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Highlights:

What are the main findings?
• SN dysfunction is the common denominator of insomnia, schizophrenia (SCZ), and frontotemporal

dementia behavioral variant (bvFTD).

What is the implication of the main finding?
• The diagnosis of bvFTD is often missed or misdiagnosed in forensic institutions.
• To ensure adequate placement and treatment planning, courts and clinicians require education to

differentiate bvFTD from SCZ.

Abstract: Forensic hospitals throughout the country house individuals with severe mental illness
and history of criminal violations. Insomnia affects 67.4% of hospitalized patients with chronic
neuropsychiatric disorders, indicating that these conditions may hijack human somnogenic pathways.
Conversely, somnolence is a common adverse effect of many antipsychotic drugs, further highlighting
a common etiopathogenesis. Since the brain salience network is likely the common denominator for
insomnia, neuropsychiatric and neurodegenerative disorders, here, we focus on the pathology of this
neuronal assembly and its likely driver, the dysfunctional neuronal and mitochondrial membrane. We
also discuss potential treatment strategies ranging from membrane lipid replacement to mitochondrial
transplantation. The aims of this review are threefold: 1. Examining the causes of insomnia in forensic
detainees with severe mental illness, as well as its role in predisposing them to neurodegenerative
disorders. 2. Educating State hospital and prison clinicians on frontotemporal dementia behavioral
variant, a condition increasingly diagnosed in older first offenders which is often missed due to the
absence of memory impairment. 3. Introducing clinicians to natural compounds that are potentially
beneficial for insomnia and severe mental illness.

Keywords: Von Economo neuron; interoceptive awareness; frontotemporal dementia behavioral
variant; phenazines

1. Introduction

One of the most common sleep disorders in the United States, primary insomnia,
is usually defined as long sleep latency, difficulty staying asleep, prolonged nighttime
wakefulness, and/or early morning awakening [1]. In prison, approximately 60% of
inmates experience insomnia, a prevalence 6–10 times higher than in the population at
large [2]. Moreover, insomnia is present in 67.4% of hospitalized patients with severe
mental illness, suggesting that the pathways of sleep and neuropathology are highly
intertwined [3].

Forensic psychiatric hospitals admit patients with schizophrenia (SCZ) or schizophr-
enia-like disorders (SLDs) and criminal violations. Insomnia is common in this population
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and failure to address this condition may increase healthcare expenditure due to medical
complications, including metabolic, cardiovascular, and neurodegenerative disorders.

The salience network (SN), comprised of the anterior insular cortex (AIC), anterior
cingulate cortex (ACC) and several subcortical nodes, has recently been implicated in
the etiopathogenesis of insomnia, SCZ, and neurodegenerative disorders [4–9]. SN is
comprised of Von Economo neurons (VENs), a special class of large, spindle-shaped cells
found only in humans and superior mammals that are believed to drive empathy, social
awareness, and emotional intelligence [10].

At the molecular level, incarceration, insomnia, and severe mental illness have been
associated with premature cellular senescence, a phenotype marked by increased intracellu-
lar iron and mitochondrial damage [11–18]. Premature cellular senescence is driven by the
aryl hydrocarbon receptor (AhR), expressed in neuronal cytosol and mitochondria [19–21].
Senescent cells upregulate intracellular iron which, in the proximity of cytosolic fats, increases
the risk of lipid peroxidation and neuronal demise by ferroptosis [22–24]. Ferroptosis is a
programmed cell death induced by iron in the context of antioxidant failure marked by the de-
pletion of glutathione peroxidase-4 (GPX-4) [25,26]. GPX-4 is a mitochondrial enzyme which
averts ferroptosis by repairing the oxidized phospholipids and cholesterol in mitochondrial
and neuronal membranes [27]. Ferroptosis causes mitochondrial swelling, loss of cristae, dis-
sipation of the membrane potential, as well as an increase in membrane permeability, changes
that ultimately lead to mitochondrial loss [28]. Mitochondrial dysfunction and loss drive
cellular senescence, a phenotype found in insomnia, severe mental illness and frontotemporal
lobar degeneration (FTLD) [29–32]. In addition, insomnia, SCZ, and frontotemporal dementia
(FTD) have been connected to impaired phagocytosis of senescent cells by natural killer cells
(NKCs) [33–35]. Accumulation of senescent cells due to accelerated aging and impaired
removal leads to inflammation, a pathology encountered in sleep deprivation, severe mental
illness and FTD [36–38]. Since mitochondria is a key driver of inflammation, dysfunction or
loss of these organelles likely account for these pathologies [39,40].

To compensate for dysfunctional mitochondria, neurons import these organelles from
glial cells, especially the astrocyte [41,42]. In large cells, such as VENs, mitochondria
are more vulnerable to damage and autophagic elimination as they undergo more wear
and tear during their journey through the long axons of these neurons [42]. Due to their
small number (around 193,000) and their large sizes, VENs are more susceptible to plasma
membrane oxidative stress, which may trigger significant pathology even after a limited
neuronal loss, a pathology encountered in frontotemporal dementia behavioral variant
(bvFTD) [43].

Since mitochondria are crucial for neuronal function, preserving the integrity of these
organelles via membrane lipid replacement (MLR) and other natural strategies is of utmost
importance. Microbial phenazines and the novel antioxidant phenothiazine derivatives
offer new opportunities to combat insomnia, psychosis, and neurodegeneration at the level
of cell and mitochondrial membranes.

1.1. Salienve Network in Sleep and Neuropathology

The SN is comprised of ACC and AIC which, along with subcortical nodes in the
hypothalamus, thalamus, striatum, and midbrain, process salient stimuli [44,45]. SN
functions as a switch between exteroception and interoception or central executive network
(CEN) and default mode network (DMN), depending on stimulus relevance [46]. Switching
from CEN to DMN and vice versa is impaired in severe mental illness, insomnia, and
neurodegenerative disorders [47]. Several antipsychotic drugs are known to lower the
salience assignment to objects and events, likely restoring SN function, which, in turn, may
ameliorate insomnia and psychosis [48].

The SN harbors VENs, which are large, corkscrew neurons located in layer V of the AIC
and ACC. These non-telencephalic cells are believed to drive prosocial cognition, empathy,
and emotional intelligence. As parts of the SN, VENs respond to endogenous or exogenous
stimuli in the order of priority. VENs are selectively eliminated in bvFTD, a disorder
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marked by criminal violations, lack of empathy, poor insight, and sleep impairment [49–53].
In forensic institutions, bvFTD is increasingly diagnosed in older first offenders with no
previous criminal history and often coexists with insomnia and altered eating habits.

Under physiological circumstances, sleep is driven by the ventrolateral preoptic nu-
cleus (VLPO) of the anterior hypothalamus which releases inhibitory neurotransmitters,
including γ-aminobutyric acid (GABA), and galanin [54]. The opposing system, orexin
(hypocretin) neurons in the lateral hypothalamus, inhibits VLPO [55–57]. In addition,
orexin/hypocretin neurons induce wakefulness by blocking melanin concentrating hor-
mone (MCH), a somnogen released by the hypothalamus and zona incerta [58,59]. Orexin
and DA, the key players of saliency, have been implicated in the neuropsychiatric disorders
associated with sleep disturbances, including narcolepsy, attention-deficit/hyperactivity
disorder (ADHD), and Parkinson’s disease (PD) [60]. Histamine is another wakefulness-
promoting neurotransmitter implicated in SCZ and a novel target for treating negative and
cognitive symptoms [61].

To better comprehend the pathogenesis of insomnia, it is necessary to study the path-
ways of wakefulness, a brain state driving self-awareness and probably consciousness [62].
Early studies on this subject have focused on the locus coeruleus, midbrain tegmentum,
pons, and parabrachial nucleus, as neurons in these regions are active during wakeful-
ness [63,64]. In the early 1900s, while studying encephalitis lethargica, Constantin von
Economo found that lesions in the posterior hypothalamus were associated with sleep,
hypothesizing that this area contained the “center of wakefulness” [65–67].

Fatal familial insomnia (FFI), a rare autosomal dominant disease, is marked by hy-
pometabolism and neuronal loss in the thalamus and ACC, linking this condition to the
SN [68–72]. The role of SN in sleep physiology and pathology is further highlighted by the
anesthetics, especially propofol, which lower salience processing, inducing sleep [68–78].
Moreover, recent studies on sleep-deprived human volunteers and patients with primary
insomnia demonstrated altered connectivity in AIC, further linking SN to sleep and wake-
fulness [79,80]. Furthermore, several preclinical studies are in line with the findings in
humans, implicating the SN in slumber homeostasis [74,81].

Aside from insomnia and neuropsychiatric pathology, the SN connectivity is dis-
rupted in neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s
disease (PD), and bvFTD, suggesting that insomnia and neuropathology are highly inter-
twined [82–86]. Indeed, dysfunctional AIC and ACC connectivity may account for the
criminal violations in patients with bvFTD, in which breaking the law may often be the
initial dementia symptom [87,88].

1.2. Salience Network in Frontotemporal Dementia Behavioral Variant

The second most common neurodegenerative disorder after AD, bvFTD, is marked by
inappropriate emotional responses and disinhibited behaviors, often leading to criminal
violations, as this pathology targets VENs selectively [52,89]. In forensic institutions,
individuals with first incarceration after the age of 55 may suffer from bvFTD, an entity
difficult to diagnose as the memory may remain intact for longer periods of time. As a
result, bvFTD is often missed or misdiagnosed as antisocial personality disorder (APD),
SCZ, or even major depressive disorder [90].

Over the past two decades, the number of senior first offenders has grown in parallel
with the prevalence of young-onset dementia (YOD, emergence of symptoms before age 65),
a subgroup of neurodegenerative disorders, which may include bvFTD [91,92]. Indeed,
recent studies have revealed that the prevalence of bvFTD has increased from 15/100,000
in 2013 to 119 per 100,000 in 2021, mirroring the growing number of forensic detainees with
this diagnosis [92,93].

Compared to AD, in which 12% of patients exhibit criminal behavior, bvFTD is associ-
ated with a crime rate of 54%, suggesting an acquired psychopathy [94]. Frontotemporal
lobar degeneration (FTLD), the pathology driving bvFTD, is associated with impulsivity
and criminal violations due to the paucity of “honesty cells”, VENs [95]. The latter is likely
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due to the autophagy of damaged organelles traveling through the long VENs axons. In-
deed, lysosomal aggregates, hallmarks of hyperactive autophagy, were demonstrated in the
VENs derived from patients with bvFTD and SCZ, suggesting excessive mitophagy [95–97].
Depletion of VENs has been associated with a lack of empathy, aggressive behavior, and
criminal violations documented in bvFTD and severe mental illness [51,52]. For example,
homicide or attempted homicide have been documented in bvFTD, indicating that criminal
behavior and murder can sometimes be the earliest manifestation of this disorder [98,99].
Since VENs are only present in large mammals, including humans, great apes, macaques,
cetaceans, and elephants, but not in rodents, these cells are difficult to study in vivo [10].
VENs are larger than pyramidal neurons and drive interoceptive awareness, which is the
ability to detect and process internal cues such as heartbeat, respiration and the overall vis-
ceral state [100,101]. VENs are components of the SN, an attention-shifting large neuronal
assembly that can activate or silence CEN to DMN [102,103].

Recent transcriptomic studies found that VENs express monoaminergic proteins,
including vesicular monoamine transporter 2 (VMAT2) and adrenergic receptor α-1A
(ADRA1A), suggesting involvement in autonomic functions, including the circadian
rhythm [104–106]. Indeed, impaired monoaminergic signaling has been documented
in insomnia, bvFTD, SCZ, and SLDs, implicating VENs in these pathologies [107–111].

1.3. Sleep and Glial Cells

Astrocytes, the most numerous brain cells, communicate with each other via calcium
waves, attaining synchronization with neurons and supporting slow-wave sleep [112,113].
Moreover, astrocytes release molecules, including adenosine, lactate, glutamate, GABA, and
interleukin-1 (IL-1), which may indirectly influence the status of neuronal cells, inducing
sleep [114].

Astrocytes are central to the neurovascular unit (NVU) and bridge the gap between
the neuron and brain microvessels, regulating the flow of interstitial fluid through the aqua-
porin 4 (AQP-4) receptors [115] (Figure 1). The volume of the brain interstitial fluid (ISF)
fluctuates in a circadian manner as it flows through the glymphatic system, a mechanism
for clearing misfolded proteins during sleep [116]. The glymphatic system can also carry
extracellular vesicles containing mitochondria from astrocytes to neurons [117]. Astrocytes
support the neurons by generating GPX-4 to avert neuronal death by ferroptosis. GPX-4
functions to repair oxidized lipids and oxysterols, including 7-ketocholesterol (7KCl), toxins
that disrupt plasma and mitochondrial membranes, triggering neuronal death [118]. Fer-
roptosis has been associated with sleep deprivation, indicating that neurons likely import
GPX-4 during sleep [119]. As mitochondria play a key role in sleep homeostasis, insomnia
may be the result of plasma or mitochondrial membrane oxidation. Indeed, it has been
suggested that sleep is necessary for abrogating neuronal oxidative stress [120].

Intracellular iron is stored in ferritin and released for intracellular needs via fer-
ritinophagy (ferritin autophagy) in lysosomes. Several antipsychotic drugs, including
haloperidol, accumulate in lysosomes disrupting ferritinophagy, which, in turn, lowers
intracellular iron, averting ferroptosis [121,122] (Figure 2). This may highlight a DA-
independent, antipsychotic action of haloperidol, suggesting that dopaminergic blockade is
not the only psychosis-deterring mechanism of this drug. Indeed, ferroptosis of hippocam-
pal neurons, documented in AD and severe mental illness, is the likely cause of cognitive
impairment and negative symptoms in these conditions [123,124]. Prolonged insomnia
has been demonstrated to damage the astrocyte which, in turn, may trigger neuronal
demise [125]. Moreover, chronic sleep loss was demonstrated to activate both astrocytes
and microglia, turning these cells into neurotoxic phenotypes capable of eliminating healthy
neurons and synapses [126–128].
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Figure 1. Astrocytes contact cerebral microvessels with their end-feet processes, delineating a pathway
for the flow of extracellular fluid, known as the glymphatic system. The volume of interstitial fluid
(ISF) in the brain parenchyma varies with the brain work. During high intensity work, AQP-4 water
receptors are upregulated in the end-feet, pumping the ISF into astrocytes. This results in low ISF
(hypovolemia). During sleep (low-intensity brain work), less ISF enters the astrocyte. The circulation
of ISF clears the molecular debris (including beta amyloid) from the extracellular space.



J. Clin. Med. 2024, 13, 1691 6 of 19

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 2. Astrocytes support the postmitotic, long-lived neurons by helping them avert death by 
ferroptosis and loss of mitochondria. The former is accomplished by exporting GPX-4 to neurons 
(to repair oxidized lipids), while the latter by exporting healthy mitochondria to neuronal cells (via 
tunneling nanotubules, extracellular vesicles, or cell–cell fusion). Astrocytes import cystine via cys-
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4 (which is transferred to neurons). Cysteine can also be derived from methionine, while glutathione 
can be generated from cysteine and glutathione disulfide (GSSC). In neurons, iron is stored in ferri-
tin and, when needed, ferritin undergoes ferritinophagy (autophagy) in lysosomes, releasing free 
iron. Iron ingresses the neuron via transferrin receptor 1 (TRF-1), while the excess intracellular iron 
is eliminated via ferroportin. 
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Figure 2. Astrocytes support the postmitotic, long-lived neurons by helping them avert death by
ferroptosis and loss of mitochondria. The former is accomplished by exporting GPX-4 to neurons
(to repair oxidized lipids), while the latter by exporting healthy mitochondria to neuronal cells
(via tunneling nanotubules, extracellular vesicles, or cell–cell fusion). Astrocytes import cystine
via cystine/glutamate antiporter (Xc-). Cystine is reduced to cysteine and generates glutathione
and GPX-4 (which is transferred to neurons). Cysteine can also be derived from methionine, while
glutathione can be generated from cysteine and glutathione disulfide (GSSC). In neurons, iron is
stored in ferritin and, when needed, ferritin undergoes ferritinophagy (autophagy) in lysosomes,
releasing free iron. Iron ingresses the neuron via transferrin receptor 1 (TRF-1), while the excess
intracellular iron is eliminated via ferroportin.

2. Mitochondria and Aryl Hydrocarbon Receptor

Recent studies have implicated mitochondria in the pathophysiology of sleep and
neurodegenerative disorders, while the role of these organelles in severe mental illness,
including SCZ and SLDs, has been previously established [129,130]. AhR is the master
regulator of cellular senescence, a phenotype conducive to aging and neurodegeneration
and is expressed by the mitochondrion [19–21]. Oxidized lipids in the mitochondrial
membrane are AhR ligands, which in conjunction with senescence-upregulated intracellular
iron, can trigger ferroptosis and organelle demise [131–134]. Indeed, lipid peroxides and
oxysterols, such as 7KCl, are mitoAhR ligands, contributing to mitochondrial dysfunction
and autophagic elimination [135].

AhR is a xenobiotic sensor which regulates cytochrome p450 and binds the environ-
mental toxin, dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin). Other AhR ligands include
somnogens, such as phenazines, melatonin, and tryptophan derivatives, which participate
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in the physiology of sleep, wakefulness, and the circadian rhythm [136–138]. In addition,
reactive oxygen species (ROS), known to induce sleep via a redox-sensitive potassium
channel, are AhR ligands, bringing this transcription factor in the arena of slumber, mental
illness, and neurodegeneration [131,139]. Indeed, microbial phenazines, including py-
ocyanin and 1-hydroxyphenazine, activate AhR, influencing the transcription of many
genes, including those involved in sleep regulation [140,141].

The importance of mitochondria in sleep physiology is further substantiated by the
organelle involvement in FFI, as well as in general anesthesia [142,143]. Indeed, general
anesthetics are known to inhibit N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors while stimulating GABA.
NMDA and AMPA upregulate intracellular and mitochondrial calcium, inducing cell and
organelle demise [144]. Interestingly, elevated mitochondrial calcium, a characteristic of
prion diseases, may link these organelles to FFI [145,146]. Indeed, the prion peptide causes
calcium inflow via L-type calcium channels, triggering neuronal damage and apopto-
sis [147]. In contrast, the typical antipsychotic, chlorpromazine, not only induces sleep,
but also exerts anti-prion properties, probably by promoting autophagy of the misfolded
protein [148–150].

Mitochondrial trafficking from astrocytes to neurons supports neuronal bioenergetic
needs, especially in large pyramidal cells or VENs. Mitochondria can be imported via cell–
cell fusion, tunneling nanotubes (cytoskeletal protrusions reaching to other cells), as well
as transported by extracellular vesicles [151,152] (Figure 2). Moreover, astrocytes generate
GPX-4 from cysteine obtained via the cystine/glutamate antiporter system (Xc−) or by
transmethylation of methionine. Glutathione is generated from cysteine and glutathione
disulfide (GSSC) [153] (Figure 2).

Mitochondrial trafficking as well as autophagy (mitophagy) occur during sleep, prob-
ably explaining the reason most living beings require rest [154]. Interestingly, serotonin
(5-HT) promotes mitochondrial transport in hippocampal neurons, suggesting that antide-
pressant drugs, serotonin reuptake inhibitors (SSRIs), may “exert their action by supplying
healthy mitochondria to stressed neurons [155]. This may imply that ROS accumulation
during wakefulness may induce slumber to repair oxidized lipids and import mitochondria
from glial cells [120,131,139]. In addition, the accumulation of intracellular microtubule-
associated protein tau (MAPT) in VENs likely impairs mitochondrial transport, contributing
to bvFTD pathogenesis [156].

2.1. Mitochondria-Protective Treatments

The key role of mitochondria in sleep disorders, SCZ, SLDs, and neurodegeneration,
highlights the importance of mitoprotective approaches to resuscitate, replace, or increase
the import of mitochondria from glial cells [157]. For example, treatment with SSRIs during
the early stages of dementia may delay the onset of cognitive decline. Along this line, a
recent study found that treatment with SSRIs slowed the conversion of mild cognitive
impairment to frank dementia, suggesting that prophylactic treatment with these agents
may be beneficial [158]. In addition, natural anti-ferroptosis drugs and iron chelators,
such as halogenated phenazines, may improve the course of neurodegenerative disorders,
suggesting novel therapeutic strategies [159,160].

2.2. Membrane Lipid Replacement (MLR)

MLR refers to the oral supplementation with natural cell membrane glycerophos-
pholipids and kaempferol (3,4′,5,7-tetrahydroxyflavone), a natural flavonoid found in
tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries, and grapes [161].
Kaempferol is a glycogen synthase kinase-3β (GSK-3β) inhibitor which prevents sleep
deprivation-induced cognitive decline [162,163]. Like lithium and several antipsychotic
drugs, kaempferol blocks GSK-3β, an enzyme previously implicated in SCZ and circa-
dian rhythm disorders, suggesting that this natural compound may exert antipsychotic
properties without the adverse effects of conventional therapeutics [164–167].
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The aim of MLR + kaempferol is the gradual replacement of damaged phospholipids
and oxysterols from neuronal and/or mitochondrial membranes with natural glycerophos-
pholipids and a polyphenol. Indeed, oxidized membrane lipids have been implicated in
SCZ, SLDs, insomnia, and neurodegeneration, while MLR and kaempferol offer a dual
mechanism of action: (1) elimination of lipid peroxides and (2) GSK-3β inhibition [168].
Replacing oxidized plasma and/or mitochondrial membrane fats with healthy natural
lipids averts deformation of the neuronal membrane and misalignment of neuroreceptors.
Conversely, oxidized membrane lipids and ferroptosis alter the biophysical properties of
membranes, disrupting neuronal functions [169].

2.3. Phenazines and Phenothiazine Derivatives

Several natural phenazines and phenothiazines are neuroprotective, improve sleep,
and delay neurodegenerative processes. For example, geranyl-phenazine is a naural acetyl-
cholinesterase inhibitor which exerts antipsychotic effects via muscarinic receptors. Indeed,
a new class of antipsychotic drugs is currently being developed for SCZ and a patent exists
for treating sleep disorders by upregulating acetylcholine [170–172] (WO2005016327A2).
Other natural phenazines with neuroprotective functions include baraphenazines A–G
fused compounds derived from Streptomyces sp. PU-10A which likely possess antipsy-
chotic properties [173]. Moreover, several natural phenazines, including baraphenazines,
leucanicidin and endophenasides, exert antimicrobial, anticancer activity, and very likely
possess antipsychotic properties [173–175].

Natural antipsychotic and phytotherapeutic compounds are not only devoid of ex-
trapyramidal adverse effects but more accepted by many patients who often dread or
distrust pharmaceuticals.

Synthetic phenazine derivatives consist of over 6000 compounds, exerting antimicro-
bial, antiparasitic, neuroprotective, anti-inflammatory, and anticancer activities [176–178].
To the best of our knowledge, natural or synthetic phenazines have not been tested for SCZ,
insomnia, or neurodegeneration. Pontemazines A and B are neuroprotective phenazine
derivatives that, in animal studies, have rescued hippocampal neurons from glutamate
cytotoxicity, highlighting their pro-cognitive properties which could benefit patients with
negative symptoms of SCZ or neurodegenerative disorders [176].

Synthetic phenazines exert antioxidant and radical-scavenging properties, and inhibit
lipid peroxidation, suggesting beneficial effects in severe insomnia, mental illness and neu-
rodegeneration [179,180] (Figure 3). Moreover, halogenated phenazines act as iron chelators,
likely preventing neuronal ferroptosis [181]. We believe that pontemazines and halogenated
phenazines should be assessed for antipsychotic/anti-neurodegenerative properties.

From the biochemical standpoint, phenazines are almost identical to phenothiazine
antipsychotics and likely possess similar properties (Figure 4). Phenothiazines are typi-
cal antipsychotic drugs utilized primarily for SCZ and SLDs, which block dopaminergic
transmission at the level of postsynaptic neuron. Several phenothiazines influence other
receptors, including adrenergic, histaminergic, and cholinergic, exerting various clinical
effects as well as adverse reactions. Aside from psychotic disorders, phenothiazines are
also used for the treatment of migraine headaches, hiccups, nausea, vomiting, and can-
cer [182]. Like phenazines, phenothiazines intercalate themselves into the lipid bilayer of
plasma and mitochondrial membranes, disrupting the curvature and receptor alignment
on neuronal/mitochondrial surfaces [183] (Figure 3). In contrast, oxidized lipids, including
7-ketocholesterol (7KCl), form looped structures, generating membrane curvatures and
pores that may trigger cell death [184].

Antioxidant phenothiazine and their derivatives have recently been developed for
cancer, cardiovascular disease (CVD), Mycobacterium leprae and other antibiotic-resistant
microbes [185,186].

Phenothiazine derivatives exert anti-peroxidation properties and protect against lipid
pathology and ferroptosis, suggesting efficacy as antipsychotic drugs [187]. In addition,
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antioxidant phenothiazines are likely beneficial for insomnia and neurodegenerative disor-
ders, suggesting that these compounds should be tested for neuropsychiatric pathology [186].
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Propenylphenothiazine is a potent antioxidant with electron-donor capability that
could prevent gray matter loss, a hallmark of SCZ and SLDs [188,189]. Electron-donating
psychotropic drugs have been known to preserve the brain volume, suggesting that
propenylphenothiazine may treat psychosis without reducing the gray matter volume.
The majority of conventional antipsychotic drugs are electron-acceptors which often lower
the brain volume as documented by many neuroimaging studies [190]. An even newer cat-
egory of tetracyclic and pentacyclic phenothiazines with antioxidant properties has recently
been developed, suggesting likely efficacy for cognitive impairment and negative SCZ
symptoms. Moreover, the N10-carbonyl-substituted phenothiazines were demonstrated to
inhibit lipid peroxidation, suggesting superior antipsychotic efficacy [191].

Natural and some synthetic phenazines and novel antioxidant phenothiazines have
not been tested for SCZ, insomnia or neurodegenerative disorders but are likely efficient
somnogens and antipsychotics. For example, synthetic phenazines, known as pontemazines
A and B, rescued hippocampal neurons from glutamate cytotoxicity in rodents, highlight-
ing their pro-cognitive properties which could benefit patients with negative symptoms
of SCZ [192].
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2.4. Natural Antioxidants

SCZ and SLDs have been associated with premature cellular senescence, a phenotype
marked by shortened telomeres, accumulation of macromolecular aggregates, increased
level of senescence-associated β-galactosidase (SA-β-gal) and a detrimental secretome
known as senescence-associated secretory phenotype (SASP).

Natural Antioxidant Foods

Antioxidants are major players in repairing damages to macromolecules, opposing
pathological events associated with cellular senescence (Table 1). Since AhR is the master
regulator of cellular senescence and responds to external pollutants (such as polycyclic
aromatic hydrocarbons (PAHs) as well as internal toxins, including oxidized lipids, antioxi-
dants likely have the opposite effect.

Table 1. SCZ-relevant antioxidants and sources.

Antioxidants Source References

Lycopene Grape skin, guava, grapefruit, blueberries, tomatoes [193]

Apigenin Cabbage, blueberries, acai berries [194]

Phenolic acid Oilseeds, cereals, grains [195]

Curcumin chicken, beef, tofu, vegetables [196]

Epigallocatechin gallate Apples, blackberries, broad beans, cherries, black grapes, pears, raspberries, and chocolate [197]

Berberine Oregon grape, phellodendron, and tree turmeric. [198]

Quercetin Fruits, apples, onions, parsley, sage, tea, and red wine [199]

Kempferol Fruits and vegetables. [200]

Tocopherols Oilseed, cereals, eggs, deary products [201]

2.5. Mitochondrial Transfer and Transplantation

Early studies on mitochondrial transplantation from the 1980s utilized co-incubation
of various cell types with naked mitochondria, hoping that cells would internalize the
organelles from the extracellular environment [202–204]. Later, HeLa cells and mesenchy-
mal stem cells were used as mitochondrial sources and found that successful organelle
uptake occurred in a short time interval of 1–2 h [205–207]. At present, mitochondrial
transplantation into cardiomyocytes has been accomplished successfully and confirmed by
mitochondrial DNA (mtDNA) detected in host cells [208,209].

Mitochondrial transplantation and neuronal rescue from ferroptosis have been per-
formed successfully in both animals and humans, suggesting a novel strategy for neu-
rometabolic disorders [210]. To our knowledge, mitochondrial transplantation has not been
attempted in sleep disorders, while in mental illness, it has been tried in animal models
only [132]. Trafficking mitochondria from astrocytes and microglia to neurons can take
place spontaneously after brain injuries, reflecting a likely compensatory mechanism to
preserve neuronal viability [211]. In addition, it has been established that SSRIs, GJA1-20K,
and CD38 signaling can facilitate mitochondrial transfer, emphasizing potential strategies
for insomnia, severe mental illness, and neurodegeneration [210,211].

3. Conclusions

Forensic detainees with severe mental illness and comorbid insomnia age at an accel-
erated pace, suggesting that premature cellular senescence, a characteristic of SCZ, may
comprise the common pathway where sleep and mental illness intersect. Loss of neurons
due to impaired sleep may trigger the premature development of dementia and other
age-related conditions, known to occur earlier in life compared to the general population.
These comorbidities increase healthcare expenditures and shorten patients’ lifespan; thus,
identifying and treating these conditions early is crucial.
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YOD, a category of neurodegenerative disorders which include bvFTD, has been on
the rise over the past few decades, as evidenced by the increased number of first offenders
before the age of 65. Selective loss of VENs in bvFTD is likely due to the large size of these
cells, predisposed to peroxidation of plasma membrane lipids and mitochondrial loss by
dysfunctional autophagy.

At the molecular level, AhR is the equivalent of VENs, as this protein responds to
both endogenous and exogenous ligands, including lipid peroxides and other insomnia
and psychosis-related molecules.

Antioxidants and phenazine and phenothiazine derivatives are AhR ligands, high-
lighting potential natural treatment strategies against psychosis, insomnia, and neurode-
generation.

Author Contributions: Conceptualization, A.S. and P.G.B.; methodology, N.J.; validation, K.A.T. and
I.A.O.; writing—review and editing, P.G.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sateia, M.J.; Doghramji, K.; Hauri, P.J.; Morin, C.M. Evaluation of chronic insomnia. An American Academy of Sleep Medicine

review. Sleep 2000, 23, 243–308. [CrossRef]
2. Dewa, L.H.; Thibaut, B.; Pattison, N.; Campbell, S.J.; Woodcock, T.; Aylin, P.; Archer, S. Treating insomnia in people who are

incarcerated: A feasibility study of a multi-component treatment pathway. Sleep Adv. 2024, 5, zpae003. [CrossRef]
3. Talih, F.; Ajaltouni, J.; Ghandour, H.; Abu-Mohammad, A.S.; Kobeissy, F. Insomnia in hospitalized psychiatric patients: Prevalence

and associated factors. Neuropsychiatr. Dis. Treat. 2018, 14, 969–975. [CrossRef]
4. Levichkina, E.V.; Busygina, I.I.; Pigareva, M.L.; Pigarev, I.N. The Mysterious Island: Insula and Its Dual Function in Sleep and

Wakefulness. Front. Syst. Neurosci. 2021, 14, 592660. [CrossRef] [PubMed]
5. Xu, H.; Shen, H.; Wang, L.; Zhong, Q.; Lei, Y.; Yang, L.; Zeng, L.L.; Zhou, Z.; Hu, D.; Yang, Z. Impact of 36 h of total sleep

depri-vation on resting-state dynamic functional connectivity. Brain Res. 2018, 1688, 22–32. [CrossRef] [PubMed]
6. Wylie, K.P.; Tregellas, J.R. The role of the insula in schizophrenia. Schizophr. Res. 2010, 123, 93–104. [CrossRef] [PubMed]
7. Fathy, Y.Y.; Hoogers, S.E.; Berendse, H.W.; van der Werf, Y.D.; Visser, P.J.; de Jong, F.J.; van de Berg, W.D. Differential insular

cortex sub-regional atrophy in neurodegenerative diseases: A systematic review and meta-analysis. Brain Imaging Behav. 2019, 14,
2799–2816. [CrossRef] [PubMed]

8. Koutsouleris, N.; Pantelis, C.; Velakoulis, D.; McGuire, P.; Dwyer, D.B.; Urquijo-Castro, M.-F.; Paul, R.; Dong, S.; Popovic, D.;
Oeztuerk, O.; et al. Exploring Links Between Psychosis and Frontotemporal Dementia Using Multimodal Machine Learning:
Dementia Praecox Revisited. JAMA Psychiatry 2022, 79, 907–919. [CrossRef]

9. Triarhou, L.C. The percipient observations of Constantin von Economo on encephalitis lethargica and sleep disruption and their
lasting impact on contemporary sleep research. Brain Res. Bull. 2006, 69, 244–258. [CrossRef]

10. Allman, J.M.; Tetreault, N.A.; Hakeem, A.Y.; Manaye, K.F.; Semendeferi, K.; Erwin, J.M.; Park, S.; Goubert, V.; Hof, P.R. The von
Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct. Funct. 2010, 214, 495–517.
[CrossRef]

11. Berg, M.T.; Rogers, E.M.; Lei, M.-K.; Simons, R.L. Losing Years Doing Time: Incarceration Exposure and Accelerated Biological
Aging among African American Adults. J. Health Soc. Behav. 2021, 62, 460–476. [CrossRef]

12. Kaiksow, F.A.; Brown, L.; Merss, K.B. Caring for the Rapidly Aging Incarcerated Population: The Role of Policy. J. Gerontol. Nurs.
2023, 49, 7–11. [CrossRef] [PubMed]

13. Papanastasiou, E.; Gaughran, F.; Smith, S. Schizophrenia as segmental progeria. J. R. Soc. Med. 2011, 104, 475–484. [CrossRef]
[PubMed]

14. Killilea, D.W.; Wong, S.L.; Cahaya, H.S.; Atamna, H.; Ames, B.N. Iron accumulation during cellular senescence. Ann. N. Y. Acad.
Sci. 2004, 1019, 365–367. [CrossRef] [PubMed]

15. Urrutia, P.J.; Mena, N.P.; Núñez, M.T. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation
during the execution step of neurodegenerative disorders. Front. Pharmacol. 2014, 5, 38. [CrossRef] [PubMed]

https://doi.org/10.1093/sleep/23.2.1l
https://doi.org/10.1093/sleepadvances/zpae003
https://doi.org/10.2147/NDT.S160742
https://doi.org/10.3389/fnsys.2020.592660
https://www.ncbi.nlm.nih.gov/pubmed/33643002
https://doi.org/10.1016/j.brainres.2017.11.011
https://www.ncbi.nlm.nih.gov/pubmed/29174693
https://doi.org/10.1016/j.schres.2010.08.027
https://www.ncbi.nlm.nih.gov/pubmed/20832997
https://doi.org/10.1007/s11682-019-00099-3
https://www.ncbi.nlm.nih.gov/pubmed/31011951
https://doi.org/10.1001/jamapsychiatry.2022.2075
https://doi.org/10.1016/j.brainresbull.2006.02.002
https://doi.org/10.1007/s00429-010-0254-0
https://doi.org/10.1177/00221465211052568
https://doi.org/10.3928/00989134-20230209-02
https://www.ncbi.nlm.nih.gov/pubmed/36852988
https://doi.org/10.1258/jrsm.2011.110051
https://www.ncbi.nlm.nih.gov/pubmed/22048679
https://doi.org/10.1196/annals.1297.063
https://www.ncbi.nlm.nih.gov/pubmed/15247045
https://doi.org/10.3389/fphar.2014.00038
https://www.ncbi.nlm.nih.gov/pubmed/24653700


J. Clin. Med. 2024, 13, 1691 12 of 19

16. Carvalhas-Almeida, C.; Cavadas, C.; Álvaro, A.R. The impact of insomnia on frailty and the hallmarks of aging. Aging Clin. Exp.
Res. 2022, 35, 253–269. [CrossRef] [PubMed]

17. Carroll, J.E.; Prather, A.A. Sleep and biological aging: A short review. Curr. Opin. Endocr. Metab. Res. 2021, 18, 159–164. [CrossRef]
[PubMed]
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