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Abstract: Excessive application of nitrogen fertilizer during rice cultivation leads to progressive
soil contamination in the long term and increases production costs. An alternative to reduce over
fertilization is to partially replace the fertilizer with microbes that promote nutrition and growth,
such as arbuscular mycorrhizal fungi (AMF). We investigated the combination of four different rates
of AMF (M): (M0: 0 g polybag−1, M1: 15 g polybag−1, M2: 30 g polybag−1, and M3: 45 g polybag−1)
and three rates of nitrogen (N) fertilizer: (N0: 0 kg N ha−1, N1: 90 kg N ha−1, N2: 180 kg N ha−1)
on Trisakti rice cultivar cultivated in polybag. Our findings indicate that the combination of 45 g
AMF polybag−1 and 180 kg N ha−1 decreased soil bulk density by 38.02% and 37.24%, increased
soil pH by 14.81% and 14.95%, soil porosity by 60.68% and 61.09%, soil organic matter by 28.62%
and 30.46%, total N by 92.59% and 89.66%, available phosphorus by 30.12% and 29.85%, available
potassium by 3.75% and 4.01%, rice plant height by 19.19% and 19.79%, tiller number by 25.27% and
26.08%, SPAD by 20.71% and 20.62%, flag leaf area by 107.76% and 108.02%, panicle length by 49.72%
and 52.31%, panicle number by 67.44% and 72.35%, 1000-grain weight by 30.70% and 32.44%, root
dry matter by 54.34% and 53.69%, shoot dry matter by 26.08% and 28.26%, root length by 54.68%
and 56.44%, root volume by 42.73% and 43.37%, and N uptake by 107.93% and 108.06% compared to
control during the early and late seasons, respectively. Conclusively, the combined application of
AMF and N fertilizer increased the physiochemical properties, rice growth, rice productivity, and N
uptake compared to AMF alone, N fertilizer alone, and the control treatment.

Keywords: excessive N; rice growth; N uptake

1. Introduction

Rice (Oryza sativa L.) is an essential food crop worldwide and a dietary staple for about
50% of the world’s population [1,2]. Global rice consumption is estimated to increase from
480 million tons (mt) of milled rice in 2014 to nearly 550 mt by 2030, caused by population
and economic growth [3]. Farmers have continuously increased their use of chemical
fertilizers to enhance rice production [4]. Chemical fertilizers, especially nitrogen fertilizer,
are an essential abiotic component of agricultural output [5,6]. Nitrogen (N) is a crucial
macronutrient for plants, and its availability is a determinant of plant productivity [7].
Applying N fertilizer has become an important strategy to increase crop yield in intensive
agricultural systems worldwide [8]. In order to increase production, rice farmers apply
massive amounts of N fertilizer, yet only 20 to 50% of the N is actually absorbed by the
crop since soil N availability often limits yield in the majority of agricultural cropping
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systems [9,10]. The N fertilizer applied in rice fields that escapes into the surrounding envi-
ronment leads to reduced N use efficiency (NUE) and significant ecological issues [11,12].

NUE is a recognized metric used for assessing N management [13]. Improving NUE
of agricultural crops has been used as a method to alleviate the effects of N fertilizer on
surrounding water, air, and ecosystems, and to reduce costs associated with excessive fertil-
izer inputs, as well as to improve growth and productivity of crops [14,15]. Langholtz et al.
discovered that increasing NUE by 20% can save USD 743 m yr−1 and reduce N load-
ings in freshwaters by 5.7%, and the N reductions are estimated to be worth USD 15.3
to 136.7 million yr−1 in the US [16]. Excessive use of N fertilizer causes some environ-
mental problems, including soil acidification, groundwater contamination, greenhouse
gas emission, and eutrophication of surface water [17–20]. New approaches to increase
yield and decrease the quantity of N applied are required in order to achieve high crop
production and high NUE under well-fertilized circumstances [21]. The creation of new
fertilizers, enhancement of crop NUE, substitution of chemical fertilizers, and reduction
in pollution are important directions for sustainable agricultural development [22]. Nu-
merous N management strategies, such as deep placement and numerous split treatments,
can increase rice production and NUE while lowering N losses [23–26]. However, these
methods are either constrained by a lack of technology or demand more labor and expertise
of N management than conventional methods [27].

On the other hand, there are microbes in the rhizosphere that interact with rice
roots [28]. Rhizospheres play a significant role in the soil environment, plant growth
and productivity, plant health, nutrient uptake, and heavy metal tolerance [29,30]. How-
ever, numerous factors, including the kind of fertilizer used, how it is applied, how much
is used, and how frequently it is applied, frequently have an impact on the activities of soil
bacterial communities [31,32]. In Xishuangbanna (China), Pang et al. identified bacteria
and fungi from roots of rice. Based on study of the 16S rRNA and internal transcribed
spacer (ITS) gene sequences, there are 462 endophytic and rhizospheric isolates (125 fungi
and 337 bacteria), which were distributed among 43 genera [33]. The interaction between
rhizosphere bacteria and fungi significantly increased rice production and decreased chem-
ical fertilizers [34]. The contributing methods are: (1) creating siderophores and enzymes
to increase the solubility of soil nutrients; (2) producing phytohormones; (3) regulating
pathogens and reducing the negative impacts of stress; and (4) collaborating with other soil
microorganisms [35–38].

Arbuscular mycorrhizal fungi (AMF) are essential fungi of soil microorganisms in the
phylum Glomeromycota that form mutualistic symbioses with plant roots [39]. AMF have
many functions in symbiotic systems, such as promoting plant growth, increasing yield,
improving soil physicochemical properties, stimulating flowering, enhancing drought
and disease resistance, boosting heavy-metal tolerance, improving the root physiology,
and modifying microbial community structure and diversity in the rhizosphere [40–43].
Numerous studies have demonstrated that after inoculation with AMF, crops consider-
ably improve their ability to absorb N, potassium (K), phosphorus (P), calcium (Ca), and
magnesium (Mg) [44–47]. Applying AMF improves root development and the growth and
productivity of wetland grasses, tomatoes, and rice [48–51]. Most studies have focused
on the ability of AMF to absorb phosphate nutrients, so many researchers have combined
AMF and phosphate fertilizer to examine the relationship between AMF, soil phosphate
availability, and phosphate uptake by plants [52–54]. The purpose of this research was to
investigate the impact of the combined application of AMF and N fertilizer on the physico-
chemical soil properties, rice growth, rice productivity, and N uptake. We hypothesized
that (1) AMF would increase the availability of N in the soil and improve the physical and
chemical properties of the soil, and (2) the combination of AMF and N fertilizer would
improve the growth and productivity of rice.
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2. Materials and Methods
2.1. Experimental Location and Conditions

Experiments were conducted at an agricultural field in Pulo Kedep, Subulussalam,
Aceh, Indonesia (02◦ 27′–03◦00′, 97◦44′–98◦10′) during July–November (early season)
and December–April (late season) 2022/2023. The annual average precipitation was
2308 mm. The mean maximum and minimum temperature in the early season ranges
were 30.9–32.9 ◦C and 23.2–23.7 ◦C, respectively, while the mean maximum and minimum
temperature in the late season ranges were 31–34 ◦C and 23–24.9 ◦C. The total quantities of
rainfall during the early and late seasons were 985 mm and 1468 mm, respectively [55]. In
this research, we used unsterile soil collected from Pulo Kedep Village (Ultisol; 0–20 cm).
Figure 1 presents the total temperature, rainfall, and relative humidity during both seasons.
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2.2. Experimental Design

Two experiments were performed with three replications and a complete random-
ized design. Rice was cultivated in polybags (40 cm × 40 cm) that contained 10 kg of
soil with various doses of AMF and N fertilizer. We used Mycogrow as the AMF in-
oculum (produced by PT Agrofarm Nusa Raya), which contains five species of AMF
(Glomus claroideum, Glomus fasciculatum, Funneliformis mosseae, Glomus etunicatum, Au-
colospora rogusa). The polybags were routinely hydrated using drip irrigation from trans-
plantation until maturity stage. The ‘Trisakti’ rice variety was grown in nurseries for
20 days, then transplanted to the polybags. The characteristics of Trisakti are presented
in [56]. AMF was applied 1 day before transplanting. Four levels of AMF (M) were
used in the treatments (0, 15, 30, and 45 g polybag−1) and three N fertilizer levels (0,
90, and 180 kg ha−1). These treatments were referred to as M0N0: 0 g AMF + 0 kg N ha−1

(control), M0N1: 0 g AMF + 90 kg N ha−1, M0N2: 0 g AMF + 180 kg N ha−1, M1N0: 15 g
AMF + 0 kg N ha−1, M1N1: 15 g AMF + 90 kg N ha−1, M1N2: 15 g AMF + 180 kg N ha−1,
M2N0: 30 g AMF + 0 kg N ha−1, M2N1: 30 g AMF + 90 kg N ha−1, M2N2: 30 g AMF +
180 kg N ha−1, M3N0: 45 g AMF + 0 kg N ha−1, M3N1: 45 g AMF + 90 kg N ha−1, and
M3N2: 45 g AMF + 180 kg N ha−1. All treatments received a base dosage of urea fertilizer
at a rate of 90 kg N ha−1 (1.13 g polybag−1) and a subsequent dose of urea fertilizer at
rates of 50% at the tillering stage and 50% at the panicle initiation stage. KCl (potassium
chloride) fertilizer was applied twice: 50% as a basal dose and 50% at the tillering stage at
a rate of 240 kg K ha−1 (3.02 g polybag−1). SP-36 (super phosphate) fertilizer was treated
once as a basal dose at a rate of 240 kg P ha−1 (3.02 g polybag−1) in all treatments. The In-
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donesian Ministry of Agriculture’s recommendations were used to determine the fertilizer
dosages [57]. The harvest time in this research was 90 days after transplanting (DAT).

2.3. Analysis and Sampling
2.3.1. Biochar and Soil

Biochar that we applied was made from rice husk as described in [56]. To analyze
physicochemical properties, soil samples were taken from each treatment throughout
both seasons before and after the experiment. The physicochemical of soil properties
including pH (potential hydrogen), soil organic matter (SOM), total nitrogen (TN), available
phosphorus (AP), available potassium (AK), and soil bulk density (BD) were analyzed
using soil nutrient analyzer equipment [58]. Determination the soil porosity (SP) was made
with the following formula [59]:

Soil Porosity = (1− (Bulk Density÷ Particle Density)× 100. (1)

2.3.2. Rice Growth

We measured a number of growth factors, including plant height, number of tillers,
chlorophyll, flowering day, and flag leaf area (FLA). At 3 to 8 weeks after planting, plant
height was measured using a ruler from the stem base to the tallest leaf. The tiller number
was examined by counting the number of plants that emerged from the main plant intern-
ode at 3–8 weeks after planting. The SPAD meter procedure and method are described by
Islam et al. [60]. The measurements were made in the polybags at three different growth
stages (tillering, heading, and maturity). FLA measurements were taken on four leaves on
each plant. FLA measurement was calculated at 70 DAT, using the following formula:

FLA = length×width× constant(0.7). (2)

2.3.3. Root Morphology

Measurements were taken of the rice root morphology, such as root volume (RV) and
root length (RL). RL was calculated by using a ruler to measure the distance between the
stem base and the root tip. To measure RV, the rice plant roots were cut out and cleaned. To
calculate the volume change, air-dried roots were put in a 1000 mL measuring cup with
250 mL of water. RV was computed using the formula below:

RV = Volume(2)−Volume(1) (3)

2.3.4. Yield Components

The number of productive tillers on a rice plant was counted to calculate the panicle
number, and a ruler was used to calculate the panicle length. The 1000-grain weight was
determined with an analytical balance.

2.3.5. Root Dry Matter, Shoot Dry Matter, and N Uptake

For the purpose of determining the shoot and root dry weight, the roots and shoots
were washed and baked at 70 ◦C for 48 h to achieve a constant weight [61]. Plant samples
(roots, stems, and leaves) at the maturity stage were oven-dried at 70 ◦C for 48 h, and then
dried sub-samples were ground to a powder. The micro-Kjeldahl method was used to
calculate the N uptake [62].

2.4. Statistics

All data were tested and checked for normality before statistical analysis. One-way
analysis of variance (ANOVA) was used to analyze all data experiments, and two-way
ANOVA was used to analyze the interaction between AMF and N fertilizer. IBM SPSS
Statistics 21 software (SPSS Inc., Chicago, IL, USA) was used to analyze the data. Duncan’s
test was used to analyze the least significant differences (p < 0.05). Sigma Plot 14.0 was
used to prepare the figures and graphs.
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3. Results
3.1. Soil Properties

The combination of AMF and N fertilizer significantly increased soil physicochemical
properties (Table 1). The combined application M3N2 reduced soil BD by 38.02% and
37.24% compared to control during the early and late seasons, respectively, followed by
M3N1 35.90% and 34.50%. Similarly, M3N2 increased SP by 60.68% and 61.09% with values
of 67.17% and 67.41% compared to control treatment during the early and late seasons,
respectively, followed by M3N1 55.23% and 55.63%. The combined application of AMF and
N fertilizer had significant effect on soil chemical properties, including TN, AP, and AK
in the both seasons. The M3N2 treatment increased TN by 14.81% and 14.95% and AK by
3.75% and 4.01% during the early and late seasons, respectively. M3N0 increased soil pH
by 17.69% and 18.12%, and SOM by 34.21% and 36.42% during both seasons, respectively.
M3N1 increased AP content by 30.78% and 30.83% compared to control during the early
and late seasons, respectively, followed by M3N2 30.12% and 29.84%. AK influenced by the
combination of AMF and N fertilizer. M3N2 increased AK by 3.75% and 4.01% compared
to control in the both seasons, respectively.

Table 1. Variations in soil physicochemical characteristics under different arbuscular mycorrhizal
fungi and nitrogen application rates.

Treatments BD (g cm−3) SP (%) pH SOM (%) TN (%) AP (ppm) AK (ppm)

Before 1.32 41.76 5.28 1.52 0.05 21.22 223.11

Early Season (S1)

M0N0 1.33 ± 0.005 g 41.80 ± 0.01 l 5.20 ± 0.01 g 1.52 ± 0.01 d 0.14 ± 0.005 f 21.30 ± 0.005 i 223.45 ± 0.015 l
M0N1 1.27 ± 0.01 f 41.88 ± 0.01 k 5.22 ± 0.01 g 1.56 ± 0.005 d 0.18 ± 0.005 e 21.62 ± 0.015 h 225.69 ± 0.01 j
M0N2 1.27 ± 0.005 f 43.10 ± 0.02 j 5.29 ± 0.015 f 1.73 ± 0.005 c 0.18 ± 0.00 de 21.74 ± 0.005 g 225.46 ± 0.01 k
M1N0 1.22 ± 0.005 e 46.30 ± 0.02 i 5.87 ± 0.025 d 1.95 ± 0.01 b 0.17 ± 0.00 e 25.26 ± 0.015 f 227.16 ± 0.005 i
M1N1 1.17 ± 0.005 d 56.84 ± 0.03 f 5.76 ± 0.02 e 1.95 ± 0.005 b 0.20 ± 0.005 d 25.29 ± 0.005 f 227.83 ± 0.01 h
M1N2 1.25 ± 0.01 f 58.94 ± 0.03 e 5.31 ± 0.01 f 1.93 ± 0.005 b 0.22 ± 0.005 c 25.78 ± 0.011 e 228.3 ± 0.01 g
M2N0 1.19 ± 0.005 de 48.18 ± 0.01 h 5.97 ± 0.01 c 1.98 ± 0.005 b 0.18 ± 0.005 e 25.81 ± 0.04 de 229.25 ± 0.02 f
M2N1 1.01 ± 0.01 c 60.15 ± 0.025 d 5.87 ± 0.025 d 1.96 ± 0.00 b 0.23 ± 0.005 cd 25.92 ± 0.005 d 229.88 ± 0.015 d
M2N2 1.00 ± 0.025 bc 63.14 ± 0.045 c 5.33 ± 0.01 f 1.93 ± 0.005 b 0.24 ± 0.005 bc 25.84 ± 0.015 de 230.09 ± 0.005 c
M3N0 1.17 ± 0.005 d 48.92 ± 0.005 g 6.12 ± 0.01 a 2.04 ± 0.05 a 0.22 ± 0.005 c 26.38 ± 0.015 c 229.80 ± 0.01 e
M3N1 0.98 ± 0.005 ab 64.89 ± 0.035 b 6.02 ± 0.01 b 1.98 ± 0.005 b 0.25 ± 0.005 ab 27.85 ± 0.04 a 230.19 ± 0.005 b
M3N2 0.96 ± 0.01 a 67.17 ± 0.025 a 5.97 ± 0.00 c 1.96 ± 0.005 b 0.26 ± 0.01 a 27.71 ± 0.02 b 231.88 ± 0.01 a

Late Season (S2)

M0N0 1.35 ± 0.005 h 41.85 ± 0.005 l 5.19 ± 0.005 i 1.51 ± 0.01 h 0.15 ± 0.005 f 21.28 ± 0.005 k 222.93 ± 0.055 l
M0N1 1.28 ± 0.005 g 41.92 ± 0.05 k 5.24 ± 0.005 h 1.55 ± 0.005 h 0.19 ± 0.005 e 21.66 ± 0.02 j 225.93 ± 0.04 j
M0N2 1.25 ± 0.005 f 43.14 ± 0.03 j 5.32 ± 0.03 g 1.65 ± 0.02 g 0.19 ± 0.005 e 21.77 ± 0.01 i 225.35 ± 0.025 k
M1N0 1.20 ± 0.005 e 46.62 ± 0.05 i 5.88 ± 0.01 d 1.93 ± 0.005 ef 0.18 ± 0.005 e 25.32 ± 0.005 h 227.35 ± 0.03 i
M1N1 1.15 ± 0.005 d 56.92 ± 0.015 f 5.95 ± 0.005 c 1.95 ± 0.005 cdef 0.21 ± 0.005 d 25.39 ± 0.005 g 227.70 ± 0.03 h
M1N2 1.25 ± 0.005 f 58.98 ± 0.005 e 5.74 ± 0.02 f 1.91 ± 0.01 f 0.22 ± 0.01 cd 25.76 ± 0.025 f 228.20 ± 0.015 g
M2N0 1.19 ± 0.005 e 48.28 ± 0.045 h 6.06 ± 0.03 b 1.99 ± 0.005 bc 0.18 ± 0.005 e 25.81 ± 0.015 f 125.78 ± 0.04 f
M2N1 1.04 ± 0.015 c 60.26 ± 0.01 d 5.98 ± 0.005 c 1.97 ± 0.005 bcde 0.24 ± 0.005 c 25.97 ± 0.01 d 229.77 ± 0.015 e
M2N2 1.01 ± 0.01 b 63.23 ± 0.02 c 5.82 ± 0.005 e 1.94 ± 0.00 def 0.26 ± 0.005 b 25.85 ± 0.02 e 230.12 ± 0.01 d
M3N0 1.15 ± 0.005 d 48.98 ± 0.005 g 6.13 ± 0.005 a 2.06 ± 0.03 a 0.21 ± 0.01 d 26.38 ± 0.01 c 229.88 ± 0.01 c
M3N1 1.00 ± 0.01 ab 65.13 ± 0.005 b 6.06 ± 0.02 b 1.99 ± 0.02 b 0.27 ± 0.005 ab 27.84 ± 0.005 a 230.22 ± 0.005 b
M3N2 0.98 ± 0.01 a 67.41 ± 0.02 a 5.96 ± 0.01 c 1.97 ± 0.00 bcd 0.28 ± 0.005 a 27.63 ± 0.005 b 231.88 ± 0.015 a

M ** ** ** ** ** ** **
N ** ** ** ns ** ** **

M × N ** ** ** ** ns ** **
LSD 0.000 0.000 0.000 0.000 0.069 0.000 0.000

Note: Bulk density (BD), soil porosity (SP), potential hydrogen (pH), soil organic matter (SOM), total nitro-
gen (TN), available phosphorus (AP), and available potassium (AK), ± indicates the standard error among
replications, LSD: least significant difference of M × N, M: mycorrhizae, N: nitrogen, M×N: interaction be-
tween mycorrhizae and nitrogen, M0N0: 0 g AMF + 0 kg N ha−1 (control), M0N1: 0 g AMF + 90 kg N ha−1,
M0N2: 0 g AMF + 180 kg N ha−1, M1N0: 15 g AMF + 0 kg N ha−1, M1N1: 15 g AMF + 90 kg N ha−1,
M1N2: 15 g AMF + 180 kg N ha−1, M2N0: 30 g AMF + 0 kg N ha−1, M2N1: 30 g AMF + 90 kg N ha−1,
M2N2: 30 g AMF + 180 kg N ha−1, M3N0: 45 g AMF + 0 kg N ha−1, M3N1: 45 g AMF + 90 kg N ha−1, and M3N2:
45 g AMF + 180 kg N ha−1. Means with the same lowercase letters in a column are not significantly different
(p > 0.05) according to Duncan’s test. ** indicates a significant difference (p < 0.01), and ns: no significant difference
(p > 0.05).
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3.2. Rice Growth

Based on the data analysis of two seasons of rice growth, we found that the combina-
tion of AMF and N fertilizer had substantial effects on plant height, number of tillers, FLA,
flowering day, and chlorophyll content (SPAD). According to Figure 2, plant height was
significantly affected by the combination of AMF and N, with the highest values presented
in M3N2, M3N1, M2N2, and M2N1. M3N2 increased plant height by 19.19% and 19.79%
compared to control during both seasons, respectively, followed by M3N1 17.49% and
18.17%, and M2N2 17.02% and 17.48%. The combined application of AMF and N also had a
significant effect in enhancing the number of tillers (Figure 3); the higher the AMF dose, the
higher the number of tillers. M3N2 improved the number of tillers by 25.27% and 26.08%
compared to control during both seasons, respectively, followed by M3N1 23.38% and
23.62%. The flowering day data are presented in Figure 4. The combination of AMF and N
fertilizer accelerated the day of flowering. M3N2 increased the day of flowering by 19.23%
and 20.22% compared to control treatment during the both seasons, respectively, followed
by M2N2 18.91% and 18.80%, and M3N1 17.90% and 19.14%. The M3N2, M2N2, and M3N1
treatments developed flowers 49 days after transplanting during both seasons. In our study,
the higher the dose of AMF and N fertilizer, the faster the day of flowering. AMF at a rate
of 45 g polybag−1 stimulated faster flowering than the 30 g polybag−1, 15 g polybag−1, or
the control.
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The effect of the combination of AMF and N fertilizer on FLA is presented in Figure 5.
FLA was significantly affected by AMF and N fertilizer. M3N2 increased FLA by 107.76%
and 108.02% compared to control during both seasons, respectively, followed by M2N2
103.67% and 103.68%, and M3N1 99.61% and 99.94%. The smallest FLA value occurred
in M0N0, with 6.60 and 6.61 cm2 during both seasons, respectively, followed by M0N1
and M0N2. The interaction between AMF and N was significant (p < 0.05) for chlorophyll
content (SPAD) during all three growth stages (tillering, heading, and maturity) in both
seasons (Figure 6). The results showed that the M3N2 treatment resulted in an average
increased SPAD by 20.71% and 20.62% during both seasons. N fertilizer improved the
chlorophyll content (SPAD) value. N fertilizer at a rate of 180 kg N ha−1 resulted in a higher
SPAD value than a rate of 90 kg N ha−1.
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3.3. Root Morphology

Rice RL and RV were significantly different among the combined AMF and N fertilizer
treatments during the early and late seasons (Table 2). The M3N2 treatment increased rice
RL by 54.68% and 56.44% compared to control during both seasons, respectively, followed
by M3N1 52.04% and 51.65%, and M2N2 38.78% and 41.82%. The M3N2 treatment enhanced
RV by 42.73% and 43.37% compared to control during both seasons, respectively. Our
findings indicate that different combinations of AMF and N had different significant effects
on improving root morphology. RL was lowest in the M0N0 treatment (26.09 cm and
26.22 cm during the early and late seasons, respectively), followed by the M0N1 treatment
(28 cm and 28.19 cm during the early and late seasons, respectively). The M0N0 treatment
exhibited the lowest RV of rice with values of 27.43 cm3 and 27.72 cm3 during the early
and late seasons, respectively), followed by the M0N1 treatment (28.91 cm3 and 29.26 cm3

during the early and late seasons, respectively).

Table 2. Impact of different levels of arbuscular mycorrhizal fungi and nitrogen fertilizer on the root
length (cm) and root volume (cm3) of rice.

Treatments

Root Morphology

Early Season Late Season

RL (cm) RV (cm3) RL (cm) RV (cm3)

M0N0 26.09 ± 0.08 j 27.43 ± 0.02 k 26.22 ± 0.29 i 27.72 ± 0.06 j
M0N1 28.00 ± 0.08 i 28.91 ± 0.01 j 28.19 ± 0.11 h 29.26 ± 0.06 i
M0N2 28.21 ± 0.22 i 30.71 ± 0.22 i 28.27 ± 0.13 h 30.98 ± 0.13 h
M1N0 29.81 ± 0.30 h 33.04 ± 0.06 h 29.97 ± 0.30 g 33.34 ± 0.14 g
M1N1 32.01 ± 0.06 fg 34.33 ± 0.08 g 32.27 ± 0.12 f 34.88 ± 0.05 ef
M1N2 33.31 ± 0.07 e 35.61 ± 0.08 e 33.59 ± 0.07 e 36.24 ± 0.18 d
M2N0 31.78 ± 0.06 g 34.06 ± 0.18 g 32.00 ± 0.12 f 34.59 ± 0.11 f
M2N1 35.21 ± 0.11 d 35.97 ± 0.04 d 36.16 ± 0.05 d 36.54 ± 0.18 d
M2N2 36.47 ± 0.07 c 37.57 ± 0.13 b 37.19 ± 0.09 c 38.13 ± 0.20 b
M3N0 32.29 ± 0.11 f 34.77 ± 0.12 f 32.43 ± 0.02 f 35.28 ± 0.07 e
M3N1 39.67 ± 0.19 b 37.02 ± 0.08 c 39.77 ± 0.15 b 37.59 ± 0.17 c
M3N2 40.36 ± 0.11 a 39.16 ± 0.12 a 41.02 ± 0.06 a 39.74 ± 0.18 a

M ** ** ** **
N ** ** ** **

M × N ** ** ** ns
LSD 0.000 0.000 0.000 0.014

Note: Root length (RL), root volume (RV), ± indicates the standard error among the replications, LSD: least
significant difference of M × N, M: mycorrhizae, N: nitrogen, M×N: interaction between mycorrhizae and
nitrogen, M0N0: 0 g AMF + 0 kg N ha−1 (control), M0N1: 0 g AMF + 90 kg N ha−1, M0N2: 0 g AMF + 180 kg
N ha−1, M1N0: 15 g AMF + 0 kg N ha−1, M1N1: 15 g AMF + 90 kg N ha−1, M1N2: 15 g AMF + 180 kg N ha−1,
M2N0: 30 g AMF + 0 kg N ha−1, M2N1: 30 g AMF + 90 kg N ha−1, M2N2: 30 g AMF + 180 kg N ha−1, M3N0: 45 g
AMF + 0 kg N ha−1, M3N1: 45 g AMF + 90 kg N ha−1, and M3N2: 45 g AMF + 180 kg N ha−1. Means with the
same lowercase letters in a column are not significantly different (p > 0.05) according to Duncan’s test. ** indicates
a significant difference at p < 0.01, and ns: no significant difference (p > 0.05).
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3.4. Yield Components

The combination of AMF and N fertilizer had a significant effect on the yield compo-
nents of rice, including panicle number, panicle length, and 1000-grain weight during both
seasons (Table 3). The combined application of 45 g AMF and 180 kg N ha−1 improved
panicle number by 67.44% and 72.35%, and panicle length by 49.72% and 52.31% compared
to control during the early and late season, respectively, followed by M3N1 and M2N2. The
M3N2 treatment had a higher average 1000-grain weight than the other treatments across
the seasons, whereas no significant difference was detected in 1000-grain weight between
the M3N2 and M3N1 treatments. M3N2 improved 1000-grain weight by 30.70% and 32.44%
compared to control during both seasons, respectively, followed by M3N2 29.71% and
31.11%. Our findings show that all of the combined treatments with AMF and N fertilizer
improved the yield components compared to AMF or N alone, and the control treatment.

Table 3. Impact of different rates of arbuscular mycorrhizal fungi and nitrogen fertilizer on the
panicle number, panicle length, and 1000-grain weight of rice.

Treatments

Yield Components

Early Season Late Season

PN PL (cm) 1000-Grain
Weight (g) PN PL (cm) 1000-Grain

Weight (g)

M0N0 19.11 ± 0.11 h 16.42 ± 0.06 f 29.17 ± 0.06 h 18.89 ± 0.22 j 16.61 ± 0.15 g 29.46 ± 0.03 h
M0N1 20.22 ± 0.29 g 16.79 ± 0.17 f 29.71 ± 0.16 g 20.44 ± 0.11 i 17.00 ± 0.19 fg 29.91 ± 0.06 h
M0N2 21.00 ± 0.00 g 16.87 ± 0.17 f 31.31 ± 0.40 g 21.44 ± 0.11 h 17.38 ± 0.16 f 31.55 ± 0.17 g
M1N0 25.00 ± 0.33 f 19.18 ± 0.05 e 33.51 ± 0.24 f 25.33 ± 0.19 g 19.20 ± 0.20 e 33.79 ± 0.02 f
M1N1 25.67 ± 0.19 ef 20.16 ± 0.13 d 34.80 ± 0.31 e 26.11 ± 0.11 f 20.56 ± 0.22 d 35.06 ± 0.14 e
M1N2 26.00 ± 0.33 e 22.23 ± 0.23 c 36.08 ± 0.18 cd 26.56 ± 0.11 f 22.56 ± 0.11 c 36.43 ± 0.12 c
M2N0 27.22 ± 0.29 d 19.12 ± 0.06 e 34.52 ± 0.39 e 27.56 ± 0.11 e 19.67 ± 0.00 e 34.78 ± 0.22 e
M2N1 27.78 ± 0.40 cd 23.70 ± 0.32 b 36.43 ± 0.28 c 28.11 ± 0.29 d 23.79 ± 0.28 b 36.88 ± 0.14 c
M2N2 28.56 ± 0.11 c 23.99 ± 0.09 b 36.99 ± 0.32 bc 29.00 ± 0.19 c 24.04 ± 0.11 b 37.42 ± 0.12 b
M3N0 28.00 ± 0.33 cd 20.22 ± 0.29 d 35.23 ± 0.37 de 28.22 ± 0.11 d 20.78 ± 0.62 d 35.61 ± 0.14 d
M3N1 30.78 ± 0.40 b 24.03 ± 0.14 b 37.83 ± 0.24 ab 31.56 ± 0.11 b 24.49 ± 0.14 b 38.63 ± 0.24 a
M3N2 32.00 ± 0.19 a 24.59 ± 0.13 a 38.12 ± 0.27 a 32.56 ± 0.11 a 25.30 ± 0.09 a 39.02 ± 0.27 a

M ** ** ** ** ** **
N ** ** ** ** ** **

M × N ** ** ns ** ** **
LSD 0.000 0.000 0.021 0.000 0.000 0.000

Note: Panicle length (PL), panicle number (PN), ± indicates the standard error among the replications, LSD: least
significant difference of M × N, M: mycorrhizae, N: nitrogen, M × N: interaction between mycorrhizae and nitro-
gen, M0N0: 0 g AMF + 0 kg N ha−1 (control), M0N1: 0 g AMF + 90 kg N ha−1, M0N2: 0 g AMF + 180 kg N ha−1,
M1N0: 15 g AMF + 0 kg N ha−1, M1N1: 15 g AMF + 90 kg N ha−1, M1N2: 15 g AMF + 180 kg N ha−1,
M2N0: 30 g AMF + 0 kg N ha−1, M2N1: 30 g AMF + 90 kg N ha−1, M2N2: 30 g AMF + 180 kg N ha−1,
M3N0: 45 g AMF + 0 kg N ha−1, M3N1: 45 g AMF + 90 kg N ha−1, and M3N2: 45 g AMF + 180 kg N ha−1. Means
with the same lowercase letters in a column are not significantly different (p > 0.05) according to Duncan’s test.
** indicates a significant difference at p < 0.01, and ns: no significant difference (p > 0.05).

3.5. Dry Matter and N Uptake

The results of N uptake and dry matter, including root dry matter and shoot dry matter,
are presented in Table 4. Our results indicate that the combined application of AMF and N
fertilizer significantly increased N uptake, root dry matter, and shoot dry matter. The M3N2
treatment improved N uptake by 107.93% and 108.06% compared to control during both
seasons, respectively, followed by M3N1 97.50% and 96.35%. The combination of AMF with
a 180 kg N ha−1 rate was more significant than the other treatments. Root dry matter and
shoot dry matter showed that the combination of AMF and N significantly increased weight
of root dry and shoot dry matter in rice. The M3N2 treatment increased root dry matter
by 54.34% and 53.69% compared to control during both seasons, respectively, followed by
M3N1 48.48% and 47.92%, and M2N2 46.41% and 46.61%. Shoot dry matter increased by
26.08% and 28.26% compared to control during both seasons, respectively, followed by
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M2N2 22.64% and 23.11%, and M3N1 21.80% and 23.62%. The minimum values of root dry
matter and shoot dry matter were detected in the M0N0 and M0N1 treatments during the
early season and the late season, respectively.

Table 4. Impact of different rates of arbuscular mycorrhizal fungi and nitrogen fertilizer on the root
dry matter, shoot dry matter, and nitrogen uptake of rice.

Treatments

Dry Matter and N Uptake

Early Season Late Season

RDM (g) SDM (g) NU (g
polybag−1) RDM (g) SDM (g) NU (g

polybag−1)

M0N0 19.34 ± 0.10 k 40.78 ± 0.17 i 3.19 ± 0.00 l 19.48 ± 0.13 i 40.97 ± 0.19 i 3.22 ± 0.00 l
M0N1 20.58 ± 0.17 j 41.06 ± 0.08 i 3.35 ± 0.00 k 20.71 ± 0.12 h 41.17 ± 0.07 i 3.37 ± 0.01 k
M0N2 21.74 ± 0.20 i 42.03 ± 0.10 h 5.39 ± 0.00 f 21.76 ± 0.06 g 42.23 ± 0.06 h 5.40 ± 0.00 f
M1N0 24.24 ± 0.06 h 44.21 ± 0.11 g 4.51 ± 0.00 j 24.64 ± 0.06 f 44.33 ± 0.06 g 4.52 ± 0.00 j
M1N1 25.53 ± 0.08 g 45.64 ± 0.06 ef 5.20 ± 0.01 g 25.70 ± 0.05 e 45.76 ± 0.05 e 5.23 ± 0.00 g
M1N2 26.81 ± 0.08 e 46.43 ± 0.39 d 5.84 ± 0.00 e 26.94 ± 0.13 d 46.54 ± 0.03 d 5.88 ± 0.01 e
M2N0 25.26 ± 0.18 g 45.10 ± 0.12 f 4.60 ± 0.00 i 25.52 ± 0.13 e 45.44 ± 0.04 f 4.61 ± 0.00 i
M2N1 27.66 ± 0.10 d 48.27 ± 0.25 c 5.96 ± 0.01 d 27.63 ± 0.07 c 48.51 ± 0.11 c 5.99 ± 0.02 d
M2N2 28.32 ± 0.06 c 50.01 ± 0.14 b 6.19 ± 0.00 c 28.56 ± 0.08 b 50.43 ± 0.02 b 6.22 ± 0.00 c
M3N0 25.97 ± 0.12 f 46.24 ± 0.37 de 4.76 ± 0.00 h 25.39 ± 0.09 e 46.50 ± 0.06 d 4.80 ± 0.00 h
M3N1 28.72 ± 0.16 b 49.67 ± 0.30 b 6.31 ± 0.01 b 28.81 ± 0.16 b 50.64 ± 0.11 b 6.33 ± 0.01 b
M3N2 29.86 ± 0.09 a 51.41 ± 0.19 a 6.64 ± 0.01 a 29.94 ± 0.09 a 52.54 ± 0.03 a 6.71 ± 0.00 a

M ** ** ** ** ** **
N ** ** ** ** ** **

M × N ** ** ** ** ** **
LSD 0.000 0.000 0.000 0.000 0.000 0.000

Note: Root dry matter (RDM), shoot dry matter (SDM), nitrogen uptake (NU), ± indicates the standard error
among the replications, LSD: least significant difference of M × N, M: mycorrizhae, N: nitrogen, M × N: interac-
tion between mycorrizhae and nitrogen, M0N0: 0 g AMF + 0 kg N ha−1 (control), M0N1: 0 g AMF + 90 kg N ha−1,
M0N2: 0 g AMF + 180 kg N ha−1, M1N0: 15 g AMF + 0 kg N ha−1, M1N1: 15 g AMF + 90 kg N ha−1,
M1N2: 15 g AMF + 180 kg N ha−1, M2N0: 30 g AMF + 0 kg N ha−1, M2N1: 30 g AMF + 90 kg N ha−1,
M2N2: 30 g AMF + 180 kg N ha−1, M3N0: 45 g AMF + 0 kg N ha−1, M3N1: 45 g AMF + 90 kg N ha−1, and M3N2:
45 g AMF + 180 kg N ha−1. Means with the same lowercase letters in a column are not significantly different
(p > 0.05) according to Duncan’s test. ** indicates a significant difference (p < 0.01).

4. Discussion
4.1. Impact of the Combination of AMF and N Fertilizer on Physicochemical Properties of Soil

Soil is an essential component of the sustainable development of any crop. Based on
our study, the combination of AMF and N fertilizer enhanced the soil physicochemical
properties. The combined application of 45 g AMF polybag−1 and 180 kg N ha−1 had the
greatest impact on improving soil properties. Adding AMF increased the soil pH, possibly
because AMF improves the soil bacterial community and increases bacterial metabolites,
which increase the soil pH [63,64]. Our findings indicate that a high N application decreased
the pH of the soil. This was similar to other studies reporting that adding N decreases soil
pH [65–68] because N fertilizer (urea) increases the nitrate concentration [69]. In this case,
the continuous use of ammoniacal fertilizers tends to acidify the soil [70], particularly when
applied at a high rate [71]. The combination of AMF and N fertilizer increased AP because
AMF play a key role in improving P availability in the soil, and the metabolic activities
of AMF produce alkaline phosphatases, which cleave substrates present in the soil and
allow the phosphate to be accessible [64,69]. AMF colonization also contributes to P and K
uptake by plants [72]. AMF improves SOM because many microbial components in the
soil work synergistically with AMF, promoting growth and protecting the plants [71,72].
AMF communities affect the physicochemical environment of the rhizosphere and control
various soil microbial interactions [73]. The combined application of AMF and N fertilizer
increased total soil N because AMF increase microbial biomass N and plant biomass, thus
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reducing the availability of N substrates (NH4
+ and NO3

-) in the soil for N2O producers
and decreasing N2O emissions [73–75].

4.2. Impact of the Combination of AMF and N Fertilizer on Rice Growth

The combination of AMF and N fertilizer significantly improved rice growth, including
plant height, tiller number, FLA, chlorophyll SPAD, and day of flowering. Our results
show that the combination of 45 g AMF polybag−1 and 180 kg N ha−1 increased plant
height to the maximum. Similarly, previous studies found that AMF increased plant growth
parameters of various crops [76–81]. This growth stimulation is linked to the fact that AMF
extends the absorbing network beyond the nutrient depletion zones of the rhizosphere,
which allows access to a larger volume of soil and AMF uptake of several major nutrients
such as N and P [82–84], which improves the supply of nutrients [85–91]. This result also
indicates that the high N level enhanced rice plant height. This was similar to a previous
study reporting that increased plant height with a high N level is associated with greater
availability of N in the soil and higher uptake by plants [92]. SPAD chlorophyll, tiller
number, FLA, and day of flowering also increased under high N (180 kg ha−1). This result
follows previous research indicating that N is important for the growth and development
of the aboveground and belowground structures of the rice plant [93]. SPAD units reflect
relative crop N status and yield level. Research by Jabboravo et al. showed that AMF
significantly enhanced the total chlorophyll content by 36.6%. AMF can improve water
use efficiency [94], which affects plant growth parameters such as shoot fresh weight, dry
weight, leaf number, leaf area, and plant height [95]. On the other hand, the application
of N fertilizer affects the growth of aerial components, including leaf area, as well as the
synthesis of pigments in leaves responsible for photosynthesis [96], and N stimulates the
tiller number and flowering time of rice [92,93,96].

4.3. Impact of the Combination of AMF and N Fertilizer on Root Morphology and Dry Matter

Root development is intricately connected to environmental factors in the soil includ-
ing water, oxygen, temperature, and nutrients [97,98]. In this study, we found that the
higher doses of AMF and N fertilizer increased RL and RV the most. This was consistent
with previous research indicating that AMF significantly increased RL and RV by 37%
and 65%, respectively [99]. Moreover, AMF promotes the development of lateral roots,
which can produce finer roots, thus increasing the uptake of water and nutrients from the
soil [100,101]. The enhanced root absorption results from the larger root system due to AMF
hyphae, which increase the area beyond the root zone, thereby increasing the available
volume of the soil solution [82,99,102]. Our results indicate that the combination of 45 g
AMF polybag−1 and 180 kg N ha−1 (2.27 g polybag−1) increased the RL and RV of rice
the most. This was consistent with previous research reporting that 4 g N pot−1 increases
the number of roots, root diameter, RDM, and RV [103]. Root and shoot dry matter are
also positively affected when AMF and N fertilizer are applied. Our results are similar to
previous studies showing that the shoot and root biomass are significantly greater in AMF
plants than in non-AMF plants [103–108]. Other researchers indicated that AMF enhanced
the shoot and root development and noticeably elevated root colonization after 1 year of
inoculation [109].

4.4. Impact of the Combination of AMF and N Fertilizer on Yield Components and N Uptake

The combination of AMF and N fertilizer increased the yield components, including
panicle number, panicle length, and 1000-grain weight. These findings are similar to previ-
ous research showing that AMF had a significant effect on production and distribution of
plant biomass including root biomass and shoot biomass [110], and another study reporting
that AMF accelerates the translocation of nutrients from the shoot to the grain and increases
the harvest index [111,112]. We found that the combination of 45 g AMF polybag−1 and
180 kg N ha−1 increased the yield components. Our findings indicate that N application
increases the yield, which is consistent with a previous study reporting that the rate of N
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fertilizer applied is strongly related to crop yield, and N is important for rice yield because
plant N status affects the development of the grain yield component [110,113]. The combi-
nation of AMF and N fertilizer also increased total N uptake by rice. This is consistent with
previous studies showing that AMF significantly increases N uptake by 35% compared to
non-AMF plants [114] and that AMF absorb and transfer N to host plants [115,116] because
the AMF hyphae network extends more than 10 cm beyond the root surface, which helps
obtain inorganic N from the soil more quickly and widely [117].

5. Conclusions

The combination of AMF and N fertilizer significantly affected soil physicochemical
properties, rice growth and productivity, and N uptake. The combined application of
45 g AMF polybag−1 and 180 kg N ha−1 treatment significantly enhanced rice growth and
productivity by improving root morphology (RL and RV) and N uptake. Overall, the
combined application of AMF and N fertilizer provided an ideal environment to promote
soil properties, rice growth, rice productivity, and nutrient uptake during agricultural
production. To find out more significant effects of AMF, we suggest that other studies
analyze the type of soil, AMF diversity in the soil, and crop cultivar before applying the
AMF. It will also be necessary to further study the long-term effects of AMF and N fertilizer
on crop growth and soil nutrient cycling. In conclusion, the combined application of AMF
and N fertilizer is a good formula for enhancing rice growth and productivity by improving
root growth and soil properties.
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