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Abstract: Green forage maize harvesters face challenges such as high soil humidity and soft soil in the
field, mismatched working parameters, and poor reliability and adaptability. These challenges often
result in header blockage, significant harvest loss, and increased energy consumption. Traditional
testing and statistical analysis methods used in most existing studies are limited by complex test
processes, their time-consuming nature, high costs, and poor prediction accuracy. To address these
problems, a test bench was constructed to analyze the effects of forward speed, cutting height, number
of rows, and their interactions on specific energy consumption and harvest loss of the green forage
maize (GFM) header. A combined response surface method (RSM)–artificial neural network (ANN)
approach is proposed for modeling and predicting the performance parameters of the header. The
optimal conditions were determined by optimizing the specific energy consumption and loss rate.
The optimal combination parameters are a forward speed of 1.6 km/h, a cutting height of 167 mm,
and a number of rows of 4. However, RSM–ANN has larger R2 values and lower root mean square
errors (RMSE) and mean square errors (MSE) compared to RSM. Specifically, the R2 of the RSM–ANN
model for specific energy consumption and loss rate a 0.9925 and 0.9906, MSE are 0.00001775 and
0.004558, and RMSE are 0.004214 and 0.006752, respectively. The results show that the combined
RSM–ANN method has higher precision and accuracy and can better predict and optimize the header
performance. This study overcomes the limitations of traditional methods and has the potential to
provide data and method references for the design, optimization, prediction, and intelligent diagnosis
of faults in the operational parameters of agricultural machinery.

Keywords: green forage maize; harvest; specific energy consumption; response surface methodology
(RSM); artificial neural network (ANN)

1. Introduction

In recent years, maize production has increased dramatically in line with the growing
population’s demand for food [1,2]. At the same time, a large amount of agricultural
waste (maize stalk) is produced, which is considered to be the most abundant biomass
resource [3]. Approximately 264 million tons of maize stalks are produced annually in
China, and most of them are discarded or burned directly in the field [4]. Direct combustion
can produce greenhouse gases (such as carbon dioxide), particulate matter, and other
pollutants, which affect the atmospheric environment and ecosystem [5]. On the other hand,
it can cause waste of energy [6]. Green forage maize (GFM) (Zea mays L.) is an important
feed source for the world’s developed animal husbandry countries because of its high
yield and nutrient content and is well suited to solve the problem of maize stalk utilization.
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In addition, utilizing maize stalks as animal feed can reduce environmental burdens,
promote the development of animal-derived foods, increase incomes, and improve social
sustainability [7]. China’s GFM has grown rapidly in recent years under the guidance of
the ‘Grain to Feed’ policy. At present, forage harvesters are widely used in GFM harvesting
to ensure high harvest yield and quality and reduce labor intensity. However, the use of
harvesters requires the consumption of fossil fuels and the emission of greenhouse gases,
which can pose a threat to the environment and social sustainability [8,9]. Due to the high
soil moisture in the field and the mismatch of operation parameters during the harvest
of GFM, it is easy to cause header blockage, leading to increased fossil fuel consumption,
pollutant emissions, and biomass energy loss. Therefore, it is of practical significance to
reduce the environmental burden and save energy by optimizing the harvesting process of
GFM harvesters to reduce energy consumption and increase efficiency.

The header, which is the first contact with crops, is the key component of a forage
harvester. It is responsible for cutting and feeding the crops. Cutting is one of the most
energy-intensive parts of harvesting [10]. Compared with foreign countries, most of the ex-
isting machines in China are designed via empirical methods, and there are some problems
such as poor adaptability and mismatch of operation parameters [11,12]. This results in the
stalks not being cut off and smoothly fed into the harvester, seriously affecting the quality
of the harvest. In addition, the fallen stalk may block the header, resulting in increased
energy consumption and pollutant emissions. Scholars at home and abroad have conducted
numerous studies on header technology, mainly focusing on theoretical analysis of cut-
ting [13–15], overall design and testing of headers [16–18], and the design and optimization
of key components [19]. However, there have been few reports on the interaction between
GFM and header, operation parameter matching, and header performance optimization.
Notably, the structural parameters (cutter form, cutting method, etc.), movement parame-
ters (cutting speed, forward speed, etc.), and crop parameters (stalk diameter, plant spacing,
row spacing, etc.) independently or jointly affect the performance of the header. However,
it is complex, time-consuming and expensive to study the influence of various factors on
header performance and to analyze optimal parameter conditions via traditional methods
(one-factor-at-a-time approach). Furthermore, the method does not take into account the
interactions between factors and cannot obtain true optimal conditions [20,21]. To address
these issues, empirical models for parameter optimization and modeling should be devel-
oped using state-of-the-art statistical methods or data analysis tools, and the independent
or joint effects of these factors on the response should be analyzed.

Response surface methodology (RSM) is an advanced mathematical and statistical tool
used to evaluate the relationship between the output responses and the multiple indepen-
dent input variables. It can also optimize these variables to achieve the best responses [22].
Box–Behnken design (BBD) is one of the most commonly used methods of RSM. It is allows
for the study of the influence of multiple variables and their interactions on the response by
changing these variables simultaneously and conducting fewer experiments [23]. However,
RSM has limitations on the range of input variables due to its nonlinear process [24]. Con-
versely, the artificial neural network (ANN) is a highly robust and excellent modeling tool
generally used in nonlinear and complex processes, which can effectively overcome the
limitations of RSM [25]. At present, ANN and RSM have been widely used in structural
design optimization of agricultural machinery [26], design optimization of food processing
machinery [27], food process optimization [28], and industrial process optimization [29,30].
In fact, GFM harvesting is a complex process, affected by many factors, and conducting
trials requires a great deal of time and high costs. The RSM method can be used to run
relatively few experiments [27]. However, its prediction ability still needs to be further
tested. Compared to RSM, ANN is more widely used in forecasting and has relatively good
forecasting ability [28]. However, the feasibility of using artificial intelligence technologies
such as RSM and ANN in combination to predict and optimize the performance of the
header for green forage maize harvesters has not been fully investigated.
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To solve the above problems, a GFM harvesting test bench was built, and the effect
of various factors on header performance, especially on energy consumption and harvest
loss, was studied. In addition, a combined RSM–ANN method is proposed, which can
simultaneously complete interaction analysis and performance optimization and guarantee
high prediction accuracy. The main objectives of this study are as follows: (1) To determine
the optimized operating parameters of the header of the GFM harvester; (2) To analyze the
influence of each factor and its interaction on loss rate and specific energy consumption;
(3) To develop the predicting models for the header performance of the GFM harvester.
This study overcomes the limitations of traditional methods and can provide data and
method references for the design, optimization, prediction, and intelligent fault diagnosis
of the operation parameters of agricultural machinery.

2. Materials and Methods

In this section, we first introduce the harvesting process of the GFM. Then we describe
the test bench and test control system and its working principle. Next, we introduce the
materials used in this study. Finally, we introduce the methods of experiment design,
statistical analysis, and artificial neural network.

2.1. Harvesting Process of Green Forage Maize

A crawler GFM harvester consists of the crawler chassis, cab, header, throwing device,
chopping device, and other parts. It is suitable for GFM harvesting in areas with high
humidity, soft soil, varied topography and geomorphology, and complex operating condi-
tions and can effectively solve the problems of high soil compaction, failure to operate in
wet fields, and discontinuous operation in complex plots of wheel harvesters. The header,
the key part of the green forage maize harvester, is the first contact with the crop, which
is related to the structure and parameter configuration and the working performance of
the whole machine, so it directly affects the adaptability of the harvester to the terrain,
geomorphology, and planting agronomy. The header is mainly composed of the divider,
push rod, conveying drum, conveying teeth, and cutter, as shown in Figure 1.
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Figure 1. Harvesting process and harvester header structure of green forage maize.

During the harvesting process, the operator controls the harvester’s forward motion to
ensure that the stalks reach the header smoothly through the divider to complete the cutting
operation. However, the operator usually relies on experience to gauge the forward speed
of the harvester and cutting height of the header, which can easily break the stalk and cause
harvest loss. The uncut stalk is likely to wrap around the header, resulting in blockage and
increased energy consumption. The number of stalk planting rows directly determines
the planting density, which affects the harvest quality and effect of the header. The more
rows, the more stalks cut and fed by the header, and the specific energy consumption
of the header increases. Additionally, an increase in the stalk interaction can affect the
smooth feeding of stalks, increasing the risk of header block, and the loss rate of the header.
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Therefore, we focus on the impact of forward speed, cutting height, and number of rows
on the specific energy consumption and loss rate of the header.

2.2. Test Bench and Test Control System

Aiming at the problems of complex, time-consuming, expensive field experiments,
difficult data acquisition, and low parameter control accuracy, this study designed a GFM
harvesting test bench to simulate the field harvesting process of crawler harvesters, and
carried out the header performance tests.

The harvesting test bench consists of a frame, power input device, throwing device,
chopping device, feeding device, header, material conveyor, and test control system, as
shown in Figure 1. Among them, the header suspended at the front of the frame via the
three-point suspension mechanism is one of the key components of the bench. It consists
mainly of dividers, a push rod, header drums, conveying teeth, and cutters. In order to
ensure that the test is approximately consistent with the actual operation process, we tilted
the header by 8 degrees [31]. In addition, we installed the feeding device and the chopping
device at the rear of the header to achieve feeding and chopping. The power input device
is located on the rear right side of the header and is fixed to the frame. It is composed of
a variable frequency motor, coupling, and torque-speed sensor, and transmits power to
the header through the variable frequency motor. The material conveyor is at the front of
the header and extends its end to the bottom of the cutter, which is driven by a variable
frequency motor. We also set an adjustable clamping mechanism on the surface of the
conveyor chain plate to fix the materials and realize the simulation of the real growth state
of field crops. The principle of this test bench is the same as that of crawler GFM harvesters
used in hilly and mountainous areas, which can completely simulate the actual harvesting
process and carry out the performance test of the header. The relevant parameters of the
test bench are shown in Table 1.

Table 1. Parameters of test bench.

Parameters Value

Size (length × width × height) (mm × mm × mm) 7700 × 2750 × 4050
Forward speed/(m·s−1) ≥0.5

Cutting length/mm 11~29
Power/kW 80

Working width/mm 1800
Disc cutter diameter/mm 738

Cutter spped/(r/min) 1106
Drum speed/(r/min) 36.6

Cutter blade thickness/mm 3
Serrated blade edge length/mm 6

Serrated blade edge angle/◦ 65

The test control system is mainly composed of a human–machine interface (HMI)
(MCGS, model: TCP1062K), a programmable logic controller (PLC) (DELTA, model:
DVP12SA211T), a torque-speed sensor (Haibohua, model: HCNJ-101), a wireless trans-
parent transmission module (EBYTE, model: E90-DTU), a frequency converter (INVT,
GD200A-022G/03P-4), and a motor, as shown in Figure 2. The torque-speed sensor is
between the motor and the header and has a measurement range of 0 to 2000 Nm with an
accuracy of ±0.5%. The signal conversion module converts the torque frequency signal
and the speed pulse signal of the sensor into a digital signal and transmits the signal to
PLC. Moreover, the HMI can control the frequency converter to change the speed of the
motor, display the running state, and monitor the parameters of the equipment in real time.
The software then reads the data processed by the PLC and performs visual processing,
and the wireless communication module transmits the relevant data to the database.
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2.3. Working Principle

The conveyor transports the materials to the header and completes the harvest opera-
tion to simulate the actual harvest process of the crawler GFM harvester in the field in hilly
and mountainous areas. Before the test, the whole-plant GFM is fixed on the conveyor with
the clamping mechanism. At the same time, we can change the row spacing, plant spacing,
and cutting height by adjusting the clamping mechanism. Due to the high humidity of
the field during harvest, especially in hilly and mountainous areas, the ground level is
uneven, resulting in the low operating speed of the GFM harvester. Hence, to simulate the
field operation speed of the crawler harvester, we can use the adjustable motor to adjust
the speed range from 0 to 2.5 km/h. The sprocket and other transmission mechanisms
transmit the power to the header, feeding device, and chopping device, and the control
system can change the forward speed. During the test, the divider guides the materials into
the header and the cutter at the bottom of the header cuts along the cutting height of the
stalk. Consequently, the cut stalk is transported backward under the action of the rotation
of the header drum, and the crop is transported to the chopping device via the feeding
device to complete the chopping and throwing operation. In this process, the test control
system can monitor torque and speed information via the torque-speed sensor in real time
and collect, record, and process the relevant test data.

2.4. Material Selection

In this study, the GFM of Wuke silage 107 was selected, which is harvested in the
experimental field of Huangyang Town, Wuwei City, Gansu Province in mid-September
2020 (at the wax ripening stage of green forage maize in Northwest China, which is the best
time for harvest). Before the test, we used Vernier calipers, tape measures, and other tools
to choose green forage maize with similar appearance and size for testing. Additionally,
the moisture content of the material is measured as 65–75%.
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2.5. Experimental Design and Statistical Analysis by RSM

Many factors affect the specific energy consumption and loss rate of header operation.
In fact, during the harvest, the operator usually controls the forward speed of the harvester
and the cutting height based on their own experience, which can easily lead to broken stalks
and harvest loss. The uncut stalk is likely to wrap around the header, resulting in blockage
and increased energy consumption. The number of stalk planting rows directly determines
the planting density, which affects the harvest quality and effect of the header. The more
rows, the more stalks cut and fed by the header, and the specific energy consumption of
the header increases. Additionally, the interaction between stalks increases, which affects
the feeding of stalks, is prone to blockage, and increases the loss rate of the header. Thus,
this study selected the forward speed, cutting height, and number of rows as experimental
factors. According to the forward speed range of the material conveyor (0–2.5 km/h)
and the adjustment clearance range of the stalk fixing device, the forward speed is finally
determined to be 1.0–2.0 km/h, and the number of rows is set at 2–4. Furthermore, the
optimal stubble height for green forage maize is generally 100–200 mm. Hence, the cutting
height is set at 100–200 mm. Experimental factors and levels are shown in Table 2.

Table 2. Experimental factors and levels.

Independent Variables Coded
Range and Levels (Coded)

−1 0 +1

Forward speed (km/h) X1 1.2 1.6 2.0
Cutting height (mm) X2 100 150 200

Number of rows X3 2 3 4

This study selects the specific energy consumption and loss rate as the performance
indexes of the header, and the calculation method is thus:

(1) Specific energy consumption

In the experiment, the test control can obtain the data of the torque and speed generated
in the harvesting process. Then the specific energy consumption of header is calculated
with Equation (1).

Y1 =
Et − E0

M
(1)

where Et is the total specific energy consumption (kWh/t); E0 is the no-load specific energy
consumption (kWh/t); M is the total mass of the test samples (t).

(2) Loss rate

The loss rate refers to the percentage of the mass of crops that are not cut or successfully
fed into the header to the total mass of all tested crops in this group, which can be obtained
from Equation (2).

Y2 =
M − m

M
× 100% (2)

where m is the total mass of the lost sample, (t).
The Box–Behnken design (BBD) method was used for experimental design (Table 3),

and the obtained BBD data were analyzed and modeled based on the RSM statistical
method (Equation (3)). In order to verify the accuracy of the RSM model and judge the
significance of each factor in the RSM model, analysis of variance (ANOVA) was performed.
In addition, three-dimensional response surface plots were drawn to explore the influence
of various factors and their interactions on header performance.

Y = β0 +
n

∑
i=1

βiXi +
n

∑
i<j

βijXiXj +
n

∑
i=1

βiiX2
i , (3)
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where Y is the output response; Xi and Xj are the input variables; β0, βi, βii, and βij are the
regression coefficients of the constant term, primary term, quadratic term, and interaction
term of the equation, respectively.

Table 3. The Box-Behnken design scheme and results.

Run Forward Speed
X1/(km/h)

Cutting Height
X2/(mm)

Number of Rows
X3

Specific Energy
Consumption

Y1/(kWh/t)

Loss Rate
Y2/(%)

1 −1 1 0 0.232 1.34
2 0 1 1 0.171 0.71
3 −1 0 1 0.193 0.3
4 0 0 0 0.199 1.29
5 1 0 −1 0.246 2.02
6 −1 −1 0 0.274 1.76
7 1 −1 0 0.189 2.87
8 0 0 0 0.204 1.08
9 1 1 0 0.159 2.52

10 1 0 1 0.153 0.62
11 0 1 −1 0.231 2.36
12 0 0 0 0.213 1.13
13 0 −1 −1 0.303 2.45
14 −1 0 −1 0.341 1.27
15 0 −1 1 0.186 1.77
16 0 0 0 0.195 1.31
17 0 0 0 0.215 1.42

2.6. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are a widely applied mathematical and computa-
tional modeling method, which can be used to solve various problems in the field of science
and engineering [32,33]. In this study, the BBD design data along with output response
data are applied to establish and develop a multi-layer feed-forward neural network, which
is used to predict the nonlinear relationship between the forward speed, cutting height,
and number of rows and the specific energy consumption and loss rate of the header. With
the connection weights and biases, the connections between neurons of each layer are
established. Then, the data are transferred to each neuron via the transfer function. Finally,
the output response is obtained [23]. In addition, during the training process, the weights
and biases of the output layer to the hidden layer and the weights and biases of the hidden
layer to the input layer are adjusted to minimize the error between the predicted value and
the actual value [32], so as to establish the neural network model. This network consists of
an input layer containing three input variables (forward speed, cutting height, and number
of rows), a hidden layer containing several neuron numbers, and an output layer containing
two output variables (specific energy consumption and loss rate). Its structure is shown
in Figure 3.

Notably, the transfer function and the number of hidden layer neurons are key factors
affecting the performance of neural networks [34]. Hence, it is necessary to determine the
optimal combination of transfer functions and the number of hidden layer neurons in order
to improve the reliability and accuracy of the neural network. Typically, there are three
transfer functions, namely, the logistic sigmoid function (logsig), the hyperbolic tangent
sigmoid function (tansig), and the linear transfer function (purelin). These are defined by
expressions (4)–(6), respectively.

log sig(n) =
(

1
1 + e−n

)
, (4)

tan sig(n) =
1 − e−2n

1 + e−2n , (5)
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purelin(n) = n, (6)
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In order to select the optimal combination of transfer functions, we studied the various
combinations of the transfer function listed in Table 4. Furthermore, the optimal number
of neurons is determined by trial and error method to obtain the optimal topology [35].
Consistent with other studies [22,34], the number of hidden layer neurons in this study
ranges from 1 to 20.

Table 4. Comparison of different transfer function.

No.
Transfer Function Mean Squared Error

(MSE)
Determination Coefficient

(R2)Hidden Layer Output Layer

1 tansig purelin 0.01904 0.9365
2 tansig tansig 0.002770 0.9908
3 logsig purelin 0.005388 0.9820
4 logsig tansig 0.003139 0.9895
5 purelin purelin 0.08267 0.7243
6 purelin tansig 0.07913 0.7361

The data obtained from the results of RSM are randomly divided into three parts,
of which 11 groups (about 70%) are used for training, three groups (15%) are used for
validation, and the remaining three groups (15%) are used for testing. Before train-
ing, the input and output parameters are normalized in the range of −1 to +1 (see
Equation (7)) to reduce the impact of large difference between input and output parameters
on training performance.

Xi =
2

dmax − dmin
(di − dmin)− 1, (7)

To evaluate the best training performance of the ANN model, this study employs
the lowest root mean square error (RMSE), mean square error (MSE), and the highest
determination coefficient (R2), the definitions of which are the same as those introduced in
previous studies [30,36,37].
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3. Results and Discussion
3.1. RSM Modeling and Analysis

Response surface methodology is a mathematical and statistical tool widely used for
analysis and prediction. In this study, RSM was used to explore the relationship between
the three independent variables (forward speed, cutting height, and number of rows) and
the two responses (specific energy consumption and loss rate). The regression analysis
was conducted using design-Expert 8.0.6.1 software, and the regression model among the
specific energy consumption and loss rate of the header and the three factors was obtained
as shown in Equations (8) and (9).

Y1 = 1.206 − 0.405X1 − 1.36 × 10−3X2 − 0.262X3 + 1.5 × 10−4X1X2 + 0.0344X1X3 + 2.85 × 10−4X2X3 + 0.0588X2
1 − 4.4 × 10−7X2

2 + 0.0187X2
3 (8)

Y2 = 4.827 + 0.660X1 − 0.090X2 + 2.051X3 + 8.75 × 10−4X1X2 − 0.269X1X3 − 4.85 × 10−3X2X3 + 0.333X2
1 + 3.29 × 10−4X2

2 − 0.247X2
3 (9)

3.1.1. Analysis of Variance (ANOVA)

As shown in Table 5, ANOVA was carried out to assess the adequacy and validity of
the above models. For ANOVA, the F-value and p-value are typically used to confirm the
statistical significance of the model [38]. From Table 5, it can be seen that the F-values of
the specific energy consumption and loss rate are 33.66 and 22.03, and the p-values are all
less than 0.001, demonstrating the reliability of both models. In addition, the F-values of
‘Lack of fit’ in these models are 2.69 and 3.52, respectively, which means that the developed
RSM models are effective. The determination coefficients (R2) of the responses are 0.9625
and 0.9744, respectively, meaning that the predicted value of this model is very similar to
the actual value and that the models have high statistical significance. According to the
ANOVA, these three factors are found to have a significant impact on the specific energy
consumption and loss rate. Among them, the number of rows has the greatest influence
and the cutting height has the least.

Table 5. ANOVA for the experimental results of Box-Behnken design.

Source
Specific Energy Consumption (kWh/t) Loss Rate (%)

F-Value p-Value F-Value p-Value

Model 33.66 <0.0001 ** 22.03 0.0002 **
X1 82.82 <0.0001 ** 35.08 0.0006 **
X2 24.39 0.0017 ** 11.45 0.0117 *
X3 168.55 <0.0001 ** 68.63 <0.0001 **

X1X2 0.2778 0.6144 0.0304 0.8664
X1X3 5.84 0.0464 * 1.15 0.3193
X2X3 6.27 0.0408 * 5.85 0.0462 *
X1

2 2.87 0.1340 0.2968 0.6028
X2

2 0.0393 0.8485 70.93 <0.0001 **
X3

2 11.30 0.0121 * 6.37 0.0396 *
Lack of fit 2.69 0.1818 3.52 0.1277

Note: p < 0.01 (Extremely significant, **), p < 0.05 (Significant, *).

3.1.2. Analysis of Response Surface

The three-dimensional response surface plots between the output responses and three
factors (one of which is fixed at the zero level) are drawn to visualize the influence of
various factors and their interaction on the operation performance of the header [39].

Figure 4 shows the RSM plots of specific energy consumption. From Figure 4a, it
can be seen that the specific energy consumption decreases gradually with the increase of
the forward speed when the number of rows is three and the cutting height is constant.
Likewise, the specific energy consumption of the header decreases with the increase of the
cutting height as the forward speed is constant. This can be attributed to the fact that the
larger the diameter of the stalk closer to the ground, the greater the cutting force required.
If the forward speed is 2 km/h and the cutting height is 200 mm, the cutting time is short
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and the cutting resistance is small. In this case, the specific energy consumption of the
header is less than 0.18 kWh/t, which is at the lowest level. Conversely, the time and energy
required to complete the operation is large, because the forward speed and cutting height
are low. In addition, the forward speed contribution to the specific energy consumption
is greater than the cutting height within the variation range of the test factors. That is to
say, the forward speed has a greater impact on the specific energy consumption than that
of the cutting height, which is consistent with the results of ANOVA (Table 3). As can be
seen from Figure 4b,c, the specific energy consumption decreases significantly with the
increase in the number of rows. This may be due to the impact of the number of rows on
its cutting energy consumption, which is not obvious at the constant forward speed and
cutting height. However, the more rows of stalks there are, the greater the total mass of
stalks, leading to a reduction in specific energy consumption.
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Figure 5 shows the response surface of various factors to the loss rate of the header. It
can be observed from Figure 5a that when the cutting height is constant, the loss rate of
the header gradually rises with the increase of the forward speed, which is the opposite
of Figure 4a. This is due to the forward speed being too large, so the stalks do not cut
smoothly and break. As the forward speed is constant, the loss rate first decreases and then
increases with the increase of the cutting height. This may be because when the cutting
height is high, the straw is easy to bend, resulting in the stalk breaking. If the cutting height
is too low, the root of the stalk is easily damaged (soil loosens during field operations),
which leads to the stalk not being cut and thus the stalk lodging in the field. From Figure 5a,
it can be found that the loss rate is the highest for the condition of the forward speed of 2
km/h and the cutting height of 100 mm. This is because a higher speed has more impact
force, damaging the root of the stalks and preventing them from being cut and fed to the
header. From Figure 5b,c, the loss rate increases gradually with the increase of the number
of rows.
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3.1.3. Optimization

In order to optimize the harvester performance of the GFM harvester, based on BBD
data and statistical analysis, this study used the desirability function method to numerically
optimize the two responses, so as to obtain the best level of forward speed, cutting height
and row number, and minimize the specific energy consumption and loss of the header [40].
The optimization method was proposed by Derringer and Suich [41] and is widely used
in the optimization of multi-response processes in industry. The optimization criteria are
shown in Table 6.

Table 6. Optimization criteria.

Name Goal Lower Limit Upper Limit
Weight

Importance Desirability
Lower Upper

Forward speed In range 1.20 2.00 1 1 3 1
Cutting height In range 100 200 1 1 3 1

Number of rows In range 2 4 1 1 3 1
Specific energy
consumption minimize 0.153 0.341 1 0.1 3 0.990928

Loss rate minimize 0.300 2.87 1 0.1 3 0.998215

The optimization results show that the optimal parameter combination consists of the
forward speed of 1.602 km/h, the cutting height of 167.4 mm, and the number of rows of 4.
At this time, the specific energy consumption and loss rate are 0.1694 kWh/t and 0.3455%,
respectively. However, in order to facilitate practical operation, the value of the optimal
test factor is adjusted as follows: forward speed 1.6 km/h, cutting height 167 mm, and
number of rows 4. To verify the accuracy of the optimization results, a validation test was
carried out under the optimal conditions. The actual values of specific energy consumption
and loss rate were 0.1701 kWh/t and 0.3466%, respectively, and the predicted values were
0.1696 kWh/t and 0.3429%, respectively, which were in good agreement with the observed
values. The above results verified that the developed RSM model could be effectively used
to study or optimize the header performance.

3.2. ANN Modeling and Analysis

A three-layer feed-forward neural network is developed to predict the performance
of the header by applying the experimental data obtained by RSM. The neural network
consists of an input layer, a hidden layer, and an output layer, as shown in Figure 3.
Among them, the data of the input layer and the output layer are from Table 2. In order
to determine the optimal transfer function combination of the artificial neural network,
the transfer functions of the hidden and output layers are changed to carry out network
training. The scheme is listed in Table 3. From Table 3, it can be found that the MSE of the
network is the smallest and R2 is the largest when the transfer functions of both the hidden
layer and the output layer are hyperbolic tangent sigmoid functions, which is consistent
with the research of Aung et al. [42], Aydin et al. [32]. Therefore, the tansig function is
selected as the transfer function of the ANN in this study. In addition, the performance of
ANN with different topologies is evaluated by changing the number of the hidden layer
neurons. Figure 6 shows that as the number of hidden layer neurons is 12, the performance
of the ANN is best with the lowest mean square error (MSE) and the highest determination
coefficient (R2) [36,43]. Hence, the optimal topology of the ANN is determined as 3-12-2.
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The correlation coefficients (R) of training, validation, and testing are 0.99719, 0.99115,
and 0.99736, respectively, while the R of all data is 0.99602, as shown in Figure 7. It can be
observed that the R of the ANN at all stages is close to 1.0, which means that the neural
network model is reliable and efficient in predicting header performance. In addition, the
MSE value of the neural network is 0.00313, indicating that the error between the predicted
value and the actual value is minimal, that is to say, the neural network is accurate in
predicting the output response. In summary, the RSM–ANN model developed in this study
is viable in predicting the specific energy consumption and loss rate of the header.
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3.3. Comparison to the Traditional RSM

The values of R2, MSE, and RMSE presented in Table 7 are used to assess the predictive
capability of the RSM and RSM–ANN. Most studies used the same method [30,32]. The
results demonstrate that the two models are effective in predicting the specific energy
consumption and loss rate of the header. The R2 values of RSM and RSM–ANN models
are greater than 0.95, which means that the predicted data is in good agreement with the
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experimental data. In addition, from the higher R2 values of RSM–ANN than RSM, it
indicates that the RSM–ANN has better prediction capability than RSM.

Table 7. Compare of RSM and RSM–ANN.

Statistical
Parameters

Specific Energy Consumption (kWh/t) Loss Rate (%)

RSM RSM–ANN RSM RSM–ANN

R2 0.9774 0.9925 0.9658 0.9906
MSE 0.00005341 0.00001775 0.01662 0.004558

RMSE 0.007308 0.004214 0.1289 0.06752

Figure 8 describes the relationship between the experimental values of specific energy
consumption and loss rate and the predicted values of RSM–ANN and RSM models,
respectively. As can be seen from Figure 8, the predicted values of the RSM–ANN are closer
to the experimental values. Moreover, compared with the RSM model, the RSM–ANN
model used to predict the specific energy consumption and loss rate has higher values of
R2 and lower values of MSE and RMSE. The results indicate that the predicted values of
the RSM–ANN agree well with the experimental data. In addition, the lower the error, the
higher the precision and accuracy of the model.
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In conclusion, the RSM–ANN is superior to the RSM in modeling and prediction
performance. This finding is consistent with the conclusions of other researchers [37,44].
Of course, the RSM method has its own advantages. It can obtain a quadratic regression
equation and show the influence of various factors and their interactions on the test
index [45,46]. Hence, the combined RSM–ANN method is of great significance for the
design, modeling, optimization, and performance prediction of agricultural machinery and
equipment.

4. Conclusions

In this study, a combined RSM–ANN approach was proposed, and the effects of
forward speed, cutting height and row number on specific energy consumption and loss
rate were studied. The main conclusions are as follows:

The optimal combination parameters are forward speed of 1.6 km/h, cutting height
of 167 mm, and number of rows of 4. In addition, based on the experimental data ob-
tained from RSM, the RSM–ANN model was established to predict the response, and the
prediction ability of RSM and RSM–ANN was compared. R2 values of RSM and RSM–
ANN are both greater than 0.95, indicating that both models have good predictive ability.
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However, compared to RSM, RSM–ANN has better precision and accuracy in predicting
header performance due to larger R2 and lower RMSE and MSE. In this case, the R2 of the
RSM–ANN model for specific energy consumption and loss rate is 0.9925 and 0.9906, MSE
is 0.00001775 and 0.004558, and RMSE is 0.004214 and 0.006752, respectively. In short, the
combined RSM–ANN method can better predict and optimize header performance. This
study can provide data and method references for the design and optimization of agri-
cultural machinery, prediction and intelligent fault diagnosis of the operation parameters
of harvesters.
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