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Abstract: Soil salinity is one of the major abiotic constraints in agricultural ecosystems worldwide.
High salinity levels have negative impacts on plant growth and yield, and affect soil physicochemical
properties. Salinity also has adverse effects on the distribution and abundance of soil microorganisms.
Salinity problems have previously been addressed in research, but most approaches, such as breeding
for salt tolerant varieties and soil amelioration, are expensive and require years of efforts. Halotol-
erant plant growth-promoting rhizobacteria (HT-PGPR) secrete secondary metabolites, including
osmoprotectants, exopolysaccharides, and volatile organic compounds. The importance of these
compounds in promoting plant growth and reducing adverse effects under salinity stress has now
been widely recognised. HT-PGPR are emerging as effective biological strategies for mitigating the
harmful effects of high salinity; improving plant growth, development, and yield; and remediating
degraded saline soils. This review describes the beneficial effects and growth-promoting mechanisms
of various HT-PGPR, which are carried out by maintaining ion homeostasis, increasing nutrient
availability, and the producing secondary metabolites, osmoprotectants, growth hormones, and
volatile organic compounds. Exploring suitable HT-PGPR and applications in agriculture production
systems can play a crucial role in reducing the adverse impacts of salinity stress and sustainable crop
productivity.

Keywords: exopolysaccharides; osmoprotectants; growth hormones; soil microbes; volatile organic
compounds

1. Introduction

Food insecurity is a growing problem globally, owing to population growth, changing
climates, and declining agricultural land, which threaten sustainable agriculture [1,2]. By
2070, the world population is expected to rise from 8 billion to 10 billion people [3]. This
will require more farmland to meet the increasing food demand, but environmental factors
including rising temperatures, erratic rainfall patterns, drought and soil salinity already
limit land suitable for agricultural production [4]. Soil salinization is a major contributor
to the degradation of agricultural land and reductions in crop productivity, with salinity
affecting over 800 million hectares of land or 6% of the total worldwide land area [5]. Crop
growth is impeded by salinity due to the toxicity of certain ions, nutrient imbalances, and
osmotic stress [6], and low levels of organic matter in the soil, all of which can amplify
the unfavourable effects of salinization [7,8]. The replacement of the ions responsible for
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salinity, either chemically or through the addition of organic materials has been effective in
the amelioration of saline soils [9]. The productivity of such saline soils can therefore be
increased through the adoption of new sustainable approaches, such as the use of inorganic
or organic soil amendments and salt-resistant crop varieties [10].

Based on their responses to saline conditions, plants can be separated into two cate-
gories, glycophytes and halophytes, with the majority of plant species being glycophytes,
and therefore relatively intolerant to salinity [11,12]. Halophytes, salt tolerant species,
have evolved specialised strategies for survival in these conditions, such as root and shoot
salt exclusion, ion compartmenting into various organs, and the synthesis of compatible
solutes. The metabolic capacity of plants to respond to salt stress can also be enhanced
by microbial interactions [13]. Research has shown many instances where microorganism-
based plant biotechnology has proven to be more effective than traditional plant breeding
or genetic modification techniques, and even soil amelioration approaches in alleviating
soil constraints [14]. Microbes such as halotolerant plant growth-promoting rhizobacteria
(HT-PGPR) can use a wide range of metabolic and genetic strategies to assist plants in
mitigating the effects of salt stress and other abiotic stresses caused by harsh environmental
conditions [15,16]. HT-PGPR are able to produce a wide range of secondary metabolites
that aid in plant protection and assist in maintaining growth under saline environments,
for both the symbiotic plant and bacteria species [17,18]. Most of these metabolites are only
formed under abiotic stress conditions and enable the plant to survive in extreme climatic
conditions, by acting on vital survival mechanisms including ion transport systems and
uptake of osmoprotectants (Figure 1) [19]. Associated organic compounds have recently
been shown to support plants in better adapting to saline conditions [20]. This review
focuses on the important roles of HT-PGPR and their secondary metabolites, which could
be used as next-generation bioinoculants for salt-affected agroecosystems.
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Figure 1. Effects of salinity stress and associated tolerance mechanisms induced by halotolerant plant
growth-promoting rhizobacteria (HT-PGPR) in both plant roots and shoots.

2. HT-PGPR: Diversity and Their Effect on Crop Production

The use of HT-PGPR has recently emerged as a viable solution to issues associated
with increasing soil salinity in agricultural lands [21]. These halophilic and halotolerant
microorganisms are already adapted to thrive in salty environments [22] and through
symbiotic relationships with associated plant species, they can influence host plant sur-
vival, root development, and growth (Figure 2) [23]. HT-PGPR can not only recognise and
react to signal molecules secreted by plant roots, but also secrete a diverse range of sig-
nalling molecules that influence plant behaviour. These microbes also synthesis beneficial
molecules including siderophores, phytohormones, volatile organic compounds (VOCs),
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exopolysaccharides (EPS), and other metabolites, along with solubilising nutrients such
as phosphorus (P), zinc (Zn), and potassium (K) (Figure 2) [14,15]. These metabolites can
assist plants through a wide range of biochemical, physiological, and molecular responses,
including preserving ionic homeostasis through Na+/K+ transporters, enhancing water
capacity, and activating SOS (Salt-Overly Sensitive) genes [24,25], together with acting as
osmoprotectants, antioxidants, and compatible solutes. This three-tiered interwoven action–
cumulation association between HT-PGPR and plant salt stress responses includes the
existence of the bacteria itself in hyperosmotic conditions, the induction of salt-resistance in
crops, and the improvement of soil quality [26] (Figure 1). Crop salt stress has been found
to be reduced by several HT-PGPR species, including Azospirillum, Arhrobacter, Burkholderia,
Alcaligenes, Bacillus, Enterobacter, Klebsiella, Microbacterium, Streptomyces, Pseudomonas, Pan-
toea, and Rhizobium [27]. These species may occur naturally around crop species or can be
isolated from native halophytic plants.
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Figure 2. Effect of HT-PGPR on plant growth and salinity tolerance in glycophytic plants. The plate
shown includes potential HT-PGPR isolated from native halophytes and consists of rhizobacteria and
endophytes. Beneficial effects are shown in blue boxes, the underlying processes in orange boxes,
and benefits plants in the last column.

Wheat inoculated with HT-PGPR Enterobacter cloacae, Pseudomonas putida, Pseudomonas
fluorescens, and Serratia ficaria, then cultivated in naturally saline fields (ECe = 15 dSm−1),
had increased germination rates, percentage, and index by 51%, 43%, and 123%, respec-
tively, in comparison to the nontreated controls, along with increased yield [28]. Another
study found that the shoot and root fresh and dry biomass weights of Brassica juncea,
cultivated in saline conditions (ECe = 12 dSm−1), significantly increased after inoculation
with salt-tolerant Pseudomonas azotoformans JMM15 and Pseudomonas argentinensis HMM57
strains [29]. Additionally, an F-11 halotolerant Staphylococcus jettensis F1 increased the dry
biomass of Zea mays by a factor of three when plants were grown under 200 mM saline
stress [30]. Pseudomonas putida performed best among strains tested under high salinity
(15 dSm−1), increasing plant height by 52%, root length by 60%, grain output by 76%,
100-grain weight by 19%, and straw yield by 67%, in wheat compared to the uninoculated
crop [31]. Although it has been shown that HT-PGPR may improve crop production (in
salt-affected soil) and reduce salinity stress, there is still much to learn about the interactions
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and processes that take place between plants and microorganisms under multidimensional
stresses like salinity.

3. HT-PGPR and Their Effects in Mitigating Salt Stress in Crops

HT-PGPR provide plants with resistance to salt stress through several key processes.
One such process is the regulation of the salt overly sensitive (SOS) pathway, which
is involved in salt influx/efflux across membranes, through metabolites and associated
gene expression patterns. It has been shown that the SOS1 gene is directly regulated by
metabolites such as EPS, VOCs, and suitable solutes (i.e., proline, glycine betaines, and
trehalose) [25], which also direct stress regulation in SOS genes [3], HKT1 transporter
(high-affinity K) expression [32], and other genes implicated in the reduction in salt stress,
i.e., ethylene biosynthesis and antioxidant protein encoding genes [33,34]. Examples of
the beneficial effects of HT-PGPR, along with how they help plants cope with saline
conditions in different plants, are reviewed and presented in Table 1. The following sections
further discuss the importance and beneficial aspects of HT-PGPR, how metabolites are
biosynthesised or promoted by HT-PGPR, and the role of these mechanisms in improving
plant salinity tolerance.

Table 1. Effects of inoculating plant species with various halotolerant plant growth-promoting
rhizobacteria (HT-PGPR) species. Table summarises genes involved, mechanisms to increase salt
tolerance, and actual effects observed in different plants.

Plant
Species

HT-PGPR
Species

Gene/s
Involved

Mechanism to Mitigate
Stress Effect Observed References

Arabidopsis thaliana L.

Bacillus oryzicola
YC7007

RD22, KIN1, RD29B,
RD20, RD22, and

ERD1

Stem and the root of the
seedlings released

stress-related genes

Enhanced plant tolerance
to salt stress [35]

Pseudomonas
putida PS01 APX2 and GLYI7 APX2 and GLYI7 genes

were downregulated

ABA signalling, jasmonic
acid production route,

ROS scavenging,
detoxification

[36]

Pseudomonas
knackmussii MLR6

NHX1, HKT1, SOS2,
SOS3, SAG13, and

PR1

Enhanced stomatal
conductance,

transpiration rate,
chlorophyll, and
carotenoid levels

Reduced electrolyte
leakage and priming ROS
accumulation increasing
cell membrane stability

[37]

Bacillus
amyloliquefaciens

SQR9
NHX1 and NHX7 Involved in reducing

GSH biosynthesis

Reduced ion toxicity by
sequestering Na+ into
vacuoles and releasing

Na+ from the cell

[38]

Burkholderia
phytofirmans PsJN

Upregulation of
RD29A and GLYI7,

and downregulation
of LOX2

Enhancement of proline
and transcription of

genes related to abscisic
acid signalling and

downregulated gene
Lipoxygenase 2

Abscisic acid signalling,
ROS reduction,

detoxifying, jasmonate
synthesis, and ion

transport

[39]

Paenibacillus
yonginensis DCY84T

AtRSA1, AtVQ9 and
AtWRKY8

Upregulated salt-stress
genes

Promoted more resistance
to salinity, drought, and

aluminium stresses
[40,41]

Enterobacter sp. EJ01

DREB2b, RD29A,
RD29B, RAB18,

P5CS1, P5CS2, MPK3,
and MPK6

Upregulated salt-stress
genes

Promoted more resistance
to salinity and enhanced

plant growth
[42]

Bacillus subtilis GB03 HKT1
Down- and upregulates

HKT1 in roots and shoots,
respectively

Decreased total plant Na+

accumulation [23]
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Table 1. Cont.

Plant
Species

HT-PGPR
Species

Gene/s
Involved

Mechanism to
Mitigate Stress Effect Observed References

Bacopa monneri L.

Dietzia
natronolimnaea

STR1

SOS1, SOS4, TaST,
TaNHX1, TaHAK,

and TaHKT1

Reduction in
ABA-signalling,

upregulated TaABARE
and TaOPR1

Abscisic acid
signalling, ROS

scavenging,
antioxidant enzyme

activity, enhanced ion
transporter expression,

high K+/Na+ ratio

[24]

Bacillus pumilus
STR2,

Exiguobacterium
oxidotolerens

STR36

-

Mixture of plant
growth-promoting

traits under primary
and secondary saline

condition

Produced higher yield,
high proline/lipid

content peroxidation
[2]

Cicer arietinum L.

Planococcus
rifietoensis (RT4)
and Halomonas
variabilis (HT1)

-
Biofilm and

exopolysaccharides
production

Improved crop growth,
soil aggregation, and

soil fertility
[43]

Glycine max L.

Arthrobacter
woluwensis AK1 -

Reduced endogenous
ABA and controlled
antioxidant activity

Mitigated salinity
stress and increased

plant growth
[44]

Microbacterium
oxydans,

Arthrobacter
woluwensis,
Arthrobacter

aurescens, Bacillus
aryabhattai, and

Bacillus
megaterium

-

Increased production
of IAA, GA,

siderophores, and
phosphate

solubilisation

Increased antioxidant
enzymes and K

absorption; reduced
Na+ in plant tissue;

phytohormone

[45]

Pseudomonas simiae
AU

P5CS, PPO and
HKT1

Downregulated HKT1,
LOX, PPO, and P5CS

genes

Increased chlorophyll,
phosphate

solubilisation, IAA,
and siderophores;

decreased root surface
in saline

[46]

Pseudomonas sp.
strain AK-1 HTK1

Improve K+/Na+ ratio
and

Exopolysaccharide
production binds free

Na+ from soil

Increased shoot/root
length and decreased

Na+/K+ ratio
[33]

Pseudomonas simiae
AU VSP2

Increase vegetative
storage protein (VSP),

gamma-glutamyl
hydrolase (GGH), and

RuBisCo proteins

Reduced Na, increased
K and P in soybean
seedling roots, high

proline and
chlorophyll content

[47]

Helianthus annuus
L.

Pseudomonas
libanensis TR1 -

ACC-deaminase and
exopolysaccharide

production

Ni and Na+

accumulation potential
increased along with

plant growth.

[48]

Pseudomonas spp. - Upregulating of ACC
deaminase

Improved P and K
contents, and K+/Na+

ratio in shoot
[49]
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Table 1. Cont.

Plant
Species

HT-PGPR
Species

Gene/s
Involved

Mechanism to
Mitigate Stress Effect Observed References

Hordeum vulgare L.

Bacillus mojavensis,
B. pumilus and
Pseudomonas

fluorescens

S1 and S3
ACC deaminase, IAA,

and proline
production

Reduced plant Na
concentration,

stimulated root
growth, improved
water and nutrient

absorption

[50]

B. aryabhattai MS3 BZ8, SOS1, GIG,
and NHX1

Increased salt stress
resistance and
accumulation

Adaptation of plant
under saline condition [51]

Bacillus
amyloliquefaciens

SN13
DHN

Upregulated salt
stress-responsive

genes and
protein-related genes

Lipid peroxidation
and electrolyte leakage
reduced; increased rice

biomass, water
content, proline, and
total soluble sugar

[52]

Bacillus megaterium
ST2-1 - IAA production

Stimulated the growth
of rice roots and dry

biomass
[53]

Pseudomonas
pseudoalcaligenes

ST1, Bacillus
pumilus ST2

EU440977 and
FJ840535

Accumulation of
proline decrease with

inoculation,
antioxidative activity

Enhanced plant
growth by ROS

scavenging and higher
accumulation of
osmoprotectant

[54]

Puccinellia
tenuiflora L.

Bacillus subtilis
(GB03) -

Upregulated PtHKT1;5
and PtSOS1 genes,

downregulated
PtHKT2;1

Na homeostasis
modulation, exclusive

K+ absorption
[55]

Solanum
lycopersicum L.

Leclercia
adecarboxylata MO1 - ACC deaminase and

IAA production

Increased soluble
sugars: organic

glucose, sucrose,
fructose, malic, amino

acid, and proline

[56]

Sphingobacterium
sp. BHU-AV3 - Reduction in ROS

concentration in plant

Enhanced antioxidant
activities and energy

metabolism
[57]

Enterobacter sp.
EJ01

DREB2b, RD29A,
RD29B, and RAB18

Downregulated P5CS1
and P5CS2, and

upregulated MPK3
and MPK6

Biosynthesis, defence
pathway modulation,

salt response
[42]

Pseudomonas putida
UW4 Toc GTPase

Toc GTPase genes
were upregulated and

reduction in ACC
deaminase

Increased shoot length
and chlorophyll

concentration
[58]

Trifolium repens L. Bacillus subtilis
(GB03) -

Reduced shoot and
root Na+, improving

K+/Na+ ratio

Decreased Na+,
increased chlorophyll,
leaf osmotic potential,

cell membrane
integrity

[59]
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Table 1. Cont.

Plant
Species

HT-PGPR
Species

Gene/s
Involved

Mechanism to Mitigate
Stress Effect Observed References

Triticum aestivum L.

Pseudomonas
aeruginosa GI-1, and
Burkholderia gladioli

GI-6

-

P solubilisation, catalase
activity, IAA production,

N assimilation, and
siderophores production

Encouraged growth and
yield and improve soil

fertility
[60,61]

Arthrobacter
nitroguajacolicus -

Upregulated 152 genes
whereas 5 genes were

downregulated

Amplified ACC, IAA,
siderophore, and

phosphate solubility. ROS
detoxification, Na+

homeostasis, abiotic
stress

[62]

Serratia marcescens
CDP-13 - Increased salt tolerance in

plant

ACC deaminase,
phosphate solubilisation,
siderophore, indole acetic

acid, N fixation, and
ammonia synthesis

[63]

Pseodomonas sp and
Enterobacter cloacae

(R-10)
B-22 and S-49

K and Zn solubilisation
for identifying antifungal

activity

Enhanced K+ uptake, dry
matter of wheat [64]

Hallobacillus sp. SL3
Bacillus

halodenitrificans PU62
acdS

IAA production and
siderophore production,
phosphate solubilising,

and siderophore
production

Increased root elongation
and dry weight [65]

Zea mays L.

Serratia liquefaciens
KM4

Upregulation of
stress-related genes

(APX, CAT, SOD,
RBCS, RBCL,

H+-PPase, HKT1, and
NHX1)

Regulating redox
potential and

stress-related gene
expression

Higher leaf gas exchange,
osmoregulation,

antioxidative defence
mechanisms, and

nutrient uptake boosted
maize growth and

biomass production

[66]

Azospirillum lipoferum,
Azospillum sp.,

Azotobacter
chroococcum,

Azotobacter sp., and
Bacillus sp.

- Exopolysaccharide
inoculation in the soil

Increased root and shoot
dry weights, chlorophyll

and carotenoids,
restricted Na and Cl

uptake, and increased
shoot N, P, and K

[67]

Abelmoschus
esculentus L.

Enterobacter sp.
UPMR18 X55749

ROS pathway
upgradation and
enhancement in

antioxidant enzyme
activities

Higher germination,
growth, and chlorophyll
improved salt tolerance

[68]

4. Plant Growth-Promoting Mechanisms by HT-PGPR
4.1. HT-PGPR Mediated Increased Availability of Soil Nutrients

Reduced bioavailability of nutrients due to altered physicochemical properties is a
common problem of salinity stress [69–71]. The composition and level of salinity, the
concentration of nutrients, and environmental conditions all have an impact on the inter-
action between mineral nutrition and salinity [72]. Continuous applications of chemical
fertilisers can be a temporary solution to address these issues, but pose environmental
risks, reduces soil health, and, paradoxically, can increase soil salinity [73]. Therefore, the
use of beneficial microorganisms to enhance nutrient bioavailability, rather than chemical
amendments, is potentially a more environmentally friendly and sustainable approach to
crop production [74].

Nitrogen (N) is necessary for plant growth and productivity, as it is primarily involved
in the synthesis of enzymes, proteins, RNA, and DNA within plant cells [75]. High chloride
(Cl−) content, and therefore uptake in saline soils, can greatly diminish the uptake of N
and sulphur (S) by plants [70]. The ability of HT-PGPR to increase essential soil nutrient
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bioavailability is possible through a wide range of action mechanisms. N is abundant in the
air, but plants can only absorb it in the form of nitrate (NO3

−) or ammonium (NH4
+) [76].

N-fixing bacteria, such as Pseudozyma rugulosa, Cryptococcus flavus, and Pseudozyma antarc-
tica can convert atmospheric N into plant-available NO3

− or NH4
+, especially under saline

conditions, through a loose symbiosis mechanism also known as biological nitrogen fixa-
tion [77–79]. Typically limited to bacteria, it has also been shown that a soil-isolated yeast
strain, Candida tropicalis, possesses an intriguing and remarkable ability to fix N [80], as well
as the NH4

+-producing yeast Meyerozyma [81,82]. These N-fixing bacteria, known as rhi-
zobacteria, live as free-living ectorhizospheric or endophytic symbiotics on plant roots [83].
These rhizobacteria are able to fix atmospheric N into ammonia due to the presence of
FixABX genes, which are necessary for free-living bacteria, and Nif genes, which encode the
production of nitrogenase enzymes that reduce atmospheric N into ammonia [84]. Under
saline stress, the host plants are then able to directly absorb the fixed plant-available N,
relieving some of the stress on the plant caused by salinity-induced N deficiencies [85].

P is essential in many biochemical processes and a component of nucleic acids, nu-
cleotide coenzymes, and metabolic intermediates [86]. Plants under severe salt stress often
have a deficiency in P [87], owing to competition with Na+ ions for membrane-transporter
binding sites. When applied to soil, HT-PGPR with phosphate-solubilising capabilities,
known as phosphate-solubilising bacteria (PSB), can significantly aid in raising soil P
availabilities. PSBs have been shown to increase yields up to 50% without increasing the
need for P fertilisers [88]. To meet the needs of plants, PSBs dissolve and absorb insoluble
phosphate (Pi) to make it available for plant uptake. Two distinct types of PSBs can be
identified by examining their P-dissolving patterns, (i) those that secrete organic acid to
dissolve Pi compounds, and (ii) those that secrete phosphatase to enzymatically mineralise
Pi compounds. By lowering soil pH and creating a P-offering micro-area around the plant
rhizosphere, applications of both types of PSBs increase the plant’s access to P, and boost
the efficiency of other beneficial microorganisms such as Rhizobium and Trichoderma [89].
The PSBs secretes low-molecular-weight organic acids, such as gluconic acid, citric acid,
succinic acid, propionic acid, and lactic acid, as by-products of sugar metabolism in root
exudates, which aid in the digestion and assimilation of nutritionally important ionic
compounds [90].

HT-PGPR are also able to solubilise organic K and Zn in the soil, using organic acid
secretions and a resulting change in soil pH [46,79]. Rhizobacteria can also increase soil Fe
bioavailability by synthesising siderophores, which are low-molecular-weight (0.5–1 kDa)
compounds with functional groups of hydroximates and catechol’s, which have a high
affinity for ferric ions and a reversible binding mechanism [91,92]. Plants can then easily
access the bacterial siderophore–Fe complexes that have formed, absorbing them via
chelate destruction, direct uptake, or even hypothesised ligand exchanges [93]. Plant-made
siderophores (phytosiderophores) may initiate the ligand exchange reaction between the
bacterial siderophores and the Fe-containing complex, allowing the plants to take up the
transferred Fe [94].

4.2. HT-PGPR Mediation Increase Availability of Indole-3-Acetic Acid

Indole-3-acetic acid (IAA) is a key plant hormone, important for seed germination,
improved root and leaf growth, and reduction in adverse effects of salinity to plant produc-
tion [95]. Exogenous production of phytohormones is not limited to only plants, in fact,
many HT-PGPR have the ability to produce IAA, making them perfect bioinoculants to
increase symbiotic plant IAA levels, which would improve plant growth under salinity
stress [68,71,96]. HT-PGPR are able to use L-tryptophan, found in root exudates, as a pre-
cursor in the production of exogenous bacterial IAA [97], with the amount of IAA produced
being altered by environmental conditions such as pH, temperature, osmotic stress, and
carbon limitation [98]. The hydrolysis of IAA conjugates has also been hypothesised to
result in IAA formation. Inducible adenylate cyclase is produced by Pseudomonas, Bacillus,
Klebsiella, Azospirillum, Enterobacter, and Serratia [99]. Root-associated bacteria that produce
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IAA may also aid in nodule formation and stimulate the expansion of root system by means
of the development of lateral roots [100]. The exogenous IAA synthesised by HT-PGPR
helps maintain a healthy ratio of endogenous IAA in the roots, promoting root growth and
development, increasing root mass and size, encouraging root exudations, and forming
lateral roots, allowing the plant to make greater soil contact. In high salt environments,
plant root systems can therefore be improved with symbiotic HT-PGPR relationships, in-
creasing capacity for nutrient exchanges, water uptake, and growth [101–103]. This, in turn,
can help plant leaves continue to grow, keeping photosynthetic rates and yields relatively
unchanged. Table 2 gives examples of isolated IAA-producing microbes that have signifi-
cantly increased shoot length and weight (fresh and dry), root length and weight (fresh and
dry), and germination rates of salt-sensitive crop seeds grown under saline conditions. In
addition, control plants showed either slight improvements or no effects from the selected
microbes [93,104,105].

Table 2. Indole-3-acetic acid producing halotolerant plant growth-promoting rhizobacteria (HT-
PGPR) and their role in plants.

HT-PGPR Crop Role in Plants Reference

Streptomyces fradiae NKZ-259 Tomato Increases root and shoot length [1]

Stenotrophomonas maltophilia
AVO63 Avocado Protection against white root

rot [106]

Pseudomonas entomophila PE3 Sunflower
Antioxidant,

hydroxyl-scavenging;
reduction in Na+ accumulation

[107]

Arthrobacter pascens ZZ21 Forest soil
Enhanced plant growth and

remediate
fluoranthene-contaminated soil

[108]

Rhizobium sp. MRP1 Pea Produce HCN, ammonia and
EPS [109]

Paenibacillus xylanexedens
(PD-R6) and Enterobacter cloacae

(PD-P6)
Date palm

Enhances nutrient uptake in
roots and improves plant

growth
[110]

Burkholderia cepacia 0057 Maize Enhancement of disease
control [111]

Bradyrhizobium japonicum Wheat Improved growth and yield [112]

Bacillus tequilensis SI 319,
Pseudomonas lini SI 287, P.

frederiksbergensis SI 307, and
Brevibacterium frigoritolerans SI

433

Soil sample Increased plant growth [113]

Bacillus sp. PSB10 Chickpea Reduced uptake of chromium [114]

Pseudomonas putida LWPZF Katsura
Improved plant growth and
contained anti-heavy-metal

properties
[115]

4.3. HT-PGPR Modulations of Ethylene

A key phytohormone that acts as a stress signal is ethylene, and at low concentrations
triggers a number of defence mechanisms that help plants manage biotic and abiotic
stresses [116]. The second peak of ethylene synthesis, also called stress ethylene, occurs only
under conditions of prolonged and extreme stress. Roots are negatively impacted by stress
ethylene as their development is stunted, which in turn affects root function, vegetative
growth, and, ultimately, productivity and yield [87,117,118]. Plants produce ethylene from
its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), which is oxidised by the
enzyme ACC oxidase. Through the production of the enzyme ACC deaminase (ACC-D),
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some HT-PGPR with the AcdS genes can convert ACC found in root exudates into ammonia
and ketobutyrate. As a result, the by-products are used by the rhizobacteria as their sole
source of C and N [119]. In stressed plants, HT-PGPR and ACC-D activity of at least 20 nmol
mg−1 h−1 can dramatically reduce the total pool level of ethylene precursors, and may
diminish the second peak of ethylene production by as much as 90% [120]. The subsequent
drop in ethylene concentration improves plant resistance to stress, restoring root function
and allowing it to flourish despite adverse conditions [121]. Ethylene also interacts with
other phytohormones either by manipulating gene expression or by affecting transcription
factors [122], therefore the fine-tuning of ethylene levels may be a pathway to increased
salt tolerance.

4.4. HT-PGPR Improves Osmoprotectants, Compatible Solutes, and Ion Homeostasis

The optimal operation of a plant’s physiological and metabolic functions depends
on water homeostasis. Excessive salt accumulation in soil disrupts a plant cell’s ability to
absorb water, and causes ionic toxicity and osmotic stress (Cl− and Na+ accumulation),
which in turn prevents plant growth and development [123]. Numerous vital physiological
processes, such as stem and root growth, photosynthesis and transpiration, cell structure
maturation, hormonal status, nutrient uptake, and enzyme activity are therefore disrupted
by the abundance of ions and hypertonic conditions [124,125]. To adapt to saline conditions,
HT-PGPR mutually partnered with plants, will produce metabolites with low molecular
weights that are recognised as relevant solutes, or osmoprotectant substances, which then
aid in plant stress reduction, maintain high turgor pressure, and equalise ion efflux across
the plasma membrane (Figure 3) [126]. To help plants with their water shortage, these
substances also regulate stomatal opening, transpiration rate, and hydraulic conductiv-
ity [127,128]. Among the many suitable solutes produced by HT-PGPR, glycine betaine,
carnitine, and especially proline, a reactive oxygen species (ROS) scavenger, are vital to
plants [129,130]. Through processes like those shown in Figure 2, rhizobacteria help plants
recover from abiotic stress by either acquiring these molecules from the surroundings
or de novo production, depending on the stress level. Proline synthesis in particular is
upregulated by plants during osmotic stress [131], as well as in response to HT-PGPR [17],
enhancing control of cytosolic pH and maintain cell protein structures [132]. Most bacteria
require the combined enzyme activity of glutamyl phosphate reductase, glutamyl kinase,
and 1-1-pyrroline-5-carboxylate reductase to synthesise proline, with genes ProB, ProA,
and ProC inducing this catalytic reaction [129,133]. Proline dehydrogenase enzyme activity
has been shown to increase under salinity stress, leading to N-fixing bacteria showing
higher proline metabolism [134,135]. Under saline circumstances, an HT-PGPR (Bacillus
fortis strain SSB21) was involved in improved growth, increased chlorophyll and protein
levels, and water use efficiency, due to increased proline synthesis [136]. Inoculation of
Mentha arvensis with HT-PGPR from the genera Exiguobacterium, Bacillus, and Halomonas,
also had a greater foliar proline concentration, compared to control plants [2].

Inoculating salt-sensitive plants with HT-PGPR can help to maintain ion homeostasis
(K+/Na+), promote osmolyte accumulation, and increase nutrient (P, N, K, Mg, and Ca)
bioavailability, which confers resistance against the negative consequences of salinity.
Under 300 mM salt stress, the injection of salt-resistant Paenibacillus yonginensis DCY84T
onto ginseng seeds resulted in increased levels of proline, polyamine, and total soluble
sugars. Additionally, the treatment improved the nutritional availability of salt-stressed
plants, ABA production, chlorophyll content, and the stimulation of stress-responsive
genes [137]. Another suitable solute, glycine betaine (GB), accumulates in the cytosol of
plants to counteract the effects of salt stress by reducing osmotic stress and preserving
plant cell integrity as a whole [138,139]. When administered exogenously, GB improved
salt tolerance in soybean, as evidenced by lower Na+ concentrations and increased catalase
(CAT) and superoxide dismutase (SOD) activity in treated plants [140]. In Bacillus subtilis,
GB production is initiated by the activity of two enzymes, (i) a precursor molecule, choline,
an intermediary chemical GB aldehyde, is oxidised by type III alcohol dehydrogenase,
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and (ii) an end product called GB aldehyde dehydrogenase [129,141,142]. The generation
of GB in transgenic plants often involves the choline oxidase enzyme from Arthrobacter
globiformis, which turns choline into GB [143]. Increased concentrations of GB were seen
in maize after being injected with HT-PGPR Bacillus subtilis HL3RS14, with plants under
salt stress growing quicker [144]. Similarly, Acacia gerrardii infected with Bacillus subtilis
BERA71 produced more GB and osmolyte under saline conditions [145].
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On exposure to salt stress, ectoine (1,4,5,6-tetrahydro2-methyl-4-pyrimidinecarboxylic
acid), another osmolyte, accumulates in the cytoplasm of plants [146]. Three enzymes,
L-ectoine synthase, L-2,4-diaminobutyric acid aminotransferase, and L-2,4-diaminobutyric
acid acetyltransferase, are involved in the synthesis of ectoine in bacteria, activated by
EctB, EctA, and EctC genes [147]. In HT-PGPR, ectoine production quantity is inversely
correlated with the rise in intracellular osmotic strain caused by various factors, such as
salt stress [148]. In an experiment, it was discovered that ectoine, which was isolated
from the halophilic Chromohalobacter salexigens KT989776, improved flax seed germination
and decreased salt accumulation, phenoloxidase, and peroxidase activities in crops [149].
Trehalose, nonreducing disaccharides with two glucose moieties linked by α-1,1-glycosidic
linkages, is another osmoprotectant used by HT-PGPR [150]. Trehalose cannot be produced
by plants; however, HTPGPR play a significant role in supporting plants under salt stress
by forming this osmoprotectant. Trehalose synthase, Alpha-trehalose-phosphate synthase,
and Trehalose-6-phosphate phosphatase are a few of the enzymes that are included in
trehalose production in HT-PGPR and are encoded by the OtsAB genes [151]. Most bacteria
use the TreS and TreY/TreZ pathways to synthesise trehalose and tolerate the effects of salt
stress, with trehalose levels increased during salinity and drought stress, similar to many
other osmoprotectants [152,153]. Azospirillum brasilence, with the trehalose biosynthesis
gene overexpressed, was used to inoculate maize, which then had increased root and leaf
biomass, and increased ability to withstand osmotic stress. Similarly, when Rhizobium
etli with trehalose-6-phosphate synthase overexpression, was inoculated into Phaseolus
vulagris, plants showed osmotic stress resistance, higher number of nodules, and increased
plant biomass [154]. Osmolyte accumulation and synthesis by HT-PGPR is therefore one
of the critical processes that contribute to the reduction in multiple stress components
caused by salinity. To decrease agricultural losses, salt-resistant transgenic crops may be
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created by genetically manipulating the genes from HT-PGPR that produce secondary
metabolites [152].

4.5. Production of Exopolysaccharides and Volatile Organic Compounds by HT-PGPR

Exopolysaccharides (EPS) are often generated by HT-PGPR metabolites. Under salin-
ity conditions, EPS production alone accounts for 40–90% of the weight of the bacterial
extracellular matrix [108,155]. EPS facilitate microbial adhesion to plant roots, aid in biofilm
formation to prevent cells from drying out due to salt stress, and increases the movement
of bacteria that are connected to plant roots [156–158]. The phase of bacterial development,
the composition of the medium, and exposure to environmental stresses, such as salt and
dehydration, all affect EPS production [159,160]. Additionally, it has been shown that EPS
have strong antioxidant properties and give bacteria resistance to ROS-dependent cell
death. For example, the endophytic bacteria Gluconacetobacter diazotrophicus was shown
in vitro and during rice plant colonisation, to be protected against oxidative destruction
by EPS [161]. Similarly, the multilayer antioxidant activity of EPS generated by the halo-
tolerant endophyte Glutamicibacter halophytocola KLBMP 5180 was studied to mitigate the
destruction caused by salt stress on crops [162]. Another activity of EPS is soil aggregation
and enhancing root-adhering soil through the formation of a sheath around roots, which in-
creases water availability and nutrient (P, N, Fe, and K) accumulation from the soil [69,163].
Exopolysaccharides EX01 enhanced rice growth and improved osmotic stress tolerance
through the increased expression of the HKT1/K+ transporter, minimising Na+ inflow and
therefore reducing ionic toxicity in plants [23].

By regulating important plant metabolic processes and maintaining soil physicochemi-
cal properties, EPS-producing bacteria may also help increase crop production under saline
conditions [43,164]. In addition to these well-recognised functions, bacterial EPS are also
associated with cellular sensing and rhizosphere recognition, the protection of plants from
phytopathogens, and act as a carbon source under nutrient-deficient settings [165,166]. In a
severely salinized field (EC > 10 dS/m), Tiwari et al. [166] reported that inoculation with
EPS-producing Pseudomonas sp. increased the yield of sunflower. Analysis also showed a
decrease in the prevalence of charcoal rot virus in Macrophomina phaseolina under salinity
soil after HT-PGPR inoculation. Salt-tolerant bacteria such as Bacillus insolitus, Bacillus amy-
loliquefaciens, Pseudomonas syringae, and Microbacterium spp. may improve wheat growth
by preventing Na+ input into the stele of plants under salinity stress [167]. Mung beans
treated with EPS-producing Bacillus drentensis and Enterobacter cloacae, under salt stress,
showed increased availability of nutrients and water absorption in plants due to biofilm
formation in the root zone [168]. Similarly, Pantoea alhagi NX-11, an EPS-producing endo-
phyte, inoculation increased the salt resistance of rice plantlets by enhancing antioxidant
activity, leading to greater development when compared to those plantings inoculated with
EPS mutant NX-11eps [169]. In salty environments, maize treated with EPS-producing
Azotobacter chrococcum strains C5 and C9 had reduced salt stress through increased K+/Na+

ratio, chlorophyll content, ion absorption (K, Na, Mg, Ca), and accumulation of polyphe-
nols and proline [170], while an EPS-based Alcaligenes sp. bioformulation was especially
effective in decreasing osmotic stress in rice [171]. In general, studies indicate that EPS
generated by HT-PGPR play significant roles in assisting plants minimise salt stress effects
and may be utilised as bioinoculants to enhance soil quality, rhizosphere colonisation,
and nutrient uptake under saline conditions. EPS could also be used as a bioinoculant
amendment to help protect the HT-PGPR microbes from the initial stress encountered when
first introduced into saline soils.

When exposed to salinity or other environmental stresses, HT-PGPR produce volatile
organic compounds (VOCs) less than 300 Da molecular weight, with lipophilic natures
and a low boiling points [172,173]. Numerous microbial volatiles have been documented,
and most have the potential to enhance the overall growth of crops [174]. VOCs are
often employed as markers to identify individual bacterial species in ecosystems, and to
determine how these communities interact [175]. Plant hormones expansin, gibberellin,
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auxin, ethylene, and cytokinin were affected by the 1,3-propanediol and VOC albuterol
generated by Bacillus subtilis SYST2, demonstrating the impact these compounds can have
on plant regulation [176]. The most researched bacterial VOCs include dimethyl disulfide,
geosmin, acetoin, and 2,3-butanediol, which aid in composting, auxin homeostasis, sulphur
nutrition, cell growth, inducing systemic and drought resistance in crops, and soil formation
processes [177–180]. Alcohols, aldehydes, and ketones were found to be the most common
VOCs released by six different Bacillus strains [181]. In Arabidopsis, most VOCs promote
lateral root development and primary root growth, with shoot and root biomass increases
seen due to VOCs generated by root-associated Microbacterium spp. Just a short interaction
with bacterial VOCs can promote plant development, indicating that these compounds may
be used to prepare crops without subjecting them to direct or prolonged bacterial exposure.
Additionally, it was shown that the VOC-mediated crop development proliferation was
tissue-dependent and only caused a biomass increase in crops that were exposed to VOCs
through their roots [182]. Under 150 mM salt stress, quinoline and 4-nitroguaiacol, two
bacterial VOCs generated by salt-resistant Pseudomonas simiae, and a VOC-producing HT-
PGPR Paraburkholderia phytofirmans PsJN, not only alleviated salt stress, but also stimulated
Arabidopsis development in an extreme salinity environment [183].

The control of the HKT1/K+ transporter, which prevents Na+ inflow under salt stress,
has been demonstrated to be related to the synthesis of VOCs [23], with VOC-generating
Bacillus subtilis increasing the salt-resistance of Arabidopsis by suppressing the HKT1 gene
expression. Alcaligenes faecalis JBCS1294 produces a combination of three bacterial VOCs
(propionic acid, benzoic acid, and butyric acid) [184], which in Arabidopsis stimulated plant
development and promoted salt-resistance by regulating ionic transporters and hormonal
pathways. Systematic investigation of microbial VOCs suggests that these substances
could have previously unknown biological activities and ecological implications [174].
Though VOCs have significant contributions to plant stress tolerance pathways, including
ion acquisition and controlling growth hormones, there is still much to learn about these
metabolites, their direct functions, and their ability to help plants under stress. More
research on microbial VOCs that help crops manage adverse environmental effects could
lead to the creation of new agricultural bioinoculants.

5. Future Prospects

Increasing soil salinity significantly impacts agricultural productivity and presents
a risk to food security. The use of HT-PGPR has shown preliminary effectiveness in in-
creasing the salinity tolerance of crops through a range of mechanisms (Figure 4). Further
studies are needed to understand how different HT-PGPR interact with plants, both in
physiologically stressful and unstressed settings [185]. An emerging mapping approach
known as “interactomics” is using bioinformatics tools to examine the interactions between
biomolecules, including enzymes and proteins from rhizobacteria, and plant cells, to iden-
tify the communication channels between both partners under saline conditions [186]. As
demonstrated in this review, it is possible to alter the phytomicrobiome surrounding plants
via the decoding of feedback signals and interactions between microbes and plants. The in-
depth study of the relationships between plant stress responses, microbiome assemblages,
and signalling molecules is crucial for the future development of salt stress “smart agri-
culture” [187]. It will also be necessary to overcome the disadvantages of bioformulations,
such as their short shelf life and inability to function in an abiotic stress environment. To
enhance the quality of bioformulations for stressed agroecosystems, it may be possible to
provide elements that reduce stress by using additives or metabolites to draw in microbes.
In new formulations, HT-PGPR may be combined with osmoprotectants or cell-protectants
to assist the microbes to progress beyond the initial stress and adapt to the environment.
Fluorescent pseudomonads were more tolerant of salt after the exogenous addition of
proline and glycine betaine to the growth media [188]. As a result, this may also be used to
produce bioinoculants for saline soils. Therefore, by employing various HT-PGPR or their
metabolites, novel bioformulations may be created to enhance crop production and increase
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the quality of saline soils (Figures 4 and 5). In addition to helping prepare microbes and
plants against stress such as salinity, altering gene elicitors that induce salt-stress responses
and promote the creation of biofilms may also serve to save the newly added bacterium
from the initial shock, as HT-PGPR that develop biofilms can protect plants and stimulate
their development in salinity conditions [189]. Utilising HT-PGPR to increase saline soil
productivity and quality may also have a significant impact on microbial diversity, nutrient
availability, water activity, soil organic matter, pH, and EC. These cutting-edge formulas
have the potential to not only protect and boost crop yields, but also help restore stressed
and damaged agroecosystems.

Agriculture 2023, 13, x FOR PEER REVIEW 15 of 24 
 

 

Fluorescent pseudomonads were more tolerant of salt after the exogenous addition of 
proline and glycine betaine to the growth media [188]. As a result, this may also be used 
to produce bioinoculants for saline soils. Therefore, by employing various HT-PGPR or 
their metabolites, novel bioformulations may be created to enhance crop production and 
increase the quality of saline soils (Figures 4 and 5). In addition to helping prepare 
microbes and plants against stress such as salinity, altering gene elicitors that induce 
salt-stress responses and promote the creation of biofilms may also serve to save the 
newly added bacterium from the initial shock, as HT-PGPR that develop biofilms can 
protect plants and stimulate their development in salinity conditions [189]. Utilising HT-
PGPR to increase saline soil productivity and quality may also have a significant impact 
on microbial diversity, nutrient availability, water activity, soil organic matter, pH, and 
EC. These cutting-edge formulas have the potential to not only protect and boost crop 
yields, but also help restore stressed and damaged agroecosystems. 

 

Figure 4. Advantages of biofilm production by HT-PGPR in making saline soil suitable 
for crop production. 

6. Conclusions 
In addition to acting as a potential probiotic for plants impacted by salt, HT-PGPR 

can also help saline soils regain their natural balance. These bacteria are a useful tool for 
achieving the goals of sustainable farming due to their capacity to grow and encourage 
symbiotic plant growth in challenging environments. The beneficial effects on 
improving crop productivity from HT-PGPR includes the production of organic acids, 
osmoprotectants, EPS and VOCs, and balancing ion homeostasis, as illustrated in Figure 
5. There is still much research to be conducted on halotolerant microbiota composition, 
structure, and metabolites. Nevertheless, as described in this review, HT-PGPR offer a 
new and exciting avenue in sustainable agriculture and food security. Further research 
will yield additional insights for developing future bioformulations that will contribute 
to the remediation of challenging growing environments. 

Figure 4. Advantages of biofilm production by HT-PGPR in making saline soil suitable for crop
production.

Agriculture 2023, 13, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 5. Benefits of HT-PGPR to alleviate salinity stress. The HT-PGPR improve crop 
productivity by improving organic acids; producing osmoprotectants, exopolysaccharides (EPS), 
and volatile organic compounds (VOCs); and remediating saline soils. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Myo, E.M.; Ge, B.; Ma, J.; Cui, H.; Liu, B.; Shi, L.; Jiang, M.; Zhang, K. Indole-3-Acetic Acid Production by Streptomyces 

Fradiae NKZ-259 and Its Formulation to Enhance Plant Growth. BMC Microbiol. 2019, 19, 155. https://doi.org/10.1186/s12866-
019-1528-1. 

2. Bharti, N.; Barnawal, D.; Awasthi, A.; Yadav, A.; Kalra, A. Plant Growth Promoting Rhizobacteria Alleviate Salinity Induced 
Negative Effects on Growth, Oil Content and Physiological Status in Mentha Arvensis. Acta Physiol. Plant 2014, 36, 45–60. 
https://doi.org/10.1007/s11738-013-1385-8. 

3. Morris, J.; González, J.E. The Novel Genes EmmABC Are Associated with Exopolysaccharide Production, Motility, Stress 
Adaptation, and Symbiosis in Sinorhizobium Meliloti. J. Bacteriol. 2009, 191, 5890–5900. https://doi.org/10.1128/JB.00760-09. 

4. Ladeiro, B. Saline Agriculture in the 21st Century: Using Salt Contaminated Resources to Cope Food Requirements. J. Bot. 
2012, 2012, 310705. https://doi.org/10.1155/2012/310705. 

5. Shahid, S.A.; Zaman, M.; Heng, L. Soil Salinity: Historical Perspectives and a World Overview of the Problem. In Guideline for 
Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Zaman, M., Shahid, S.A., Heng, L., Eds.; 
Springer International Publishing: Cham, Switzerland, 2018; pp. 43–53, ISBN 978-3-319-96190-3. 

6. Hernandez Fernandez, M.T.; Mataix-Solera, J.; Lichner, L.; Štekaurová, V.; Zaujec, A.; Garcia Izquierdo, C. Assessing the 
Microbiological, Biochemical, Soil-Physical and Hydrological Effects of Amelioration of Degraded Soils in Semiarid Spain. 
Biologia 2007, 62, 542–546. https://doi.org/10.2478/s11756-007-0107-3. 

7. Upadhyay, S.K.; Singh, J.S.; Saxena, A.K.; Singh, D.P. Impact of PGPR Inoculation on Growth and Antioxidant Status of 
Wheat under Saline Conditions. Plant Biol. 2012, 14, 605–611. https://doi.org/10.1111/j.1438-8677.2011.00533.x. 

8. Orhan, F. Alleviation of Salt Stress by Halotolerant and Halophilic Plant Growth-Promoting Bacteria in Wheat (Triticum 
aestivum). Braz. J. Microbiol. 2016, 47, 621. https://doi.org/10.1016/j.bjm.2016.04.001. 

9. Al-Yassin, A. Adverse Effects of Salinity on Citrus. A review paper. J. Cent Eur. Agric. 2004, 4, 263–272. 
10. Egamberdieva, D.; Wirth, S.; Bellingrath-Kimura, S.D.; Mishra, J.; Arora, N.K. Salt-Tolerant Plant Growth Promoting 

Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front. Microbiol. 2019, 10, 2791. 
11. Mishra, A.; Tanna, B. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters. Front. Plant Sci. 2017, 8, 

829. 
12. Rahman, M.M.; Mostofa, M.G.; Keya, S.S.; Siddiqui, M.N.; Ansary, M.M.U.; Das, A.K.; Rahman, M.A.; Tran, L.S.-P. Adaptive 

Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants. Int. J. Mol. Sci. 2021, 22, 10733. 
https://doi.org/10.3390/ijms221910733. 

Figure 5. Benefits of HT-PGPR to alleviate salinity stress. The HT-PGPR improve crop productivity
by improving organic acids; producing osmoprotectants, exopolysaccharides (EPS), and volatile
organic compounds (VOCs); and remediating saline soils.
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6. Conclusions

In addition to acting as a potential probiotic for plants impacted by salt, HT-PGPR
can also help saline soils regain their natural balance. These bacteria are a useful tool for
achieving the goals of sustainable farming due to their capacity to grow and encourage
symbiotic plant growth in challenging environments. The beneficial effects on improving
crop productivity from HT-PGPR includes the production of organic acids, osmoprotectants,
EPS and VOCs, and balancing ion homeostasis, as illustrated in Figure 5. There is still
much research to be conducted on halotolerant microbiota composition, structure, and
metabolites. Nevertheless, as described in this review, HT-PGPR offer a new and exciting
avenue in sustainable agriculture and food security. Further research will yield additional
insights for developing future bioformulations that will contribute to the remediation of
challenging growing environments.
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