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Abstract: The aim of the study was to evaluate the effect of various fertilization treatments, including
nitrogen, potassium and phosphorus fertilization, in long-term experiments for selected UAV (un-
manned aerial vehicle)-derived spectral vegetation indices (NDVI—Normalized Difference Vegetation
Index, NDRE—Normalized Difference Red Edge Index, VARI—Visible Atmospherically Resistant
Index, TGI—Triangular Greenness Index, SIPI2—Structure Insensitive Pigment Index 2, LCI—Leaf
Chlorophyll Index, BNDVI—Blue Normalized Difference Vegetation Index, GNDVI—Green Normal-
ized Difference Vegetation Index, MCARI—Modified Chlorophyll Absorption in Reflective Index)
based on multispectral (bands in the range of visible light and near infra-red) images of winter rye.
The strongest effect on the studied vegetation indices was nitrogen fertilization, which discriminated
values of most of the vegetation indices. The effect of phosphorus and potassium fertilization on
the studied vegetation indices was much weaker. The treatments with nitrogen fertilization had
significantly higher values of most vegetation indices in comparison to treatments without nitrogen.
This was confirmed by principal component analysis (PCA), in which treatments without nitrogen
fertilization were very different in comparison to all other treatments where nitrogen fertilization
was applied. The effect of phosphorus and potassium fertilization on most of vegetation indices was
relatively weak and not significant in most experiments. Only for rye cultivated in monoculture was
the effect of phosphorus fertilization significant for most of vegetation indices in early growth stages.
In later growth stages (heading and flowering) the effect of phosphorus fertilization was significant
in rye monoculture for the SIPI2 vegetation index. Mean SIPI2 was higher for the fertilization treat-
ment CaNPK in comparison to CaKN (without P fertilization). The effect of potassium fertilization
on the studied vegetation indices was very weak, and in most cases not significant. The effect of
nitrogen fertilization on vegetation indices was much stronger than effect of both potassium and
phosphorus fertilization.

Keywords: UAV—unmanned aerial vehicle; remote sensing; vegetation indices; nutritional
status; fertilization

1. Introduction

The evaluation of fertilizer demand for crops is usually performed using chemical
analysis of the soil in which the content of available nutrients is evaluated [1-4]. The most
important nutrients for crops are nitrogen (N), phosphorus (P) and potassium (K), which
are used for mineral fertilization [5-7]. Moreover, one of the most important soil chemical
properties is soil pH, which affects the availability of nutrients for plants [8].

The limitations of chemical analyses are the time and costs required. Furthermore,
because of the high spatial soil variability, the results of chemical analyses are true for the
sampling points and may not be representative for the total area of the crop fields [9]. Site-
specific crop management, applied in precision agriculture, assumes adjusting fertilizers
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rates to the variability of soil physico-chemical properties and expected yields [10,11]. The
evaluation of within-field variability in soil or crop condition, and adjusting the rates of
fertilizers for crop can be conducted using remote sensing methods [12,13].

Remote sensing methods are mainly used to assess the nutritional status of the crop
and adjust nitrogen variable rate fertilization [14,15]. Detecting the nutritional status of
crops or the content of available potassium and phosphorus in soil is more difficult, as the
condition of crops is not strongly related to the deficiency of these nutrients. Nevertheless,
there are studies in which remote sensing methods are tested to assess potassium or
phosphorus deficiency [16-20]. Evaluation of the within-field variability of crop fertilizer
requirements is possible using remote sensing data acquired by ground-based sensors,
unmanned aerial vehicles (UAV) or satellite-derived data [21-23].

Crop status is usually evaluated using various spectral vegetation indices which are
usually based on the reflectance of electromagnetic radiation in the range of visible light and
near infra-red light [24,25]. Most of the vegetation indices are based on the ratio of two or
more bands of electromagnetic radiation reflectance or are based on ratio where differences
or sums of two or more bands are used [26]. One of the most common vegetation indices is
NDVI (normalized difference vegetation index), which is based on red and near infra-red
reflectance. Values of vegetation indices are usually strongly correlated with crop status,
crop biomass and color of the plants (e.g., chlorophyll content) [27,28].

In a study conducted at a village level in the south-central India, moderate correlations
between various satellite derived indices and the content of exchangeable potassium in
soil were found [29]. Multivariate models where several spectral indices were applied
increased R? to about 0.5-0.6 for the prediction of exchangeable potassium. In this study,
satellite images at various spatial resolution, from 2 to 30 m, were used. Another study
conducted in India, showed significant but relatively weak positive correlations between
potassium concentrations in wheat and spectral vegetation indices derived by a handheld
hyperspectral sensor [16]. In the same study, correlations between the spectral indices
and the phosphorus concentration in wheat were not significant. A similar study, which
assessed the relationship between the spectral vegetation indices based on the data from
handheld sensor with the content of potassium and phosphorus in wheat, was conducted
by Pimstein et al. [17]. Strong significant positive correlations were observed for potassium
but only for one of the four subsets, while for phosphorus the correlations were much
weaker, but some of them were significant.

Many recent studies have focused on detecting potassium deficiency in crops using
UAV multispectral images. One of them is focused on the differentiation of potassium-
deficient canola plants from potassium-sufficient plants using multispectral reflectance
data [30]. It was possible to differentiate plants with and without potassium deficiency with
high accuracy. In a study by Lu et al. [31] strong nonlinear relationships were demonstrated
between the UAV-derived spectral vegetation indices and the accumulation of potassium
in plants. The highest coefficients of determination (R? = 0.72) were observed for RDVI
(renormalized difference vegetation index) and OSAVI (optimized soil adjusted vegetation
index) as predictors of plant potassium accumulation. In a study by Furlanetto et al. [32]
strong linear relationships were proven between UAV-derived vegetation indices and the
foliar potassium content in maize. The strongest correlation (R? = 0.79) was observed for
GRVI (ratio between infrared and green reflectance) at the V12 growth stage of maize (about
two weeks before silking). In a study by Peng et al. [33] relationships between various
spectral vegetation indices based on the UAV multispectral camera and leaf nitrogen,
potassium and phosphorus contents in grapes were evaluated. Strong positive correlations
were found for all nutrients, especially in the later growth stages of plants. Multivariate
models where several vegetation indices were the predictors give the highest coefficients of
determination (about 0.8).

The evaluation of potassium and phosphorus deficiency in crops, based on UAV-
derived remote sensing data, is very important in crop management because it allows one to
optimize fertilization with these nutrients. This is a novel study because most of the studies



Agriculture 2022, 12,1671

30f18

focus only on nitrogen fertilization. In this study we evaluated the differences of various
UAV-derived spectral vegetation indices for winter rye in various fertilization treatments
in long-term experiments. The main focus of the study was the comparison of selected
vegetation indices between treatments with potassium and phosphorus fertilization and
without such fertilization.

2. Materials and Methods
2.1. Location of the Study and Experimental Design

The research was carried out in the fields of long-term fertilization experiments on
stagnic luvisols located at the Experimental Station of the Institute of Agriculture of Warsaw
University of Life Sciences in Skierniewice, in the center of Poland (51°58' N, 20°10" E)
(Figure 1). The beginning of these experiments dates back to 1923. They were set up
according to the randomized block design in three or in five repetitions. The size of the
experimental plots for harvesting was 36 m?. In the study, three types of fields were used
(N—nitrogen, P—phosphorus, K—potassium, Ca—calcium, lime):
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Figure 1. Design of the studied field experiments in the Experimental Station in Skierniewice (borders
of the plots, information about the fertilization and RGB ortophotomap from 3 June 2022). (A)—field
experiment 2; (B)—field experiment 1; (C)—field experiment 3; (D)—map presenting location of the
Experimental Station. Abbreviations: Ca—calcium, N—nitrogen, P—phosphorus, K—potassium,
FYM—farmyard manure, micro—micronutrients.
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Field experiment 1—without manure, with crop rotation without legumes, with 4 fer-
tilization schemes: CaNPK—calcium, nitrogen, phosphorus, potassium—NPK, PN, NK;

Field experiment 2—rye monoculture with 4 fertilization schemes: CaNPK, NPK,
CaPN, CaNK;

Field experiment 3—with manure, field with potatoes, spring barley, red clover, winter
wheat and rye crop rotation with 4 fertilization schemes: CaNPK, NPK, CaPN, CaNK.

Mineral fertilizer has been applied every year since 1974 in the following doses: N—
90 kg ha~! in the form of ammonium nitrate, P—26 kg ha~! in the form of superphosphate
and K—91 kg ha~! in the form of high-percentage potassium salt. Lime (CaO) is used every
4 years in a dose of 1.6 t ha! (fields 1 and 2) or every 5 years in the amount of 2 t ha~!
(field 3). The application of lime every 4 years in such a dose maintains the soil pH at the
level of 5.8-6.4. Manure is applied at a dose of 30 t ha~! every 5 years. Mean grain yield
and contents of available phosphorus, potassium (based on Egnera-Riehm method) and
soil pH (in 1 M KCl solution) for the past 20 years are presented in Table 1.

Table 1. Mean grain yield and content of available phosphorus, potassium (based on Egnera-Riehm
method) and soil pH (in 1 M KCl solution) for recent 20 years.

Field Experiment 1 (Crop Rotation without Legumes and Only
Mineral Fertilization)

Treatment Grain yield (t/ha) P mg/kg K mg/kg pH
CaNPK 3.6 34.1 50.6 5.8
NPK 3.8 32.1 50.1 3.9
PK 15 37.1 52.3 42
PN 3.3 35.8 20.6 41
KN 1.68 13.8 51.1 4.0
0 1.24 14.1 21.7 44
Field experiment 2 (monoculture of rye)

Treatment Grain yield (t/ha) P mg/kg K mg/kg pH
Ca 1.5 9.4 30.1 6.6
Ca + FYM 2.9 79.3 1129 6.5
CaKN 2.7 8.4 71.6 6.4
CaNPK 3.8 46.7 66.2 6.3
CaNPK + FYM 4.2 91.3 143.1 6.6
CaNPK + micro 4.0 52.0 67.6 6.4
CaNPK + straw 3.9 56.2 101.3 6.5
CaPK 1.6 55.6 72.3 6.7
CaPN 3.0 52.9 25.8 6.4
NPK 3.7 45.5 65.8 43

Field experiment 3 (with manure application and crop rotation)
Treatment Grain yield (t/ha) P mg/kg K mg/kg pH
Ca 2.72 14.6 51.1 6.5
CaPN 4.08 50.3 52.2 6.2
NPK 4.44 46.3 91.2 4.5
CaKN 3.78 13.7 92.4 6.3
CaNPK 4.53 41.8 82.7 6.1
CaPK 3.07 53.9 111.3 6.4

Abbreviations: Ca—calcium, N—nitrogen, P—phosphorus, K—potassium, FYM—farmyard manure, micro—
micronutrients.

In season 2021/2022, winter rye was cultivated in all three experiments. The sowing
date was at 4 October 2021, the date of the plants’ emergence was 15 October 2021 and
the harvest date was 24 August 2022. Weather conditions in the season of the study are
presented in Table 2.
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Table 2. Weather conditions from period of winter rye sowing to the end of vegetation.

Year Month Mean Temperature [°C] Sum of Precipitation [mm]
2021 September 13.1 29.6
2021 October 8.7 8.9
2021 November 49 47.2
2021 December -1.3 33.4
2022 January 1.0 46.9
2022 February 3.3 441
2022 March 2.7 1.8
2022 April 7.0 489
2022 May 14.0 50.6
2022 June 19.3 58.5
2022 July 194 129.8

2.2. Acquasition of UAV Imagery and Generation of Ortophotos with Vegetation Idices

A Phantom 4 Multispectral (SZ DJI Technology Co., Ltd., Shenzhen, China) was used in
the study. Each flight was planned at 40 m above ground level with front and side overlaps
of 70% and the ground pixel size of 2 cm. A six-sensor camera with resolution 2.1 Mpx
equipped with one RGB sensor and five monochrome sensors: blue (B): 450 nm + 16 nm;
green (G): 560 nm =+ 16 nm; red (R): 650 nm =+ 16 nm; red edge (RE): 730 nm £ 16 nm; near-
infrared (NIR): 840 nm =+ 26 nm, was used. The images were taken on the following four
dates: 5 September 2022 (end of booting), 26 May 2022 (heading), 3 June 2022 (flowering)
and 13 June 2022 (beginning of development of grains). Pix4Dfields software (Pix4D S.A.
Prilly, Switzerland) [34] was used to generate multispectral ortophotos and 9 vegetation
indices for the analyses (Table 3, Figure 2). The vegetation indices were chosen because
they are commonly used, reliable parameters to assess the condition of crops by remote
sensing methods.

Table 3. Vegetation indices used in the study.

Full Name Equation Used for Calculation

Normalized Difference
NDVI Vegetation Index (NIR — R)/(NIR + RED)

NDRE Normalized Difference Red

(NIR — RE)/(NIR + RE)

Edge Index
Visible Atmospherically
VARI Resistant Index (G-R)/(G+R-B)
[G — (0.39R) — (0.61B)]/(normalized to
TGI Triangular Greenness Index the maximum value of R, G, and
B bands)
SIPI2 Structure Insensitive Pigment Index2  (NIR — G)/(NIR — R)
LCI Leaf Chlorophyll Index (NIR — RE)/(NIR + R)
Blue Normalized Difference
BNDVI Vegetation Index (NIR — B)/(NIR + B)
Green Normalized Difference
GNDVI Vegetation Index (NIR = G)/(NIR + G)
e . 1.2(2.5(NIR — R) — 1.3(NIR —
MCARI Modified Chlorophyll Absorption G))/(normalized to the maximum

in Reflective Index

value of R, G, and NIR bands)

The calculations of the average value of the vegetation indices were performed using

zonal statistics in QGIS 3.24 software (Open Source Geospatial Foundation, Chicago, IL,
USA) [35]. To avoid a border effect of the plots, 30 cm of buffer was removed from each
plot on each side to calculate the vegetation indices.
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Figure 2. NDVI based on the multispectral images acquired by UAV on 3 June 2022, for the studied
field experiments at the Experimental Station in Skierniewice. (A)—field experiment 2; (B)—field
experiment 1; (C)—field experiment 3. Abbreviations: Ca—calcium, N—nitrogen, P—phosphorus,
K—potassium, FYM—farmyard manure, micro—micronutrients, NDVI—Normalized Difference
Vegetation Index.

2.3. Statistical Analysis

The average values of vegetation indices for individual plots were used for statistical
analysis. Comparisons of the mean vegetation indices were performed using a one-way
analysis of variance (ANOVA) and a multiple comparisons based on the Tukey’s HSD
0.05 probability level. This allowed us to distinguish between homogenous groups of
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means and evaluate the effect of fertilization treatments for each vegetation index. Principal
component analysis (PCA) was used for the multivariate evaluation of the relationships
between vegetation indices for all dates together and the evaluation of multivariate dif-
ferences between fertilization treatments. For PCA, only the selected vegetation indices
were used (NDVI, VARI, TGI, SIPI2); because of very strong correlations with NDVI, other
vegetation indices were excluded. The PCA was conducted for all four terms together. The
statistical analyses were performed using Statistica 13 software (TIBCO, Palo Alto, CA,
USA) [36].

3. Results
3.1. Comparison of Vegetation Indices between Treatments

The means of vegetation indices for different treatments in three experiments are
presented in Tables 4—-6 and the NDVI maps in Figure 2. In these tables, the results of
multiple comparisons are presented, i.e., homogenous groups of means distinguished
based on Tukey’s HSD procedure. Higher values of the vegetation indices usually
indicate a better crop condition, i.e., more intensive vegetation, which is associated
with a higher grain yield. The highest values of the most vegetation indices in all
experiments and dates were observed for the treatments where nitrogen fertilization was
applied. The effect of the application of other nutrients, i.e., potassium and phosphorus,
on the studied vegetation indices was very weak, and in most cases did not cause
significant changes. In the first field experiment, in which only mineral fertilization
was applied, the highest values of the majority of the vegetation indices were observed
for the treatments where phosphorus and nitrogen (PN) were applied. For example,
NDVI, which is the most common vegetation index, was the highest for PN treatment for
three terms, i.e., 5 September 2022 (NDVI = 0.822), 26 May 2022 (0.779) and 3 June 2022
(0.779). On the last date, 13 June 2022, the value of NDVI was slightly lower for PK
treatments in comparison to other fertilizations. The highest value of NDVI in the last
term was observed for the KN treatment, i.e., where fertilization with potassium and
nitrogen was applied, but without phosphorus. The differences between the means
of vegetation indices were not significant in almost all treatments where nitrogen was
applied, regardless of phosphorus or potassium fertilization. The effect of nitrogen
fertilization on most of the vegetation indices was very strong. Treatments where
only potassium and phosphorus were applied had very low values of most vegetation
indices, including NDVI. The differences between the means of vegetation indices were
not significant for the PK treatment in comparison to the control (0—without mineral
fertilization). As the main aim of the study was to compare the effect of phosphorus
and potassium fertilization on various spectral indices, comparisons between treatments
with and without phosphorus or potassium were conducted. The results are presented
as p-values in Table 6. In the first experiment, significant differences (p-value < 0.05)
were proved for TGI in the first term (9 May 2022). TGI was higher for the treatment
without phosphorus fertilization (KN) in comparison to complete fertilization (NPK).
The difference for TGI was observed only in the first term; the remaining vegetation
indices were not influenced by phosphorus fertilization in the first experiment. The
effect of potassium fertilization in the first experiment on the studied spectral indices
was demonstrated only for MCARI in the first term (9 May 2022) and for SIPI2 in the
second term (26 May 2022). In both cases, higher means of these vegetation indices
were observed for the treatment without potassium fertilization (PN) in comparison to
treatments with complete fertilization (NPK).
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Table 4. Means of vegetation indices in field experiment 1 (crop rotation without legumes and only

mineral fertilization) and comparisons of means based on Tukey’s HSD.

9 May 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
CaNPK 0.701b * 0.644 Db 0.321b 0.482Db 0.234Db 0.778 b 0.891a 0.035b 0.548 b
NPK 0.697 b 0.657 b 0.345 bc 0.485b 0.249 bc 0.786 b 0.897 a 0.030 b 0.562 b
PK 0.389 a 0.349 a 0.130 a 0.212a 0.111a 0378 a 0.883 a 0.015a 0.094 a
PN 0.729b 0.690 b 0374 c 0.514b 0.269 c 0.822b 0.902 a 0.030 b 0.603 b
KN 0.708 b 0.657 b 0.345 bc 0.499b 0.248 bc 0.793 b 0.893 a 0.034b 0.586 b
0 0.401 a 0.356 a 0.130 a 0.208 a 0.111a 0.386 a 0.884 a 0.017 a 0.098 a
26 May 2022
Treatment  BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
CaNPK 0.705Db 0.634Db 0.320Db 0.461Db 0.228 b 0.764 Db 0.890 a 0.017 b 0.489b
NPK 0.710b 0.636 b 0.325b 0.487 b 0.231b 0.766 b 0.891a 0.018 b 0.492b
PK 0.461 a 0.393 a 0.151a 0.200 a 0.125a 0.432a 0.906 b 0.009 a 0.079 a
PN 0.722Db 0.655 Db 0.339Db 0.501b 0.242Db 0.779b 0.899 ab 0.017b 0.498 b
KN 0.716 b 0.644 Db 0.332b 0.498 b 0.236 b 0.776 b 0.891 ab 0.018 b 0.525b
0 0.468 a 0.397 a 0.157 a 0.203 a 0.129 a 0.442 a 0.898 ab 0.010a 0.090 a
3 June 2022
Treatment  BNDVI GNDVI LCI MCARI NDRE NDVI SIP TGI VARI
CaNPK 0.703 b 0.650 b 0.313Db 0.412Db 0.232Db 0.770b 0.894Db 0.015Db 0.423Db
NPK 0.711b 0.654 b 0.318Db 0.435Db 0.235Db 0.776 b 0.894 Db 0.017b 0.438 b
PK 0.448 a 0.403 a 0.155a 0.183 a 0134 a 0.445 a 0.857 a 0.008 a 0.053 a
PN 0.718Db 0.668 b 0.330Db 0.444Db 0.244Db 0.779b 0.904 b 0.015Db 0.409b
KN 0.715b 0.660 b 0.329b 0.442Db 0.242Db 0.779b 0.897 b 0.016 b 0.435b
0 0.455 a 0.398 a 0.148 a 0176 a 0129 a 0.447 a 0.850 a 0.010 a 0.068 a
13 June 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
CaNPK 0.614b 0.552b 0.303 b 0.436 b 0.229b 0.656 b 0.889 a 0.016 b 0.304 b
NPK 0.615Db 0.549Db 0.294Db 0.442Db 0.221Db 0.652Db 0.890 a 0.017Db 0.295b
PK 0.367 a 0.333a 0.164 a 0.216 a 0.140 a 0.354 a 0917 b 0.007 a 0.037 a
PN 0.620b 0.550 b 0.294b 0.438 b 0.221b 0.649 b 0.892a 0.017 b 0.279b
KN 0.619b 0.562 b 0.305b 0.439b 0.230 b 0.659 b 0.899 a 0.015b 0.293 b
0 0.364 a 0330 a 0.163 a 0217 a 0.139 a 0.352a 0917 b 0.007 a 0.038 a
* different letters within column indicate significant differences between the means at 0.05 significance level.
Abbreviations: NDVI—Normalized Difference Vegetation Index, NDRE—Normalized Difference Red Edge Index,
VARI—Visible Atmospherically Resistant Index, TGI—Triangular Greenness Index, SIPI2—Structure Insensitive
Pigment Index 2, LCI—Leaf Chlorophyll Index, BNDVI—Blue Normalized Difference Vegetation Index, GNDVI—
Green Normalized Difference Vegetation Index, MCARI—Modified Chlorophyll Absorption in Reflective Index,
Ca—calcium, N—nitrogen, P—phosphorus, K—potassium, FYM—farmyard manure, micro—micronutrients.
Table 5. Means of vegetation indices in field experiment 2 (monoculture of rye) and comparisons of
means based on Tukey’s HSD.
9 May 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
Ca 0.546 a * 0.475 a 0.199 a 0.219a 0.157 a 0.554 a 0.902 c 0.008 a 0.210 a
Ca+FYM 0.687 b 0.611Db 0.290b 0.336 b 0.212Db 0.750b 0.883 a 0.011b 0.537 b
CakKN 0.715 cb 0.663 c 0.347 c 0.404 c 0.249 c 0.804c 0.892ab  0.010b 0.687 c
CaNPK 0.734 c 0.689 c 0.374d 0.431c 0.267 de 0.830 ¢ 0.897bc  0.010b 0.754 cd
CaNPK + FYM 0.741 c 0.692c 0.380 d 0.450 c 0.270 de 0.837 c 0.895bc  0.011b 0.784 d
CaNPK + micro 0.735c¢ 0.690 c 0.373d 0.429 c 0.267 de 0.830c 0.898bc  0.010b 0.755 cd
CaNPK + straw 0.740 ¢ 0.694 ¢ 0.385d 0.436 ¢ 0.276 e 0.837 ¢ 0.897bc  0.010b 0.787d
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Table 5. Cont.

9 May 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
CaPK 0.518 a 0.450 a 0.183 a 0.213 a 0.147 a 0.528a 0.896bc  0.008 a 0.203 a
CaPN 0.731 ¢ 0.680 ¢ 0.364 cd 0.430 ¢ 0.258 cd 0.824 ¢ 0.893 b 0.011b 0.743 cd
NPK 0.739 ¢ 0.696 ¢ 0.384 d 0.456 ¢ 0.274 de 0.836 ¢ 0.899bc  0.010b 0.785d
26 May 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
Ca 0.600 a 0.495 a 0.210 a 0.149 a 0.165 a 0.586 a 0.868 a 0.012 a 0.211a
Ca+ FYM 0.713 b 0.594 b 0.271b 0.244 b 0.197 b 0.732b 0.870 a 0.018d 0.417b
CakKN 0.750 ¢ 0.668 ¢ 0.348 ¢ 0.289 ¢ 0.248 ¢ 0.806 ¢ 0.892b 0.016 ¢ 0.556 ¢
CaNPK 0.764 ¢ 0.687 ¢ 0.367 cd 0.293 ¢ 0.261 cd 0.819 ¢ 0900b  0.015bc 0.563 ¢
CaNPK + FYM 0.765 ¢ 0.691 ¢ 0.371 cd 0.302 ¢ 0.263 cd 0.827 ¢ 0.897b 0.015¢ 0.586 ¢
CaNPK + micro 0.765 ¢ 0.685 ¢ 0.369 cd 0.302 ¢ 0.262 cd 0.820 ¢ 0.898 b 0.016 ¢ 0.565 ¢
CaNPK + straw 0.765 ¢ 0.690 ¢ 0.379 d 0311 ¢ 0.270d 0.828 ¢ 0.897b 0.016 ¢ 0.588 ¢
CaPK 0.589 a 0.479 a 0.201 a 0.148 a 0.159 a 0.574 a 0.859a 0.013 ab 0.212a
CaPN 0.756 ¢ 0.678 ¢ 0.358 cd 0.289 ¢ 0.254 cd 0.817 ¢ 0.893 b 0.015¢ 0.575 ¢
NPK 0.761 ¢ 0.687 ¢ 0.374 cd 0.302 ¢ 0.267 cd 0.821 ¢ 0.899b  0.015bc 0.567 ¢
3 June 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
Ca 0.555 a 0.466 a 0.183 a 0.131a 0.155 a 0.543 a 0.871a 0.011a 0.190 a
Ca+ FYM 0.678 b 0.570b 0.243b 0.222b 0.186 b 0.697b 0.869 a 0.018 ¢ 0.388b
CaKN 0.728 ¢ 0.650 ¢ 0.323 ¢ 0.277 ¢ 0.236 ¢ 0.774 ¢ 0.896b  0.016 bc 0.476 ¢
CaNPK 0.745 ¢ 0.673 cd 0.342 ¢ 0.281 ¢ 0.249 ¢ 0.794 ¢ 0903b  0.015bc 0.484 c
CaNPK + FYM 0.754 ¢ 0.685d 0.354 ¢ 0.296 ¢ 0.257 ¢ 0.808 ¢ 0904b  0.015bc 0.503 ¢
CaNPK + micro 0.747 ¢ 0.674 cd 0.339 ¢ 0.287 ¢ 0.246 ¢ 0.792 ¢ 0905b  0.016 bc 0.480 c
CaNPK + straw 0.753 ¢ 0.684 cd 0.354 ¢ 0.298 ¢ 0.256 ¢ 0.803 ¢ 0906b  0.016 bc 0491 c
CaPK 0.550 a 0.457 a 0.180 a 0.129 a 0.153 a 0.536 a 0.862 a 0.011a 0.190 a
CaPN 0.744 ¢ 0.673 cd 0.339 ¢ 0.273 ¢ 0.246 ¢ 0.793 ¢ 0.903 b 0.015b 0.481c¢
NPK 0.750 ¢ 0.681 cd 0.359 ¢ 0.291 ¢ 0.262 ¢ 0.803 ¢ 0904b  0.015bc 0.496 ¢
13 June 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
Ca 0.416 a 0.376 a 0.177 a 0.198 a 0.148 a 0401 a 0.925b 0.005 a 0.061 a
Ca + FYM 0.550 b 0.470b 0.223b 0.301b 0.178b 0.534b 0.902 a 0.011b 0.160 b
CaKN 0.621 ¢ 0.545 ¢ 0.278 ¢ 0.381 cd 0.213 ¢ 0.636 ¢ 0.899a  0.013bc 0.270 ¢
CaNPK 0.642 c 0.560 cd 0.290 cd 0.389 cd 0.220 ¢ 0.652cd  0.901a 0.013 ¢ 0.276 cd
CaNPK + FYM 0.653 ¢ 0.578d 0.305d 0415e 0.230 ¢ 0.673d 0902a  0.013bc 0.310d
CaNPK + micro 0.643 ¢ 0.559 cd 0.287 cd 0.391 cd 0.218 ¢ 0.650cd  0.900 a 0.013 ¢ 0.272 ¢
CaNPK + straw 0.651 ¢ 0.573 cd 0.302 cd 0.402 de 0.230 ¢ 0.668cd 0903a 0.013bc 0.298 cd
CaPK 0.406 a 0.366 a 0.172 a 0.201 a 0.145a 0.393 a 0.923b 0.005 a 0.062 a
CaPN 0.634 ¢ 0.560 cd 0.292 cd 0.378 ¢ 0.223 ¢ 0649cd 0904a  0.012bc 0.273 ¢
NPK 0.648 ¢ 0.571 cd 0.295 cd 0415e 0.224 ¢ 0.665cd  0.902a 0.013 ¢ 0.298 cd

* different letters within column indicate significant differences between the means at 0.05 significance level.
Abbreviations: NDVI—Normalized Difference Vegetation Index, NDRE—Normalized Difference Red Edge Index,
VARI—Visible Atmospherically Resistant Index, TGI—Triangular Greenness Index, SIPI2—Structure Insensitive
Pigment Index 2, LCI—Leaf Chlorophyll Index, BNDVI—Blue Normalized Difference Vegetation Index, GNDVI—
Green Normalized Difference Vegetation Index, MCARI—Modified Chlorophyll Absorption in Reflective Index,
Ca—calcium, N—nitrogen, P—phosphorus, K—potassium, FYM—farmyard manure, micro—micronutrients.

In Experiment 2, where only winter rye was cultivated (rye monoculture) in various
fertilization treatment with mineral and manure fertilization (FYM), the lowest values of
most vegetation indices were observed for treatments without nitrogen fertilization, i.e., Ca
(where only lime was applied) and CaPK (where lime, phosphorus and potassium were
applied) (Table 5). The treatments where nitrogen fertilization was applied had the highest
values for almost all vegetation indices in all terms. The lack of phosphorus or potassium
fertilization did not significantly affect the values of most vegetation indices. The highest
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values of vegetation indices in most cases were observed for the treatment CaNPK + FYM
(complete mineral fertilization together with manure), but the differences in comparison
to treatments without potassium or without phosphorus were small. A significant effect
of phosphorus fertilization (treatment CaNPK vs. CaKN) was proven for almost all the
studied spectral indices in the first term (9 May 2022). Higher means of the spectral indices
were observed for CaNPK than for CaKN. The differences in subsequent terms were only
proven for BNDVI and SIPI2 in the second term (26 May 2022), for GNDVI and SIPI2
for the third term (3 June 2022) and for BNDVI in the fourth term (13 June 2022). In the
same experiment, there were no significant differences between the treatments CaNPK vs.
CaPN, which means that no significant effect of potassium fertilization were observed in
the monoculture of rye.

Table 6. Means of vegetation indices in field experiment 3 (with manure application and crop rotation)

and comparisons of means based on Tukey’s HSD.

9 May 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
Ca 0.592 a* 0.517 a 0.217 a 0.237 a 0.165 a 0.616 a 0.894 ab 0.008 a 0.292 a
CaPN 0.754b 0.715b 0.399b 0.427 b 0.283 b 0.851b 0.905b 0.009 b 0.808 b
NPK 0.745b 0.705b 0.392b 0.417b 0.279b 0.839b 0.904 b 0.009 b 0.780 b
CaKN 0.744 b 0.700 b 0.386 b 0410b 0.276 b 0.836 b 0.902 b 0.009 b 0.770 b
CaNPK 0.752b 0.709b 0.397b 0.425b 0.282b 0.848 b 0901 b 0.009 b 0.809 b
CaPK 0.591 a 0514 a 0.218 a 0.240 a 0.167 a 0.621 a 0.887 a 0.009 b 0.312a

26 May 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
Ca 0.652 a 0.538 a 0.240 a 0.193 a 0.181a 0.661 a 0.863 a 0.016 a 0.327 a
CaPN 0.778 b 0.702 b 0.387 b 0.346 b 0.272b 0.834b 0.903 b 0.017 a 0.611b
NPK 0.775b 0.703 b 0.390 b 0.344b 0.275b 0.832b 0.905b 0.017 a 0.603 b
CaKN 0.770b 0.696 b 0.381b 0.332b 0.270b 0.827b 0.903 b 0.017 a 0.598 b
CaNPK 0.776 b 0.705 b 0.395 b 0.353 b 0.279 b 0.840 b 0.902 b 0.017 a 0.635b
CaPK 0.654 a 0.537 a 0.242 a 0.197 a 0.181a 0.667 a 0.858 a 0.016 a 0.344 a

3 June 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
Ca 0.647 a 0.543 a 0.227 a 0.206 a 0.179 a 0.668 a 0.861 a 0.017 a 0.359 a
CaPN 0.776 b 0.715b 0.385b 0.369b 0.277b 0.830b 0914 b 0.017 a 0.521b
NPK 0.776 b 0.714b 0.392 b 0.374b 0.283 b 0.828 b 0.915b 0.018 a 0.521b
CaKN 0.771b 0.704 b 0.379b 0.362b 0.274b 0.822b 0911b 0.018 a 0.524b
CaNPK 0.773b 0.713b 0.389b 0.380 b 0.281b 0.828 b 0915b 0.018 a 0.521b
CaPK 0.656 a 0.548 a 0.236 a 0.215a 0.184 a 0.676 a 0.860 a 0.018 a 0.369 a

13 June 2022
Treatment BNDVI GNDVI LCI MCARI NDRE NDVI SIPI2 TGI VARI
Ca 0.513 a 0.450 a 0.233 a 0.286 a 0.188 a 0.525 a 0.888 a 0.010 a 0.189 a
CaPN 0.675b 0.607 b 0.340b 0.481b 0.253 b 0.713b 0.902 b 0.014b 0.379b
NPK 0.671b 0.605b 0.337b 0.473b 0.251b 0.711b 0.902 b 0.013b 0.380b
CaKN 0.666 b 0.598 b 0.333 b 0.460 b 0.249b 0.703 b 0.901 b 0.014b 0.370b
CaNPK 0.677b 0.609 b 0.339b 0.485b 0.252b 0.717b 0.901b 0.014b 0.390 b
CaPK 0.517 a 0.449 a 0.228 a 0.288 a 0.183 a 0.525a 0.887 a 0.011a 0.190 a

* different letters within column indicate significant differences between the means at 0.05 significance level.
Abbreviations: NDVI—Normalized Difference Vegetation Index, NDRE—Normalized Difference Red Edge Index,
VARI—Visible Atmospherically Resistant Index, TGI—Triangular Greenness Index, SIPI2—Structure Insensitive
Pigment Index 2, LCI—Leaf Chlorophyll Index, BNDVI—Blue Normalized Difference Vegetation Index, GNDVI—
Green Normalized Difference Vegetation Index, MCARI—Modified Chlorophyll Absorption in Reflective Index,
Ca—calcium, N—nitrogen, P—phosphorus, K—potassium, FYM—farmyard manure, micro—micronutrients.
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The results obtained in Experiment 3 (Table 7) were very similar to those obtained in
Experiment 1. Two treatments in which nitrogen fertilization was not applied (Ca—without
NPK mineral fertilization and CaPK—with phosphorus and potassium mineral fertlization)
had the lowest means of most of the vegetation indices for all terms. The comparison
of CaNPK vs. CaKN treatments, which is an evaluation of the effect of phosphorus
fertilization, showed significant differences (p-value < 0.05) for VARI in the first and in
the second term (9 May 2022 and 26 May 2022) and significant differences for MCARI
in the second and in the fourth term (26 May 2022 and 13 June 2022) (Table 7). Higher
values of these vegetation indices were observed for the CaNPK treatment in comparison
to the CaNK treatment. The comparison of CaNPK vs. CaPN treatments did not show any
significant differences, which means that potassium fertilization had no significant effect
on the studied vegetation indices.

Table 7. p-values based on the t-test for comparisons of vegetation indices between treatments with
complete fertilization (NPK) and with deficiency of phosphorus (KN) or potassium (PN). p-values
which indicate significant differences are marked in red.

Experiment 1 Experiment 2 Experiment 3
CaNPK vs. CaNPK vs. CaNPK vs. CaNPK vs.
NPK vs. KN NPK vs. PN CakKN CaPN CakKN CaPN
9 May 2022
BNDVI 0.625 0.110 0.017 0.670 0.215 0.427
GNDVI 0.995 0.129 0.003 0.208 0.308 0.183
LCI 0.997 0.134 0.001 0.196 0.387 0.751
MCARI 0.501 0.011 0.162 0.979 0.270 0.803
NDRE 0.925 0.151 0.001 0.153 0.403 0.917
NDVI 0.804 0.100 0.009 0.517 0.130 0.458
SIPI2 0.442 0.227 0.038 0.139 0.801 0.128
TGI 0.039 0.815 0.627 0.366 0.205 0.109
VARI 0.264 0.056 0.005 0.618 0.031 0.911
26 May 2022
BNDVI 0.694 0.391 0.045 0.261 0.553 0.740
GNDVI 0.662 0.219 0.054 0.414 0.423 0.700
LCI 0.646 0.340 0.071 0.394 0.201 0.338
MCARI 0.668 0.552 0.558 0.685 0.044 0.388
NDRE 0.641 0.310 0.091 0.388 0.226 0.277
NDVI 0.568 0.396 0.129 0.807 0.147 0.359
SIPI2 0.957 0.033 0.046 0.120 0.927 0.700
TGI 0.917 0.297 0.271 0.682 0.254 0.999
VARI 0.194 0.794 0.672 0.556 0.037 0.140
3 June 2022
BNDVI 0.827 0.640 0.085 0.900 0.826 0.516
GNDVI 0.726 0.366 0.044 0.974 0.363 0.792
LCI 0.430 0.331 0.159 0.557 0.145 0.628
MCARI 0.753 0.595 0.681 0.390 0.102 0.433
NDRE 0.349 0.270 0.214 0.509 0.147 0.472
NDVI 0.894 0.839 0.089 0.970 0.451 0.732
SIPI2 0.524 0.124 0.026 0.913 0.238 0.831
TGI 0.828 0.447 0.309 0.425 0.696 0.710
VARI 0.940 0.406 0.617 0.908 0.824 0.964
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Table 7. Cont.
Experiment 1 Experiment 2 Experiment 3
CaNPK vs. CaNPK vs. CaNPK vs. CaNPK vs.
NPK vs. KN NPK vs. PN CakN CaPN CaKN CaPN
13 June 2022
BNDVI 0.770 0.644 0.024 0.380 0.268 0.819
GNDVI 0.233 0.930 0.087 0.941 0.256 0.819
LCI 0.173 0.975 0.157 0.785 0.513 0.889
MCARI 0.815 0.624 0.203 0.159 0.047 0.641
NDRE 0.157 0.998 0.291 0.676 0.602 0.900
NDVI 0.562 0.656 0.076 0.743 0.269 0.650
SIPI2 0.125 0.534 0.586 0.406 0.864 0.802
TGI 0.212 0.984 0.464 0.056 0.632 0.875
VARI 0.882 0.061 0.475 0.749 0.331 0.411

Abbreviations: NDVI—Normalized Difference Vegetation Index, NDRE—Normalized Difference Red Edge
In-dex, VARI—Visible Atmospherically Resistant Index, TGI—Triangular Greenness Index, SIPI2—Structure
Insensitive Pigment Index 2, LCI—Leaf Chlorophyll Index, BNDVI—Blue Nor-malized Difference Vegetation
Index, GNDVI—Green Normalized Difference Vegetation Index, MCARI—Modified Chlorophyll Absorption in
Reflective Index, Ca—calcium, N—nitrogen, P—phosphorus, K—potassium.

3.2. Multivariate Differences between Treatments and Relationships between Vegetation Indices

PCA was performed using selected vegetation indices, i.e., TGI, NDVI, VARI and
SIPI2, as well grain yield (mean for recent 20 years). These indices for all four terms were
used as input variables in one PCA for each experiment. The remaining vegetation indices
were excluded from the analysis because of a very strong correlation (correlation coefficient
near to one) between them. The results of the PCA are presented in Figures 3-5. All the
results present a similar pattern, i.e., treatments without nitrogen fertilization are very
different in comparison to all other treatments where nitrogen fertilization was applied.
In Experiment 1, the PN treatment (fertilization with nitrogen and phosphorus, without
potassium) was slightly different because of higher values of SIPI2, however, the difference
was mainly along PC2, which explains only 4% of the total variability. In Experiment 2, the
effect of phosphorus fertilization was observed, and it was manifested by lower values of
SIPI2. In Experiment 3, the effects of phosphorus and potassium fertilization were very
small, and only nitrogen fertilization strongly affected the values of vegetation indices.
Most of the vegetation indices were very strongly positively correlated between each other
and strongly positively correlated with the grain yield of winter rye. Weaker correlations
were observed between SIPI2 with all other vegetation indices in Experiments 1 and 2. In
the case of Experiment 3, weaker correlations were observed between TGI and all other
vegetation indices in the first and second terms. The total variability explained by PC1 and
PC2 was very high in all three experiments (about 97-98%), which means that multivariate
differences presented in the Figures 3-5 characterize well the multivariate variability of the
studied treatments.
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Figure 3. The results of PCA presenting multivariate differences between treatments and relationships

between selected vegetation indices in various terms (e.g., 0509 indicates 5 May) and grain yield

in Experiment 1 (crop rotation without legumes and only mineral fertilization). Abbreviations:
NDVI—Normalized Difference Vegetation Index, VARI—Visible Atmospherically Resistant Index,
TGI—Triangular Greenness Index, SIPI2—Structure Insensitive Pigment Index 2, Ca—calcium, N—

nitrogen, P—phosphorus, K—potassium.
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Figure 4. The results of PCA presenting multivariate differences between treatments and relationships

between selected vegetation indices in various terms (e.g., 0509 indicates 5 May) and grain yield

in Experiment 2 (monoculture of rye).Abbreviations: NDVI—Normalized Difference Vegetation
Index, VARI—Visible Atmospherically Resistant Index, TGI—Triangular Greenness Index, SIPI2—
Structure Insensitive Pigment Index 2, Ca—calcium, N—nitrogen, P—phosphorus, K—potassium,

FYM—farmyard manure, micro—micronutrients.
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Figure 5. The results of PCA presenting multivariate differences between treatments and relation-
ships between selected vegetation indices in various terms (e.g., 0509 indicates 5 May) and grain yield
in Experiment 3 (with manure application and crop rotation). Abbreviations: NDVI—Normalized
Difference Vegetation Index, VARI—Visible Atmospherically Resistant Index, TGI—Triangular Green-
ness Index, SIPI2—Structure Insensitive Pigment Index 2, Ca—calcium, N—nitrogen, P—phosphorus,
K—potassium.

4. Discussion
4.1. Effect of Fertlization Treatments on Vegetation Indices

The results obtained in the study proved a very small effect of phosphorus and potas-
sium fertilization on vegetation indices. A very strong effect on vegetation indices was
caused by nitrogen fertilization. The effect of potassium and phosphorus fertilization was
observed only for selected vegetation indices in selected terms. The effect of phosphorus
fertilization was slightly stronger than of potassium fertilization. Especially in rye mono-
culture, where phosphorus deficiency in soil was the strongest, the effect of phosphorus
fertilization was more visible in earlier growth stages. In three out of four terms, a signif-
icant effect of phosphorus fertilization on SIPI2 was observed, which was lower for the
CaKN in comparison to the CaNPK treatment. Other similar studies on rye or other cereals,
in which relationships between nutritional status and spectral indices were evaluated,
confirming that nitrogen fertilization has the most important effect [37,38]. In our study,
the effect of nitrogen fertilization was proven by the results of multivariate analysis, i.e.,
PCA, where treatments without nitrogen fertilization and where phosphorus or potassium
have been applied were very different (distant in the biplot) to the treatments with nitrogen
fertilization. Such results were obtained in all three studied long-term experiments. It
confirms a very strong multivariate effect of nitrogen fertilization and a much lower effect of
potassium and phosphorus fertilization on all studied vegetation indices across all studied
growth stages as well the effect on grain yield. Two treatments where nitrogen was not
applied (without PK fertilization and with PK fertilization) were very similar according to
all studied vegetation indices and were characterized by a very low grain yield.

4.2. Relationships between Vegetation Indices, Soil and Crop Conditions

Various spectral vegetation indices (including e.g., NDVI, NDRE and MCARI) are
used to evaluate the nitrogen nutritional status of cereals and adjust nitrogen fertilization
rates [38,39]. Most of them are based on visible light and near-infrared bands. Higher
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values of vegetation indices are usually correlated with a better nitrogen nutritional status,
higher biomass and grain yield [40,41]. It was confirmed in our study that most of the
vegetation indices are strongly correlated positively with the grain yield of winter rye. The
similar correlations were observed for all studied growth stages, from the end of booting
to the beginning of development of grains. The strongest relationships with grain yield
were observed for SIPI2 (in two of the three experiments). Almost all of the vegetation
indices were very strongly positively correlated and only SIPI2 was moderately correlated
with other vegetation indices. It confirms that crop status can be evaluated by various
vegetation indices, because they give similar information about the growth of winter
rye. The relationships between the values of vegetation indices and the potassium or
phosphorus content in soil or in plants are usually weak, and strong correlations were only
observed with nitrogen fertilization. In a study by Wang et al. [42] a strong correlation
was found between various three-band vegetation indices (TBVI) and foliar phosphorus
content in Carex cinerascens. In a study by Rivero et al. [43] strong relationships were
found between the content of phosphorus in the soil of subtropical wetland and satellite-
derived NDVI. A study by Qiao et al. [28] proved that for maize, canopy bands were
significantly different between various phosphorus levels in soil: 763 nm, 815 nm, and
900-1000 nm (i.e., in red and near infra-red spectra). It means that vegetation indices
based on these bands can be used to assess phosphorus deficiency in maize. In a study
by Kawamura et al. [44], soil phosphorus and potassium fertility status was evaluated
using various spectral indices in legume-based pastures. Both phosphorus and potassium
contents were strongly related to the photochemical reflectance index (PRI). In a study
by Lu et al. [31] strong relationships between potassium content in the leaves of rice and
various vegetation indices were found. The relationships between nutrient content and
vegetation indices vary with soil and crop conditions. In a study on wheat by Pimstein
et al. [17] the results were inconsistent. There were significant and insignificant correlations
between selected vegetation indices and the content of potassium and phosphorus in wheat.
These relationships were quite different for various locations, which may mean that factors
other than phosphorus and potassium concentration have a significant effect on these
relationships. A study by Furlanetto et al. [32] proved the usefulness of various UAV-
derived vegetation indices for the evaluation of potassium foliar deficiency in maize. In
various studies, different sources of remote sensing data were used, ranging from ground-
based sensors or UAV sensors to satellite-derived imagery. The most promising methods for
site-specific fertilization, including potassium and phosphorus, are hyperspectral images
from UAV or satellite platforms. The relationships were quite different in different studies,
which means that various factors, e.g., crop and soil conditions, can influence spectral
vegetation indices used to assess the condition of crops.

4.3. Final Remarks and Possible Practical Application of the Results

In this study, phosphorus deficiency was mainly discriminated by the LCI and SIPI2
indices, but only in the rye monoculture. This is due to the fact that the availability of
phosphorus in the soil depends not only on chemical properties (soil reaction), but also
on the influence of plants on the availability of this nutrient, in which plants participate
through root secretions and microorganisms living in the plant rhizosphere. For several
dozen years, the unilateral influence of rye in monoculture allows for phosphorus uptake,
from hardly accessible forms to a lesser extent than in the case of crop rotation, where one
crop species leaves a part of the released phosphorus for the succeeding crop. It follows
that the deficiency of phosphorus in winter rye plants is visible only when there is an
extreme deficiency of the available forms of this nutrient in the soil. Lower values of the
vegetation indices in the monoculture of rye on the combination of Ca with manure than
on the mineral fertilization with CaNPK only indicate a nitrogen deficiency on the organic
fertilization without mineral fertilization. The dose of nitrogen in the form of manure is
comparable to the dose of nitrogen in the form of ammonium nitrate. However, in order for
plants to be able to take nitrogen from manure, it must be mineralized (to the NHy4 + form).
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The mineralization is carried out by soil microorganisms and the activity of this process
depends on temperature and humidity. These results confirm other studies’ findings that
the availability of nitrogen from manure is much lower than from mineral fertilizers [45,46].

The results of the study are moderately optimistic because they prove the possibility
of the detection of phosphorus deficiency in early growth stages of rye using vegetation
indices such as SIPI2. It can be used for precision agriculture, especially for variable
rate fertilization of phosphorus, which is important for optimized fertilization because of
economic and environmental constraints. The study in the future should be extended for
other crops of high importance, e.g., winter wheat or rapeseed.

5. Conclusions

The strongest effect on almost all vegetation indices of winter rye, in different terms
and in all three field experiments, was nitrogen fertilization. The effect of nitrogen fertil-
ization was much stronger than the effect of both phosphorus and potassium fertilization.
The treatments with nitrogen fertilization, regardless of whether they were fertilized with
other nutrients, had much higher values of most vegetation indices in comparison to treat-
ments without nitrogen. The effect of phosphorus and potassium fertilization on most of
vegetation indices was not significant. Only in Experiment 2, where rye was cultivated in
monoculture, was the effect of phosphorus fertilization significant for most of vegetation
indices in early growth stages. In the future, it is recommended to evaluate various veg-
etation indices in the early stages of rye development, where the phosphorus deficiency
may be more visible. Potassium fertilization has a weaker effect on the studied vegetation
indices in comparison to phosphorus fertilization. The main limitation of the study is the
limited number of growth stages in which the vegetation indices were studied. In further
studies, more attention should be paid to the early growth stages when nutrient deficiency
can be better detectable. Moreover, similar studies should be conducted for other crops in
which potassium and phosphorus deficiency can be more visible. Winter rye, because of
its relatively low fertilization requirements, is a crop which is quite resistant for nutrients
shortage in soil in comparison to crops such as winter wheat or rapeseed, which have much
higher fertilization requirements.
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