interest such as endometrial thickness or fetal brain structures [95,201,208]. A change in US
probe or modality may also lead to misclassification, e.g., when comparing abdominal or
vaginal US images [185]. Furthermore, AI model performance in 2D and 3D US imaging
can be limited due to imaging artefacts and noise, especially when automated tissue
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analysis is intended, for example, for fetal lung assessment, whereas the method of MRI
for this specific application seems future-oriented and promising [127,163]. In the clinical
setting, the assessment of fetal lungs in terms of texture and volume can be relevant for
prenatal diagnosis, risk classification, prediction of prognosis, and therapy planning in fetal
congenital diaphragmatic hernia, profiting from the combination of the imaging modalities
of US and MRI [228,232].

In obstetric US, AI models designed for automatic biometric measurements are usually
restraint to a specific range of GA and can fail in images of different GA [34,40,78]. Small
structures such as the fetal limbs are prone to failing AI recognition [26,138,140], as well as
the differentiation of structures within similar tissue textures [113]. Furthermore, real-time
application is of particular importance in obstetric US and some authors noted the missing
possibility for real-time application of various AI models, interestingly affecting especially
those that are designed for intrapartum application [42,127,172–174]. This limitation may
be due to the great use of computational power and memory of AI algorithms. One
leading limitation of AI algorithms in obstetric US is the dependence on fetal position and
movement. In fetal echocardiography in particular, most presented AI models have been
trained with apical 4CV, ignoring the reality of heterogenous US images obtained from
different scanning angles in clinical routine [57]. As a solution to this issue and an emerging
research focus, the detection of the fetal heart as a ROI in US images can be performed by
AI models [72,73].

However, not only the AI models itself, but also the study designs for model develop-
ment and analysis summarized in this review bear some limitations that have an influence
on model development and performance. As AI algorithms are usually dependent on large
data sets for training, the detection of rare pathologies is limited due to missing training
of pattern recognition models [132,133]. As most of the studies are performed with data
obtained from healthy subjects or healthy fetuses, miscalculation or misdiagnosis may
occur in case of pathologies [35,95,145]. Other factors based on study design that influence
model performance are single study center, single observer or sonographer, single US
device, small sample sizes, missing long-term data, and missing clinical validation.

Nevertheless, as perfectly outlined in the state-of-the-art review by Drukker et al., the
clinical applicability of AI algorithms is still limited due to fears and concerns of clinicians
regarding the safety or stability of the algorithms, trustworthiness, ethical background,
privacy, and professional liability [3]. Where there is research about AI, it is also indispens-
able to mention ethical aspects of its application. The World Health Organization guidance
for the ethics and governance of artificial intelligence for health states that it “recognizes
that AI holds great promise for the practice of public health and medicine” [233], but also
stresses the important aspect of ethical challenges, which must be addressed due to the
fast-developing technologies. Drukker et al. stressed the importance of a better interdisci-
plinary research on AI applications of technicians and clinicians to reduce the difficulties
and insecurities of clinicians when facing the complex methods of AI systems resulting in
missing trust in these systems [3]. This aspect is particularly addressed by the concept of
‘explainable AI’, which is used in the studies of Sakai et al. and Dong et al. [7,201]. To sum
up, limitations in the applications of AI algorithms are abundant, especially because most
study settings seem inadequate for the evaluation of clinical applicability. Considering the
fact that the technique of AI and its emerging systems is relatively new in the medical field,
it is comprehensible that clinical approved results are missing.

4.3. Strengths and Limitations of This Review

One important advantage of this review is the inclusion of a reasonable number
of publications over an extensive period of time, with no restrictions regarding year of
publication. The included literature is categorized among their subspecialty and research
topics, allowing for a visualized overview of the current research interest on the one hand,
as well as an idea of still underrepresented tasks for AI applications in further research on
the other hand.
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Regarding the distribution of literature among the subspecialties of OB/GYN, one
limiting aspect of this study may be the search query containing the extra keyword ‘preg-
nancy’, which is likely to have influenced a discrepancy in the obtained records in favor
of obstetric studies. Another important limiting aspect might be the fact that this review
includes research articles from engineering literature, which are known to have a technical
viewpoint and fail to assess clinical applicability. Most applications of AI US imaging in
these technical articles are still experimental and preliminary work and have not been
sufficiently assessed for clinical applicability, which was also stated in the review of Dhom-
bres et al. [234]. As these technical studies are developed by engineers, they are difficult
to understand for clinicians, bringing up the discussion about the urgent need for an im-
proved interface between AI specialists and clinicians applying AI technology in real-life
scenarios [231]. Lastly, a classification of the presented AI applications in the technologic
subcategories of regression modeling, population classification, and image segmentation
would be of further interest and should be considered for further research. In the realm of
regression modeling, AI algorithms can predict crucial parameters, such as fetal growth,
aiding clinicians in identifying potential complications early on. Moreover, AI-driven
classification systems can enhance the accuracy of diagnoses, ensuring a higher level of
precision in identifying abnormalities or diseases. The segmentation applications of AI
can assess the way organs and structures are delineated in ultrasound images, offering
accuracy in complex anatomical analyses.

5. Conclusions

Applications for AI-assisted US widely range from fetal biometry, echocardiography,
neurosonography, or the estimation of gestational age in obstetrics, to the identification of
adnexal or breast masses and the assessment of endometrium or pelvic floor in gynecology.
The applications for AI-assisted US in OB/GYN are especially numerous in the subspecialty
of obstetrics, where the imaging method of US is of particular significance. However, while
most studies are of technical nature and studies are designed by AI engineers, most of
presented literature lack clinical applicability. This systematic literature review displays the
variety of research topics on AI applications in US imaging in OB/GYN, including sparsely
represented and potentially emerging topics for further research.

In conclusion, with abundant evidence, we can pronounce to live and evolve the era
of 5D ultrasound, as AI algorithms add and will add a momentous further dimension to
the existing US imaging methods in OB/GYN.
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Abbreviations

2/3/4/5D Two/three/four/five-dimensional
4CV Four-chamber view
AC Abdominal circumference
AI Artificial intelligence
CHD Congenital heart disease
CRL Crown-rump-length
CT Computed tomography
FINE Fetal intelligent navigation echocardiography
GA Gestational age
HC Head circumference
ISUOG International Society of Ultrasound in Obstetrics & Gynecology
MRI Magnetic resonance imaging
NT Nuchal translucency
OB/GYN Obstetrics and gynecology
ROI Region of interest
US Ultrasound
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