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Abstract: To improve the accuracy of detecting soil total nitrogen (STN) content by an artificial
olfactory system, this paper proposes a multi-feature optimization method for soil total nitrogen
content based on an artificial olfactory system. Ten different metal–oxide semiconductor gas sensors
were selected to form a sensor array to collect soil gas and generate response curves. Additionally,
six features such as the response area, maximum value, average differential coefficient, standard
deviation value, average value, and 15th-second transient value of each sensor response curve were
extracted to construct an artificial olfactory feature space (10× 6). Moreover, the relationship between
feature space and soil total nitrogen content was used to establish backpropagation neural network
(BPNN), extreme learning machine (ELM), and partial least squares regression (PLSR) models were
used, and the coefficient of determination (R2), root mean square error (RMSE), and the ratio of
performance to deviation (RPD) were selected as prediction performance indicators. The Monte
Carlo cross-validation (MCCV) and K-means improved leave-one-out cross-validation (K-means
LOOCV) were adopted to identify and remove abnormal samples in the feature space and establish
the BPNN model, respectively. There were significant improvements before and after comparing the
two rejection methods, among which the MCCV rejection method was superior, where values for
R2, RMSE, and RPD were 0.75671, 0.33517, and 1.7938, respectively. After removing the abnormal
samples, the soil samples were then subjected to feature-optimized dimensionality reduction using
principal component analysis (PCA) and genetic algorithm-based optimization backpropagation
neural network (GA-BP). The test results showed that after feature optimization the model indicators
performed better than those of the unoptimized model, and the PLSR model with GA-BP for feature
optimization had the best prediction effect, with an R2 value of 0.93848, RPD value of 3.5666, and
RMSE value of 0.16857 in the test set. R2 and RPD values improved by 14.01% and 50.60%, respectively,
compared with those before optimization, and RMSE value decreased by 45.16%, which effectively
improved the accuracy of the artificial olfactory system in detecting soil total nitrogen content and
could achieve more accurate quantitative prediction of soil total nitrogen content.

Keywords: soil total nitrogen; thermal cracking; artificial olfactory system; abnormal sample removal;
feature optimization

1. Introduction

The sum of the various forms of nitrogen in the soil is called soil total nitrogen (STN).
For arable soils, fertilization systems, crop rotations and utilization patterns all have a
strong influence on the total soil nitrogen content. Moreover, it is an essential indicator for
maintaining crop yield and plays a vital role in crop development and agroecosystems [1–3].
In precision agriculture, obtaining information on dynamic changes is important to improve
nitrogen fertilizer utilization and cropping patterns [4,5]. Therefore, it is of significance to
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improve the accuracy of measuring soil total nitrogen content and to obtain information on
soil total nitrogen more rapidly and accurately [6].

Kjeldahl and Dumas combustion methods are the classical methods for the determina-
tion of total soil nitrogen, which have high measurement accuracy but are time-consuming
and laborious, and the chemical reagents used are prone to secondary contamination. Ele-
mental analyzers based on the Dumas combustion method are fast, but expensive, require
high-precision analytical balances, and the copper powder normally required for the reduc-
tion reaction is environmentally hazardous. In recent years, soil total nitrogen detection
methods based on remote sensing technology and spectral analysis have received attention
from many scholars because of their advantages of being non-destructive, accurate, and
efficient. Zhang et al. [7] used the CASI-1500 aerial hyperspectral imaging system to capture
soil spectral information and three models to predict total nitrogen values in black soils,
demonstrating that hyperspectral remote sensing is an efficient method for soil nutrient
content estimation. Li et al. [8] applied hyperspectral techniques to extract characteristic
wavelengths using an uninformative variable elimination algorithm (UVE) and successive
projection algorithm (SPA), and then combined partial least squares (PLS) and extreme
learning machine (ELM) to build a soil total nitrogen prediction model, achieving better
prediction results. Although these methods compensate for the shortcomings of classical
methods to a certain extent, the high cost of analytical instruments, the influence of the
atmosphere, and iron–oxide in the soil severely limit their application [9].

Thermal cracking can crack large molecule compounds into volatile small-molecule
gas compounds, and using gas sensor arrays to obtain cracking gas information, the
artificial olfactory system can achieve detection of soil total nitrogen content. This method
has the advantages of being convenient, fast, and inexpensive, while the gas sensors
are inexpensive and reusable. However, redundant samples and dimensional disasters
reduce machine learning efficiency, pattern recognition accuracy, and data mining efficiency,
and increase the workload of experiments to some extent [10]. Shi et al. [11] used various
methods to reject abnormal samples for NIR light detection to improve the model prediction
performance; Ji Ma et al. [12] studied the introduction of principal component analysis
algorithm for dimensionality reduction to reduce the difficulty of deep learning in extracting
image features and verified its feasibility with simulation experiments. Xu K et al. [13] used
mean analysis, coefficient of variation analysis, cluster analysis and correlation analysis to
obtain the feature matrix of the optimized electronic nose to detect hickory, and PLSR and
backpropagation neural network (BPNN) to build a regression model to obtain evidence
that the optimized method improved the performance of the electronic nose and reduced
the dimensionality of the data. Vung Pham et al. [14] proposed an interactive visualization
method for portable X-ray fluorescence (pXRF) data analysis of soil profiles and innovated
a model RDNet to achieve accurate results for predicting pHH2O and pHKCl . Antonios
Morellos et al. [15] compared the predictive performance of two linear multivariate methods
(principal component regression and partial least squares regression) and two machine
learning methods (least squares support vector machines and Cubist) for total soil nitrogen,
organic carbon, and moisture, based on near-infrared spectral data collected from 140 soil
samples. For purposes of solving the above problems, this paper explores the performance
improvement of a thermal cracking and manual olfactory system-based method for the
determination of total soil nitrogen, using coefficient of determination (R2), root mean
square error (RMSE), and the ratio of performance to deviation (RPD) as measures in
the test set. The first stage of optimization (abnormal sample rejection) was to identify
abnormal samples in the dataset by comparing the Monte Carlo cross-validation (MCCV)
method with the K-means improved leave-one-out cross-validation (K-means LOOCV)
method. The better rejection method is selected by comparing the performance of the
BPNN model before and after the rejection of these abnormal samples. In the second stage
of optimization (feature dimensionality reduction), soil olfaction spatial dimensionality
reduction was performed using principal component analysis (PCA) and genetic algorithm-
based optimization backpropagation neural network (GA-BP) methods, and BPNN, ELM,
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and partial least squares (PLSR) were established. The experimental results showed the
method proposed in this study (MCCV + GA-BP) could effectively improve the performance
index of the artificial olfaction system for detecting STN.

2. Materials and Methods
2.1. Study Area and Soil Samples

The study area is located in northeastern China, as shown in Figure 1 (44◦50′ N,
121◦38′ E, 46◦19′ N, 131◦19′ E), with a sampling area of 187,400 km2, in a temperate con-
tinental monsoon climate with an average annual temperature of 5.1 ◦C, average annual
rainfall of 400–600 mm, and one of the world’s three prime maize belts, which is an im-
portant grain-producing area. It is one of the most important grain-producing regions in
China. The main soil types in the region include dark brown loam, black calcium soil,
white pulp soil, herbaceous soil, and black soil, and is one of the major production areas
of maize and rice in China. Due to the crop rotation pattern and improper fertilization,
the total nitrogen content of the soil has decreased, thus this study aims to help optimize
fertilization to improve the soil nutrient content structure and protect the black soil.
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Figure 1. Study area and sampling locations.

Soil sampling was conducted from 1 September to 20 October 2020. Based on the
land-use status, topographic features, etc., and considering the principles of randomness
and representativeness, a total of 121 sampling points were selected, as shown in Figure 1.
The latitude and longitude information of the sampling points were recorded by GPS, and
soil was collected at a depth of 0–20 cm with a soil extractor [16], and stones, plant debris,
and roots were removed from the soil. The collected samples were placed in self-sealing
bags and brought back to the laboratory for processing. The samples were divided into two
parts, one part used the Kjeldahl method to measure the STN content in the soil, where the
samples were then naturally dried at 25 ◦C, crushed, placed through a 0.2 mm nylon sieve
to filter out impurities, bagged and set aside. The whole nitrogen content was obtained as
the actual value by this method. The other part was used for measuring STN content with
an artificial olfactory system, and no special treatment was required for the samples.

2.2. Research on Artificial Olfactory System

The artificial olfactory system is divided into three main parts [17]. In the first part,
sample preparation; in the second part, detection system; and in the third part, data
processing system. Figure 2 shows the hardware components of the detection system which
mainly includes the muffle furnace, gas sensor array, reaction chamber, valve, gas pump
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(for cleaning the reaction chamber), signal processing module, data acquisition card, and
computer. The muffle furnace, manufactured by Thermo Scientific Lindberg, USA, is used
here for cracking large molecular compounds in soil. The gas sensor array is located in
the reaction chamber and communicates with the signal processing module through the
flexible flat cable (FFC). The data acquisition card connects to the signal processing module
through a DuPont cable and transfers the acquired data to the computer via USB for display
and storage. Power is supplied to the signal processing module by a 12 V power adapter.
Among them, the gas sensor array is the basis of the detection system, as shown in Table 1,
this study uses MOS sensors produced by Figaro Japan specifically for high-precision
detection of low concentration gases. This sensor array has a high specificity and some
cross-sensitivity, which improves the accuracy compared to a single type of sensor array.
The signal processing module is used to power the sensor array and the measurement
circuit output. A USB-6210 acquisition card from National Instruments (NI) was used to
acquire the gas sensor array response data.
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Figure 2. Thermal cracking-based artificial olfactory system for soil total nitrogen detection system.
1. Gas sensor array 2. Vacuum flange 3. Vacuum pump 4. PWN module 5. 12V power supply 6. Gas
chamber 7. Signal processing circuit 8. NI data acquisition card 9. Muffle furnace 10. Computer.

Table 1. Sensor Type Table.

Sensor Type Detection of Gas Types Measurement Range

TGS826 Ammonia 30–300 ppm
TGS2602 Toluene, ammonia, hydrogen sulfide 1–30 ppm
TGS2610 Tropane, butane 500–10,000 ppm
TGS2620 Ethanol, organic solvent 50–5000 ppm
TGS821 Hydrogen 100–1000 ppm

TGS2603 Trimethylamine, methyl mercaptan, etc. 1–10 ppm
TGS2611 Methane, natural gas 500–10,000 ppm
TGS823 Methane, ethanol vapor 50–300 ppm

TGS2600 Hydrogen, alcohol, etc. 1–30 ppm
TGS2612 methane, propane, isobutane 3000–9000 ppm

Upon starting the system, 3 g of soil sample was weighed with an electronic scale and
placed inside a quartz boat, which was placed in the middle of the quartz tube and sealed
with vacuum flanges at both ends. The lysis temperature and time were 450 ◦C and 2 min,
respectively [18]. First, the flanges on both sides were opened and the vacuum pump fed
completed soil gas from the cracking into the response chamber while the detection started.
The sampling time was 80 s, and the sensor array converted the soil gas information into a
voltage signal through a signal processing circuit to generate a soil sample response curve.
After the test was completed, the air chamber was cleaned with 1200 mL·min−1 clean air,
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quartz boat and quartz tube were washed with water, and the two sampling intervals were
5 min. The test was completed sequentially according to the soil sample number.

2.3. Feature Extraction

The obtained ten response curves of soil samples were first processed by Savitzky-
Golay convolution filtering to extract six characteristic values of response area (VRAV),
mean differential coefficient (VMDC), standard deviation value (VSDV), mean value (VMV)
maximum value (VMAX), and 15th s transient value (V15TH) on the sensor response curve.
There was a total of 60 features per soil sample. Since the different magnitudes of the
data are not conducive to model building, the z-score method was chosen to complete the
standardization of the data. VRAV , VMDC, VSDC, VMV were defined as follows:

VRAV = ∑N
i=1 Xi∆t (1)

VMDC =
1

N − 1∑N−1
i=1

Xi+1 − Xi

∆t
(2)

VSDV =

√
∑N

i=1(Xi −VMV)
2

N
(3)

VMV =
∑N

i=1 Xi

N
(4)

where Xi is the i-th data collected by the sensor, ∆t is the time interval between 2 adjacent
sampling points, taken as 0.1 s, and N the total number of collected data.

2.4. Training Set and Test Set Division

For purposes of finding the optimal adjustment parameters, preventing the phe-
nomenon of “overfitting”, and improving the generalization ability of the model, the data
set was randomly divided according to the Kennard-Stone method in the ratio of 7:3, i.e.,
the training set was 85 and the test set was 36. Table 2 illustrates the statistical results of
the STN content of the samples measured by the Kjeldahl method. The variance and mean
values were 0.60 g·kg−1 and 1.64 g·kg−1 for the test set and 0.51 g·kg−1 and 1.56 g·kg−1 for
the verification set, respectively, which can be approximated to show there is no significant
difference between the two.

Table 2. Organic matter concentrations in soil samples.

Dataset STN (g kg−1) Mean Values (g kg−1) Variance (g kg−1)

Training set

1.42, 1.65, 1.81, 1.39, 1.38, 1.75, 1.17, 1.25, 0.84, 1.46,
1.38, 1.80, 1.64, 1.27, 1.33, 0.20, 1.85, 1.5, 2.18,

1.90, 2.38, 0.52, 1.29, 0.36, 1.35, 2.18, 1.15, 0.93, 2.02,
0.35, 1.51, 2.14, 1.73, 1.56, 1.32, 1.66, 1.57,

1.40, 1.34, 1.18, 0.68, 1.26, 1.14, 0.92, 0.64, 1.09, 1.83,
0.72, 1.52, 1.24, 1.93, 1.76, 2.12, 1.94, 1.92, 0.47,

1.69, 1.97, 0.95, 1.22, 1.84, 2.33, 2.13, 1.08, 2.35, 4.10,
1.47, 0.78, 1.07, 2.03, 2.31, 1.28, 2.37, 1.78, 1.70,

1.10, 1.53, 2.79, 3.95, 3.75, 1.41, 3.07, 1.30, 1.20, 0.46

1.56 0.51

Test set

1.95, 1.98, 1.16, 3.57, 1.53, 1.45, 3.98, 0.98, 2.44, 1.06,
0.94, 0.90, 1.52, 1.23, 1.68, 2.22, 0.91, 1.37,

2.17, 1.21, 1.96, 0.69, 1.54, 0.85, 1.48, 1.30, 1.40, 0.53,
2.39, 1.34, 2.59, 1.60, 0.96, 2.95, 1.31, 2.16

1.64 0.60

2.5. Sensor Array for Full Nitrogen Feature Space Response

In sequence to verify whether the sensor array composition was reasonable, fracking
gas data were selected with a whole nitrogen content of 0.2 mg·kg−1 and 4.10 mg·kg−1,
respectively, and Figure 3 was obtained. As shown in the figure, each sensor showed a
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large difference in response to different soil gases simultaneously, indicating that the array
has good sensitivity to the difference in fracking gases. The response results indicate that
the selected sensor array is reasonable.

Agriculture 2022, 12, x FOR PEER REVIEW 6 of 18 
 

 

1.40, 1.34, 1.18, 0.68, 1.26, 1.14, 0.92, 0.64, 1.09, 1.83, 0.72, 1.52, 1.24, 1.93, 
1.76, 2.12, 1.94, 1.92, 0.47,  

1.69, 1.97, 0.95, 1.22, 1.84, 2.33, 2.13, 1.08, 2.35, 4.10, 1.47, 0.78, 1.07, 2.03, 
2.31, 1.28, 2.37, 1.78, 1.70,  

1.10, 1.53, 2.79, 3.95, 3.75, 1.41, 3.07, 1.30, 1.20, 0.46 

Test set 

1.95, 1.98, 1.16, 3.57, 1.53, 1.45, 3.98, 0.98, 2.44, 1.06, 0.94, 0.90, 1.52, 1.23, 
1.68, 2.22, 0.91, 1.37,  

2.17, 1.21, 1.96, 0.69, 1.54, 0.85, 1.48, 1.30, 1.40, 0.53, 2.39, 1.34, 2.59, 1.60, 
0.96, 2.95, 1.31, 2.16 

1.64 0.60 

2.5. Sensor Array for Full Nitrogen Feature Space Response 
In sequence to verify whether the sensor array composition was reasonable, fracking 

gas data were selected with a whole nitrogen content of 0.2 mg·kg−1 and 4.10 mg·kg−1, re-
spectively, and Figure 3 was obtained. As shown in the figure, each sensor showed a large 
difference in response to different soil gases simultaneously, indicating that the array has 
good sensitivity to the difference in fracking gases. The response results indicate that the 
selected sensor array is reasonable. 

 
Figure 3. Sensor response curves: (a) 0.2 g·kg−1 soil sample; (b) 4.1 g·kg−1 soil sample. 

2.6. Multi-Feature Optimization Methods and Pattern Recognition Prediction Models 
2.6.1. Abnormal Sample Removal Method 

The main reasons for generating abnormal samples are the design error of the artifi-
cial olfactory system itself, complexity of the samples, and instability of the instrument 
state [19]. In the modeling process, these abnormal samples heavily interfere with the pre-
diction performance of the model, thus this study explores MCCV and K-means LOOCV 
to discriminate and remove abnormal samples of the system, respectively, and aims to 
obtain the best abnormal sample removal method for the detection method of the artificial 
olfactory system according to the comparison of the performance prediction index of the 
processed BPNN model. 

2.6.2. Monte Carlo Cross Validation Method 
Monte Carlo cross-validation (MCCV) is a hypothesis-based method [20,21]. In this 

study, the MCCV method is used to discriminate abnormal samples in the olfactory fea-
ture space. Firstly, 70% of samples are randomly selected on the training set for the con-
struction of BPNN models, and the remaining 30% are predicted; then the above process 
is repeated to construct multiple BPNN models; finally, each model is ranked in ascending 
order according to the sum of squared residuals (PRESS) of the test set, and the cumulative 

Figure 3. Sensor response curves: (a) 0.2 g·kg−1 soil sample; (b) 4.1 g·kg−1 soil sample.

2.6. Multi-Feature Optimization Methods and Pattern Recognition Prediction Models
2.6.1. Abnormal Sample Removal Method

The main reasons for generating abnormal samples are the design error of the artificial
olfactory system itself, complexity of the samples, and instability of the instrument state [19].
In the modeling process, these abnormal samples heavily interfere with the prediction
performance of the model, thus this study explores MCCV and K-means LOOCV to
discriminate and remove abnormal samples of the system, respectively, and aims to obtain
the best abnormal sample removal method for the detection method of the artificial olfactory
system according to the comparison of the performance prediction index of the processed
BPNN model.

2.6.2. Monte Carlo Cross Validation Method

Monte Carlo cross-validation (MCCV) is a hypothesis-based method [20,21]. In this
study, the MCCV method is used to discriminate abnormal samples in the olfactory feature
space. Firstly, 70% of samples are randomly selected on the training set for the construction
of BPNN models, and the remaining 30% are predicted; then the above process is repeated
to construct multiple BPNN models; finally, each model is ranked in ascending order
according to the sum of squared residuals (PRESS) of the test set, and the cumulative
probability ( fac) to determine abnormal samples. The definitions of PRESS and fac are
as follows:

PRESS = ∑k
i=1 (ŷi − yi)

2 (5)

fac(m, n) = 100×∑N
n=1 fmn/121 (6)

where (5) equation k is the number of predicted samples, ŷi and yi represent the predicted
and observed values of the i-th sample; (6) equation m is the sample ordinal number and
n is the sorted model ordinal number, fmn indicates whether sample m appears in the
calibration set of model n, and is 1 if it appears, and 0 otherwise, N represents the total
number of samples (121 in this study).

By definition, the change of fac with model ordinal number will reflect the probability
of each sample in the model, since the model has been sorted by PRESS value. As the
model ordinal number increases, the normal fac will remain at about 70% of the sampling
rate, and conversely, the abnormal sample will deviate from the normal sample.
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2.6.3. K-Means LOOCV Cross Validation

Leave-one-out cross-validation (LOOCV) treats each sample as an abnormal sample
and obtains a prediction model with the same number of samples by training modeling one
by one, which is a computationally intensive process [22]. K-means LOOCV is perfection of
LOOCV in abnormal sample identification which is time-consuming and has the deficiency
of misclassification. The olfactory space is clustered based on the K-means clustering
method, and the number of clusters is set. Subsequently, the test set is screened, and based
on the principle that normal samples are more concentrated while abnormal samples are
more discrete, the classes with fewer samples in the clustering are taken as suspicious
abnormal samples. To construct the prediction model, the remaining samples with the
suspicious abnormal samples removed are used as the training set, and a BPNN prediction
model is trained with this. The LOOCV step is then bridged to reduce the time to train the
model. The steps of the K-means LOOCV method are as follows:

(1) Spatial clustering of soil olfaction based on K-means clustering with a set number
of clusters.

(2) The classes with fewer samples in the clustering are treated as suspect samples and
used as the test set for the BPNN model.

(3) The remaining samples with suspected anomalies removed are taken as the training
set and used to train a BPNN prediction model.

(4) The input prediction of the test set with the trained model gives the corresponding
prediction results and the relative error δ between the predicted and measured values
is calculated.

(5) Set the threshold value. If the value is greater than the threshold, it is considered an
abnormal sample, otherwise it is considered a normal sample.

2.7. Feature Dimensionality Reduction Methods
2.7.1. Principal Component Analysis

Principal component analysis (PCA) is a mathematical dimensionality reduction
method [23–26]. The covariance matrix of the olfactory space is first calculated, followed
by finding the eigenvalues of the covariance matrix and their corresponding eigenvectors,
and ranking the eigenvectors according to the magnitude of the eigenvalues to obtain the
eigenvector matrix; the first k (1 ≤ k < 60) vectors of the eigenvector matrix are selected,
and the original olfactory space is reduced to k dimensions. The selection of its k can be
determined by the cumulative contribution of variance information G(k) in Equation (8).
As in Equation (7), let the variance contribution rate be pi and γj denote the i-th (i < k) and
j-th (j < 60) sorted eigenvalues, respectively.

pi = γi/∑60
j γj (7)

G(k) = ∑k
i=1 pi (8)

2.7.2. GA-BP Optimization

In order to ensure the validity of soil olfactory feature space information to a greater ex-
tent, the genetic algorithm-backpropagation neural network (GA-BP) optimization method
is used in soil total nitrogen detection. The process is shown in Figure 4. A total of
30 samples are randomly selected to form a population, the dimension of the original
olfactory space is 60 in line with the chromosome coding length, the coding is binary, and a
feature vector corresponds to one gene on the chromosome. If the value of the gene is 1, it
will participate in BPNN modeling, and vice versa, if the gene is 0, the feature vector will
not participate in modeling. The feature vector corresponding to the genetic individual is
selected to build the BPNN model, and the model is trained with the data in the training
set, and the inverse of the sum of squares of the errors in the test set data is used as the
fitness function. Assuming g(x) is the fitness function, ŷi is the predicted value of the BPNN
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model for the i-th sample in the test set, and yi is the observed value of the i-th sample in
the test set, then it can be expressed as follows:

g(x) =
1

∑n
i=1(ŷi − yi)

2 (9)

First determine whether the parameters of the feature vector satisfy the losing con-
dition. If it satisfies then output the preferred feature vector and end the run; otherwise,
perform the operations of genetic algorithm such as selection, crossover, mutation, and
generation of new populations [27,28], and then repeat the above steps until the output
condition is satisfied.
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2.8. Pattern Recognition Prediction Model for Artificial Olfactory System
2.8.1. BPNN Prediction Algorithm

Backpropagation neural network (BPNN) belongs to multilayer feedforward neural
networks, which have the advantages of simple structure and strong nonlinear mapping
capability [29,30]. According to Kolmogorov theory, a three-layer network containing one
hidden layer can approximate any nonlinear function [31]. This paper is based on the neural
network toolbox in MATLAB (2019a) software, which is a mathematical software produced
by MathWorks, based in Natick, MA, USA. The BPNN is first created by selecting the linear
transfer function as the output layer function and the logarithmic transfer function as the
hidden layer function. The number of nodes H in the hidden layer is too large or too small
for the model. The approximate range can be obtained from the empirical Equation (10),
and the optimal number of hidden layers can be obtained by combining the modeling
metrics. The BPNN created to predict the total nitrogen content of the soil was trained for
1000 iterations with a learning rate of 0.001 and a convergence condition of 0.00004. The
optimal number of implicit layer nodes for direct modelling was determined to be 8 based
on the number of model input and output nodes and the RMSE.

H =
√

m + n + α (10)
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where α is the regulation constant between 1 and 10, and m and n are the number of input
and output nodes, respectively.

2.8.2. ELM Prediction Model

Extreme learning machine (ELM) is a special feedforward neural network developed
on the basis of single implicit layer feedforward neural network [32]. Unlike the traditional
feedforward neural network based on the gradient descent method, the modeling process
randomly generates the connection weights between the input layer and the hidden layer
and the thresholds of the neurons in the hidden layer, and there is no necessity to adjust the
training process, only the number of hidden nodes needs to be set, which transforms the
problem of finding the optimal solution into a simple least-squares problem, which is not
easy to fall into the local minima and has good generalization ability. The selection of the
implicit function must be integrated with the prediction correctness of the test set to make
an appropriate choice. The elmtrain function is used to create and train the ELM model.
TYPE in the function is selected as 0, indicating regression fitting, the activation function
is selected as sigmoid, and the elmpredict function is used for the predicted output of the
model, which is set to be consistent with the elmtrain parameters.

2.8.3. PLSR Prediction Model

Partial least squares regression (PLSR) is a regression modeling method of multiple
dependent variables on multiple independent variables in which the regression process is
built by extracting the principal components of the dependent and independent variables
as much as possible and by maximizing the correlation between the principal components
extracted from them, respectively [33]. In the modeling process, linear regression models
are constructed by finding predictor variables and observable variables in a new space
instead of finding the hyperplane of maximum variance between the response and inde-
pendent variables. PLSR extracts the principal components from the variables to reduce
the predictor variable covariance of the sample while addressing the problem of excess
predictor variables.

2.8.4. Model Evaluation Metrics

Given objective evaluation of the advantages and disadvantages of various pretreat-
ment methods, this study compares before and after treatment and for which model
optimization is better, the R2, RMSE, and RPD indicators are introduced for the evaluation
of soil property prediction models [34–36]. R2 is generally used to evaluate the prediction
accuracy of a model, and a value closer to 1 indicates stronger prediction ability of the
model. RPD can be used to further evaluate the prediction effectiveness and accuracy of the
model, which can compensate for the shortcomings of R2 for nonlinear model prediction.
When RPD is less than 1.5 and R2 is less than 0.5, the model is not available; when RPD is
1.5–2.0 and R2 is 0.5–0.66, it can be used to distinguish between high and low values; when
RPD is 2.0–2.5 and R2 is 0.67–0.81, the model can be used to make a rough quantitative
prediction; when RPD is 2.5–3.0 and R2 is 0.82–0.90, the model can make good quantitative
predictions, and when the RPD is greater than 3.0 and R2 is greater than 0.90, the model
can make excellent predictions [37]. The formula is as follows:

R2 =

{
∑n

i=1

(
fi − 1

n ∑n
i=1 fi

)(
yi − 1

n ∑n
i=1 yi

)}2

∑n
i=1

(
fi − 1

n ∑n
i=1 fi

)2
∑n

i=1

(
yi − 1

n ∑n
i=1 yi

)2 (11)

RMSE =

√
1
n

n

∑
i=1

( fi − yi)
2 (12)

RPD = SD/RMSE =

√
∑n

i=1

(
yi −

1
n∑n

i=1 yi

)2
/∑n

i=1( fi − yi)
2 (13)
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where n is the number of samples, yi is the observed value of the i-th sample, fi is the
predicted value of the i-th sample, and SD is the standard deviation of yi.

3. Results and Discussion
3.1. Preliminary Modeling Results

The initial modeling refers to the development of an evaluation prediction model based
on the training set (121 samples × 60 features) of the initial soil total nitrogen feature space
(ISTNFS) and the chemically true values of the total nitrogen content of the corresponding
soil samples, and the application of a test set to validate the prediction performance
of the model. The test set performance metrics of the three prediction models without
optimization treatment are obtained to facilitate the next comparison. To optimize the effect
for general applicability, this study investigated the relationship between soil olfactory
characteristics and soil total nitrogen content through the initial modeling calibration effect
of three commonly used prediction models for soil olfactory characteristics, BPNN model,
ELM model, and PLSR model.

The BPNN prediction model was constructed based on ISTNFS using H as 8 and pre-
dicted in the test set. Figure 5a shows the prediction results of R2

V = 0.62413, RMSEV = 0.52902,
and RPDV = 1.3762 for the test set. Based on the classification of soil properties RPD, the
model RPDV < 1.5 and the model is not available. The implied layer neurons were set to 20,
and the results are shown in Figure 5b, 1.5 < RPDV < 2.0, the model can only be used to
distinguish between high and low values. Six pairs of principal component factors were
preferably selected to construct the PLSR prediction model and predicted on the test set,
and the prediction results can be obtained from Figure 5c, R2

V = 0.82309, RMSEV = 0.30742,
RPDV = 2.3682. Since 2.0 < RPDV < 2.5, the constructed PLSR model can be used for coarse
quantitative prediction.
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model prediction result.

The preliminary modeling results showed that all three assessment models, BPNN,
ELM, and PLSR, had some predictive ability of soil total nitrogen content with R2

V greater
than 0.5 for the test set. This indicates that there is some correlation between ISTNFS and
soil total nitrogen content. However, ISTNFS was not fully optimized, therefore further
analysis is needed to determine whether other interferences exist.

3.2. Abnormal Sample Rejection Results

To eliminate the influence of abnormal samples on the later model prediction effect,
the soil total nitrogen feature space data included a total of 121 samples. In this study,
two different abnormal sample identification methods, MCCV and K-means LOOCV, were
used to detect the abnormal samples within the soil total nitrogen feature space.
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In the process of identifying abnormal samples in the soil olfactory feature space
using the MCCV method, 85 (121 × 70%) samples were first randomly selected from the
feature space to construct 1000 BPNN models, and the remaining 36 samples were used
for prediction. Figure 6 shows the variation curve of the value of fac for each sample with
the model number after sorting, and the inset of the figure shows the fac for each sample
of the 121 models. It can be seen from the figure that as the number of models increases
(i.e., as PRESS increases), the fac converges to a sampling rate of 70% for each sample in the
training set, but the fac curves for samples 6, 23, 38, 86, 91, and 93 are somewhat different
from the other curves in that their fac values remain greater than 80% in a larger range
(model number ≥ 300) as the model serial number increases. Therefore, these six samples
were identified as outliers and could be considered abnormal samples.
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When K-means LOOCV is used to detect abnormal samples in soil olfactory feature
space, it must be clustered first, as shown in Table 3, into 10 classes. According to the
principle that abnormal samples are more discrete than normal samples, class 6 and class 7
have the least number of samples, and they are regarded as suspicious abnormal samples
and used as prediction samples, and the relative prediction error of suspicious samples is
obtained by using the LOOCV method. The results of K-means LOOCV abnormal sample
detection are shown in Figure 7. The threshold of abnormal sample determination is set to
0.2 in the figure, and only sample number 88 is found to be an abnormal sample.
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Table 3. K-means clustering results.

Class Number Number of Samples Sample Number

Class 1 17 5 16 18 32 39 41 45 63 75 76 80 81 82 84 85 93 118
Class 2 6 20 29 43 73 86 113
Class 3 16 1 13 62 72 74 79 92 102 103 104 111 115 116 119 120 121
Class 4 18 17 19 22 27 28 30 35 40 44 48 58 78 83 89 91 97 109 117
Class 5 13 3 8 9 10 14 25 34 47 56 61 77 96 107
Class 6 4 49 65 68 114
Class 7 2 42 88
Class 8 18 4 6 11 15 23 24 26 38 51 52 69 90 100 101 105 106 108 112
Class 9 14 2 12 21 31 46 50 54 59 60 64 66 70 87 98

Class 10 13 7 33 36 37 53 57 67 71 94 95 99 110

According to the empirical Formula (10) and RMSE validation, the number of hidden
layer neurons was selected as 8 for the BPNN model. On this basis, Table 4 was obtained.
The MCCV and K-means LOOCV were used to reject 6 and 1 abnormal samples on the data
set, respectively, and all model indexes were improved, among which the MCCV method
had the best rejection effect, where R2

V, RMSEV, and RPDV were 0.75671, 0.33517, and
1.7938, respectively.

Table 4. Comparison results of different abnormal sample rejection methods.

Types of Rejection
Methods

Number of Training
Set Samples

Test Set Number
of Samples

Number of Neurons
in the Hidden Layer

BPNN Model Test Set Prediction Performance

R2
V RMSEV RPDV

MCCV 81 34 8 0.75671 0.33517 1.7938
K-means
LOOCV 84 36 8 0.69951 0.42919 1.6728

3.3. Feature Optimization Results

To obtain the optimization of feature space by PCA, the new soil olfactory space based
on the abnormal samples removed by MCCV (115 samples × 60 features) is referred to as
updated soil total nitrogen feature space (USTNFS) and optimized by PCA method with the
contribution of variance information of each principal component as pi, and the cumulative
contribution of variance information (G(k)) set to 95%, and the results are obtained as in
Figure 8. As can be observed from the figure, the cumulative contribution rate of variance
information of the first 15 principal components is 94.32%, which can basically reflect the
amount of information in the original feature space, i.e., the original feature space can be
reduced to 15 dimensions and reconstruct a sample set (115 samples × 15 features).
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Similarly, the GA-BP method is used for USTNFS to optimize its features, and the
output condition is set to 100 iterations. Figure 9 shows the evolution curve of the fitness
function, from which it can be seen that the best fitness curve remains unchanged when the
number of species iterations exceeds 32, indicating that it has been optimized to the best
effect. At this time, the number of the filtered set of optimal feature vectors are: 1, 2, 4, 6, 7,
10, 12, 16, 18, 20, 21, 23, 24, 25, 27, 29, 30, 32, 33, 34, 36, 40, 41, 43, 45, 46, 47, 51, 52, 53, 55, 58,
and the original feature space is reduced from 60 dimensions to 32 dimensions. A sample
set (115 samples × 32 features) based on GA-BP optimization was reconstructed.
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In the case of comparing the feature selection effects of two feature optimization
methods, PCA and GA-BP, the features preferred by the two methods are trained to the
corresponding prediction models by BPNN, ELM, and PLSR algorithms, and the test set
(34 samples) data are used to verify the models.

In constructing the model using BPNN, due to the reduction of feature dimension,
the range of the number of neurons (H) in the hidden layer can be determined according
to the formula: 6–15, and the modeling preferred H is 10. As shown in Figure 10a,b, the
difference between GA-BP and PCA optimization is small, and GA-BP is slightly better
than PCA. When building the ELM model, the GA-BP optimization shown in Figure 10c,d
has values 0.1542 and 0.03728 higher than the PCA processed models RPDV and R2, and the
RMSEV is reduced by 0.0182. The preferred modeling principal component factor (PCF) is
4 when modeling and is constructed using PLSR, after cross-validation of RMSEC and bare
pool information criterion Akaike Information Criterion (AIC) evaluation. The modeling
parameters are preferred, and the model prediction results are shown in Figure 10e,f. The
values of RPDV and R2 of the model are 0.5058 and 0.02637 higher and the RMSEV is
reduced by 0.02786 after GA-BP optimization compared to PCA treatment as shown in
Figure 10e,f.



Agriculture 2022, 12, 37 14 of 17

Agriculture 2022, 12, x FOR PEER REVIEW 14 of 18 
 

 

corresponding prediction models by BPNN, ELM, and PLSR algorithms, and the test set 
(34 samples) data are used to verify the models. 

In constructing the model using BPNN, due to the reduction of feature dimension, 
the range of the number of neurons (H) in the hidden layer can be determined according 
to the formula: 6–15, and the modeling preferred H is 10. As shown in Figure 10a,b, the 
difference between GA-BP and PCA optimization is small, and GA-BP is slightly better 
than PCA. When building the ELM model, the GA-BP optimization shown in Figure 10c,d 
has values 0.1542 and 0.03728 higher than the PCA processed models RPDV and R2, and 
the RMSEV is reduced by 0.0182. The preferred modeling principal component factor 
(PCF) is 4 when modeling and is constructed using PLSR, after cross-validation of RMSEC 
and bare pool information criterion Akaike Information Criterion (AIC) evaluation. The 
modeling parameters are preferred, and the model prediction results are shown in Figure 
10e,f. The values of RPDV and R2 of the model are 0.5058 and 0.02637 higher and the 
RMSEV is reduced by 0.02786 after GA-BP optimization compared to PCA treatment as 
shown in Figure 10e,f. 

  
(a) (b) 

  
(c) (d) 

Agriculture 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

  
(e) (f) 

Figure 10. Results of three models after optimization of PCA and GA-BP features. (a) Prediction 
results of BPNN model after PCA optimization. (b) GA-BP optimized BPNN model prediction re-
sults. (c) Prediction results of ELM model after PCA optimization. (d) Prediction results of ELM 
model after GA-BP optimization. (e) Prediction results of PLSR model after PCA optimization. (f) 
Prediction results of PLSR model after GA-BP optimization. 

3.4. Discussion 
In a bid to verify whether the optimized processing (i.e., MCCV anomaly rejection, 

GA-BP feature dimensionality reduction) is generalizable for artificial olfaction-based de-
tection of total nitrogen models, three models, BPNN, ELM, and PLSR, were developed 
and evaluation metrics for each model test set were obtained as in Table 5. 

Table 5. Test set data. 

Models Feature Space of Optimization Process R2V RMSEV RPDV 

BPNN 
Unoptimized 0.62143 0.52902 1.3762 

MCCV  0.75671 0.33517 1.6553 
MCCV + GA − BP  0.78289 0.30034 2.0018 

ELM 
Unoptimized 0.64342 0.43982 1.6553 

MCCV 0.82808 0.29323 2.0504 
MCCV + GA − BP  0.87652 0.25757 2.3342 

PLSR 
Unoptimized 0.82309 0.30742 2.3682 

MCCV  0.89342 0.19556 3.0305 
MCCV + GA − BP  0.93848 0.16857 3.5666 

The presence of outliers may overestimate or underestimate prediction accuracy, es-
pecially when dealing with medium or small datasets [38,39], and after the first stage of 
optimization processing (MCCV processing), all models R2V and RMSEV, and RPDV were 
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Figure 10. Results of three models after optimization of PCA and GA-BP features. (a) Prediction
results of BPNN model after PCA optimization. (b) GA-BP optimized BPNN model prediction results.
(c) Prediction results of ELM model after PCA optimization. (d) Prediction results of ELM model
after GA-BP optimization. (e) Prediction results of PLSR model after PCA optimization. (f) Prediction
results of PLSR model after GA-BP optimization.

3.4. Discussion

In a bid to verify whether the optimized processing (i.e., MCCV anomaly rejection,
GA-BP feature dimensionality reduction) is generalizable for artificial olfaction-based
detection of total nitrogen models, three models, BPNN, ELM, and PLSR, were developed
and evaluation metrics for each model test set were obtained as in Table 5.
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Table 5. Test set data.

Models Feature Space of Optimization Process R2
V RMSEV RPDV

BPNN
Unoptimized 0.62143 0.52902 1.3762

MCCV 0.75671 0.33517 1.6553
MCCV + GA − BP 0.78289 0.30034 2.0018

ELM
Unoptimized 0.64342 0.43982 1.6553

MCCV 0.82808 0.29323 2.0504
MCCV + GA − BP 0.87652 0.25757 2.3342

PLSR
Unoptimized 0.82309 0.30742 2.3682

MCCV 0.89342 0.19556 3.0305
MCCV + GA − BP 0.93848 0.16857 3.5666

The presence of outliers may overestimate or underestimate prediction accuracy,
especially when dealing with medium or small datasets [38,39], and after the first stage of
optimization processing (MCCV processing), all models R2

V and RMSEV, and RPDV were
improved. The MCCV method simulates a stochastic process where data with constant
replacement are drawn at random each time to form the training set and the remaining data
set to form the test set. The model was validated with 1000 repeated random subsamples
and is considered an unbiased estimate that is not prone to overfitting [40] as it has been
sorted by PRESS values and as the model increases, all those greater than the cumulative
probability should be eliminated, as the exclusion of outliers indicates that the MCCV
method effectively detects outlier samples. The LOOCV was asymptotically inconsistent,
meaning that this method could lead to over-fitting, with good in-sample performance and
poor out-of-sample performance, resulting in unreliable estimates. In terms of optimizing
the feature dimensionality of the soil olfactory all-nitrogen feature space, after the second
stage of optimization processing (GA-BP feature dimensionality reduction), the comparison
with the PCA method may be due to the fact that while PCA reduces the olfactory feature
dimensionality to 15 dimensions, it discards some of the useful amounts of information,
whereas GA-BP uses the GA algorithm with global optimal search capability to seek
maximal feature space. Therefore, the optimization process improved the model prediction
ability and better reflected the correlation between ISTNFS and total soil nitrogen.

4. Conclusions

The main contribution point of this study is to select the sample rejection method and
feature reduction algorithm with better effect and apply it to solve the problem of prediction
accuracy of STN based on manual olfaction. The experimental results showed that:

(1) All two sample rejection methods had gains in the accuracy of soil total nitrogen
content prediction. The most significant effect of ISTNFS rejection was MCCV, and
the BPNN model indexes improved by 21.76% and 30.34% and reduced by 36.64% in
RMSEV compared to R2

V and RPDV before the rejection treatment.
(2) After MCCV to eliminate abnormal samples, GA-BP method has more advantages

than PCA method in soil feature space (USTNFS) dimensionality reduction processing
under the same model, and can achieve higher prediction performance.

(3) After optimizing the treatment of ISTNFS using MCCV and GA-BP methods, the
prediction performance of the three models, BPNN, ELM, and PLSR, increased by
45.45%, 41.01%, and 50.60% for RPD, 25.98%, 36.33%, and 14.01% for R2, and reduced
by 76.14%, 70.75%, and 82.36%.

This study can provide a reference for artificial olfaction system data processing of data
information in other fields. With the continued refinement of manual sniffing technology, it
promises to be an efficient, non-destructive, and inexpensive method of testing for total
soil nitrogen content.
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