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Abstract: In order to optimize the efficiency of pineapple harvesting robots in recognition and target
detection, this paper introduces a lightweight pineapple detection model, namely MSGV-YOLOv7.
This model adopts MobileOne as the innovative backbone network and uses thin neck as the neck
network. The enhancements in these architectures have significantly improved the ability of feature
extraction and fusion, thereby speeding up the detection rate. Empirical results indicated that
MSGV-YOLOv7 surpassed the original YOLOv7 with a 1.98% increase in precision, 1.35% increase
in recall rate, and 3.03% increase in mAP, while the real-time detection speed reached 17.52 frames
per second. Compared with Faster R-CNN and YOLOv5n, the mAP of this model increased by
14.89% and 5.22%, respectively, while the real-time detection speed increased by approximately
2.18 times and 1.58 times, respectively. The application of image visualization testing has verified the
results, confirming that the MSGV-YOLOv7 model successfully and precisely identified the unique
features of pineapples. The proposed pineapple detection method presents significant potential
for broad-scale implementation. It is expected to notably reduce both the time and economic costs
associated with pineapple harvesting operations.

Keywords: MSGV-YOLOv7; pineapple; deep learning; thin neck; target detection

1. Introduction

China, a prominent agricultural country with expansive farmlands, necessitates a
more proficient and large-scale approach to agricultural production [1]. Under this context,
the advent of smart agriculture is an inevitable trend for the future. Pineapples, a nutritious
fruit extensively cultivated in the southern regions of China [2], are typically harvested
manually. This process requires a significant labor force and faces issues such as labor
shortages and concerns about worker safety. Therefore, the development of pineapple
harvesting robots is becoming increasingly important [3]. These robots have the potential to
improve both yield and harvesting efficiency while also ensuring the safety of laborers. This
highlights the pressing need for research in the field of pineapple harvesting robotics [4,5].
For these robots to be effective and of high quality, real-time detection of pineapples is
crucial in the effectiveness and quality of robot-assisted harvesting.

In recent years, there have been rapid advancements in deep learning technologies.
This development has led to the widespread application of machine vision technologies.
Now, they have become the primary tools for detecting agricultural products. These
technologies have found extensive applications in remote intelligent monitoring [6,7],
agricultural harvesting robots [8–11], ripeness detection [12], variety selection [13,14], yield
prediction [15], and other related fields. As the field of object recognition technology
continues to mature, experts from both domestic and international communities have
increasingly integrated computer vision technology into the agricultural sector. Researchers

Agriculture 2024, 14, 29. https://doi.org/10.3390/agriculture14010029 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture14010029
https://doi.org/10.3390/agriculture14010029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0003-2627-6040
https://orcid.org/0000-0001-7587-0543
https://doi.org/10.3390/agriculture14010029
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture14010029?type=check_update&version=1


Agriculture 2024, 14, 29 2 of 16

have dedicated their efforts to exploring precise fruit recognition algorithms, including
traditional feature-based recognition methods as well as deep learning methods such as
convolutional neural networks, which have exhibited promising results in agricultural
applications. These algorithms can generally be categorized into single-stage and two-
stage detection methods. Single-stage detection algorithms necessitate only one round
of feature extraction for object detection. Examples of such algorithms include the Single
Shot Multibox Detector (SSD) [16,17] and You Only Look Once (YOLO) [18–21] series,
renowned for their swift detection speed and exceptional computational performance.
Therefore, these algorithms are well suited for the real-time monitoring of agricultural
targets in complex environments. Researchers have successfully enhanced these algorithms
to achieve high-precision fruit detection in complex agricultural settings. For instance,
Angelo Cardellicchio and his team [22] evaluated the YOLOv5 model using challenging
datasets of tomato plants, demonstrating commendable performance in the recognition of
leaf nodes, fruits, and flowers. Sekharamantry et al. [23] improved the precision of YOLOv5
by introducing adaptive pooling, attribute enhancement, and loss functions, resulting in
proficient apple detection. Gai et al. [24] proposed a YOLOV4-DenseNet model with dense
connections for cherry detection, effectively addressing the challenge of recognizing small
target fruits. Tang et al. [25] developed a tea oil fruit detection algorithm based on YOLOv4-
Tiny, mitigating issues related to fruit detection caused by lighting and leaf shadow, thereby
achieving a 4.86% enhancement in average precision (AP) and a 12% reduction in model
size, with further potential for reductions. Huang et al. [26] devised a GCS-YOLOv4-
Tiny multi-stage fruit detection algorithm based on YOLOv4-Tiny, which improved the
mAP by 17.45% and F1 by 13.8% compared with the original network. In contrast, two-
stage object detection algorithms, such as Faster R-CNN, involve generating candidate
regions and subsequently employing convolutional neural networks for object detection.
Zhong et al. [27] enhanced the Faster R-CNN model by incorporating depth information to
accurately locate clustered peppers, achieving an AP of 87.30%. Fangfang Gao et al. [28]
employed Faster R-CNN for apple detection, attaining an average precision of 0.879 for
apples under various obstructions, including leaves, branches, wires, and other fruits. In
summary, single-stage object detection methods are well suited for tasks that necessitate
real-time performance, while two-stage object detection methods often enhance detection
precision at the expense of increased computational resources and time consumption.

In recent years, the emergence of lightweight convolutional models has been observed
as a result of the continuous advancement of convolutional neural networks [29]. These
models aim to achieve lightweight effects by reducing the computational load during the
convolution process. For instance, Zhang et al. [30] devised a model that enhanced YOLOv4
by integrating MobileNetV3 with lightweight attention mechanisms to detect individual
potatoes in diverse environments. This model accomplished a detection time of 43 mil-
liseconds and an average precision of 91.4%. Additionally, Zhang et al. [31] introduced
a pineapple detection approach based on SSD, wherein MobileNet was substituted with
VGG16 for feature extraction to optimize detection speed. In addition, Liu et al. [32] success-
fully identified pineapples by incorporating improved YOLOv3 models, such as DenseNet.

Despite the robust detection precision offered by current fruit detection methods
utilizing deep learning technologies, they still encounter several challenges, including com-
plex network structures, a multitude of parameters, and slower system operation [33–35].
Therefore, this study seeks to design a real-time pineapple detection model for agricultural
harvesting robots, proposing a lightweight deep learning model known as MSGV-YOLOv7.
The objective is to strike a balance between detection precision and inference speed, thereby
addressing the complexities of pineapple farming environments and providing significant
support for the advancement of automated pineapple harvesting technology. The primary
enhancements of this study are outlined as follows:

1. To enhance adaptability to mobile devices, the MobileOne lightweight network was
introduced as a replacement for the YOLOv7 backbone network with the objective of
diminishing parameter count and expediting model training speed.
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2. The original network architecture was substituted with the lightweight GSConv and
VoVGSCSP backbone designs, resulting in reduced computational complexity and net-
work structure complexity while still maintaining satisfactory object detection precision.

3. The SimSPPF module was incorporated to enhance and optimize the SPP structure. Its
uniqueness lies in the gradual pooling approach as opposed to simultaneous pooling
at three scales. This modification effectively improves the efficiency of object feature
extraction and candidate box selection.

2. Materials and Methods
2.1. Data Acquisition

The pineapple images assessed in this study were mainly obtained from a pineapple
plantation in Xuwen County, Zhanjiang City, Guangdong Province, China. The geo-
graphical coordinates of the plantation are approximately 110.4 degrees longitude and
20.46 degrees latitude. These images were captured between 12 April and 18 April 2023
using the Intel RealSense D435i depth camera. The technical features of this camera in-
clude high-precision depth sensing and the capability to capture color images with a wide
dynamic range. The captured raw images have a resolution of 640× 640 pixels, aiding in
the detailed capture of pineapple features. To reduce the risk of overfitting in the neural
network model due to limited diversity in training samples, a variety of pineapple types
were collected. During the image collection process, we conducted photography at various
time intervals and angles. Specifically, the shooting spanned from 8 AM to 6 PM, and
the angles covered a complete range from 0 to 360 degrees. Through this method, we
collected a total of 3210 pineapple images. To minimize the impact of duplicate images
during model training, a manual preprocessing step was performed on the raw image data.
This included identifying and removing images irrelevant to the study, such as excessively
blurred images, those containing other crops or non-agricultural scenes, and those with
poor lighting conditions. As a result, data redundancy was reduced and image interference
detrimental to the targeted analysis was eliminated. The objectives included enhancing the
precision of pineapple detection under field conditions and covering a wide range of growth
stages and environmental variations in the pineapple dataset. Accordingly, 1720 pineapple
images were selected for the final dataset. To ensure diversity within the image data, the
collected images include scenes with multiple pineapples, single pineapples, occlusions,
and backlight. Figure 1 presents examples from the pineapple dataset.
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Figure 1. Pineapple dataset examples. (a) Multiple pineapples; (b) single pineapple; (c) occlusions;
(d) backlight.

2.2. Data Augmentation

Data augmentation is an effective method that expands the dataset and enhances
sample diversity by transforming and augmenting existing data, thereby improving the
generalization ability of the model and reducing the risk of overfitting. In this study,
265 images were randomly selected as a test set from a total of 1720 images. To better
balance sample diversity, computational resources, and training time while adhering to
the 9:1 ratio principle, 930 out of the remaining 1455 images were randomly chosen for
data augmentation. The augmentation process involves diverse methods, including mixed
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augmentation, rotation adjustment, scaling transformation, noise injection, and brightness
adjustment, all of which are detailed in Figure 2. These steps not only expanded the dataset
but also ensured a balanced distribution and robustness of samples across all datasets.
This method aids in a comprehensive and impartial assessment of model performance and
effectively optimizes and improves the model during the training phase. Ultimately, the
training set, validation set, and test set contained 2147, 238, and 265 samples, respectively;
meanwhile, a strict 9:1 ratio was maintained between the training set and validation set, as
well as between the combined training and validation sets and the test set. The description
of the pineapple data expansion parameters is detailed in Table 1.
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Figure 2. Pineapple image data augmentation techniques. (a) Original image; (b) mixed augmenta-
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Table 1. Pineapple data expansion parameter description.

Data
Original Data Enhancement

Training Validation Testing Training Validation Testing

Single pineapple 314 55 69 554 55 69
Multiple pineapples 305 62 73 538 62 73

Occlusion 302 57 58 531 57 58
Exposure/Backlight 296 64 65 524 64 65

Total 1217 238 265 2147 238 265

2.3. Experimental Platform and Parameter Configuration

This article discusses the training and testing procedures employed in the develop-
ment of a pineapple identification model. Both phases were conducted in an identical
environment, as presented in the table. The model was trained on a Windows 11 operating
system, utilizing the Pytorch 1.8.2 framework for training and testing purposes. The com-
puter for this study was equipped with an Intel(R) Core(TM) i5-12400 processor, 64 GB of
memory, and an NVIDIA GeForce RTX 3060 12GB graphics card. In addition, the CUDA
11.1 parallel computing framework and CUDNN 8.2 deep neural network acceleration
library were installed. The input image dimensions were set at 640 × 640 pixels with a
batch size of 16. The training process encompassed 300 steps, employing a learning rate
of 0.01 and a momentum value of 0.937. Stochastic gradient descent (SGD) optimization
incorporating a weight decay of 0.005 was employed. The environmental configuration of
the experimental platform is presented in Table 2.
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Table 2. Test platform environment configuration.

Hardware Configuration or Software Environment Model or Name Reference or Version

CPU Intel(R) Core(TM) i5-12400 Clock Speed of 2.5 GHz
GPU NVIDIA GeForce RTX 3060 VRAM 12GB

Computing system Windows 11
Network framework Pytorch 1.8.2

Computing Architecture CUDA 11.1
Compiler Pycharm 2022.1.3

Compiled language Python 3.9

2.4. Methodology
2.4.1. Standard YOLOv7 Model

The selection of the YOLOv7 algorithm in this study was motivated by its ability to
strike a harmonious balance between speed and precision, which aligns with the primary
objective of accurately detecting the real-time conditions of field pineapples. YOLOv7
introduces the innovative extended ELAN architecture, which enhances the self-learning
capabilities of the network without disrupting the original gradient path. The ELAN archi-
tecture primarily comprises VoVNet and CSPNet, which optimize the gradient length of the
entire network through a stacked structure in the computational block. This optimization
facilitates more effective learning and convergence in deeper networks. Moreover, YOLOv7
incorporates a cascade-based model scaling method, which dynamically adjusts the model
size to cater to specific detection requirements. The primary purpose of model scaling
is to modify certain attributes of the model and generate models at different scales to
accommodate varying inference speeds. The network structure of YOLOv7 is visually
depicted in Figure 3.
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Figure 3. The network model structure of YOLOv7. ELAN, SPPCSPC, CBS, MP1, etc., represent
different types of layers or operations, each with a specific function, such as spatial pyramid pooling
(SPPCSPC) or max pooling (MP1).

2.4.2. MSGV-YOLOv7

To enhance the precision and efficiency of real-time pineapple detection, this study
opted to substitute the YOLOv7 backbone network with MobileOne, thereby reducing
the parameter count of the network. Moreover, a lightweight neck model, namely thin
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neck, was devised. In this model, the E-ELAN module was replaced by the VoVGSCSP
module, thereby reducing superfluous computational and memory usage. The integration
of the GSConv module aimed to alleviate the computational burden while upholding a
high level of precision. Additionally, to expedite the inference speed, the original SPPCSPC
module was substituted with SimSPPF with the objective of reducing model complexity
and augmenting real-time detection precision. The framework of the MSGV-YOLOv7
model is depicted in Figure 4.
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2.4.3. MobileOne Network

MobileOne is constructed utilizing the MobileNet architecture and RepVGG convolu-
tional neural network. While numerous conventional network backbones heavily rely on
residual structures and SE (squeeze and excitation) modules for convolutional operations,
MobileOne mitigates the additional computational load associated with residual struc-
tures by implementing the reparameterization technique of RepVGG. The utilization of SE
modules is confined to the largest model structure, MobileOne-s4. In practical detection sce-
narios characterized by limited computational resources, there is a necessity to streamline
the model, which involves the creation of a lightweight backbone network. The MobileOne
model is designed based on MobileNetV1 and comprises a multitude of MobileOneBlocks.
These MobileOneBlocks incorporate depthwise convolution and pointwise convolution,
drawing inspiration from the reparameterization concepts of RepVGG.

The structure of the MobileOneBlock is illustrated in Figure 5 of this study. The visual
representation on the left highlights a comprehensive building module, which consists of
deep convolution and point convolution. ‘Deep convolution’ refers to the use of group con-
volutions, where the number of groups is equal to the number of input channels, ensuring
that each channel is processed separately. ‘Point convolution’ is the term given to 1 × 1 con-
volutions, which are mainly employed to alter the number of output channels and merge
channels in the resulting feature maps from deep convolutions. The deep convolution
module includes layers of a 1 × 1 convolution, an over-parameterized 3 × 3 convolution,
and batch normalization (BN). It is important to clarify that both 1 × 1 and 3 × 3 convolu-
tions are types of group convolutions, with ‘1 × 1’ meaning that each convolution filter
processes one pixel at a time and ‘3 × 3’ meaning that each filter covers a three-pixel by
three-pixel area to capture more complex features. During the training phase of the network
model, the MobileOne network incorporates these building blocks at the end of the training
process through a parameterized technique. Owing to its lightweight structure and the
over-parameterized design, the MobileOne network is recognized for its efficiency, making
the MobileOne module particularly suitable for feature extraction tasks.
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2.4.4. SimSPPF

In this research, the SimSPPF module was deliberately selected for implementation
based on its exceptional performance in comparison with SPPCSPC, particularly in terms
of reducing computational complexity and enhancing the frame per second (Fps), all while
maintaining a commendable level of precision in object detection. The SimSPPF module
employs a unique approach by utilizing a series of small-sized pooling kernels arranged
sequentially as opposed to a single large-sized pooling kernel, thereby resulting in an
expanded perceptive field. Specifically, it sequentially processes the input through multiple
max pooling layers with the dimensions of 5 × 5, replaces a 9 × 9 convolution operation
with two 5 × 5 convolution operations, and substitutes a 13 × 13 convolution operation
with three 5 × 5 convolution operations. This innovative design not only preserves the
original functionalities but also reduces the computational burden, accelerates operational
speed, and thus enhances the efficiency of the SimSPPF structure. A comprehensive
illustration of the intricate architecture of the SimSPPF module is presented in Figure 6.

The relevant equations are shown in Equations (1)–(5).

F1 = CBR(F) (1)

F2 = Maxpooling(F1) (2)

F3 = Maxpooling(F2) (3)

F4 = Maxpooling(F3) (4)

F5 = CBR([F; F2; F3; F4]) (5)

The SimSPPF module has exhibited a commendable performance in the identification
of image features from the pineapple dataset, effectively reducing superfluous parameter
data while reinforcing the essential textural features inherent in the images. Moreover,
it has surpassed the SPPCSPC module in terms of computational speed during forward
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propagation. The integration of the SimSPPF module significantly enhances the capability
of the YOLOv7 model in extracting image features.
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2.4.5. GSConv

To expedite the speed of pineapple detection, it is necessary to minimize the time re-
quired for information processing. However, excessively reducing the model parameters
may compromise the precision in recognizing the surface features of pineapples. Hence,
it is crucial to strike a balance between the detection speed and the model precision.
In this study, we have employed a lightweight approach to optimize the intermediate
layers of the model and introduced the GSConv lightweight convolution to supplant the
conventional convolution for processing the feature maps obtained from the backbone
of the model. Following the processing by the GSConv convolution, the VoVGSCSP
lightweight structure is employed for the upsampling and downsampling of image
features. The design of the GSConv convolution structure, as illustrated in Figure 7,
integrates the advantages of standard convolution and depthwise separable convolution.
When processing pineapple images with complex backgrounds, the GSConv convolu-
tion structure simultaneously employs standard convolution (SConv) and depthwise
separable convolution (DWConv). In contrast to DWConv, it refrains from severing the
connections between channels and instead seeks to preserve them to ensure high preci-
sion for the model. The results are subsequently combined and rearranged to enhance
the nonlinear expressive capabilities of the model. For the task of pineapple detection
in complex agricultural fields, such a nonlinear feature extraction can more effectively
capture the characteristic information of pineapples, thereby endowing the model with a
plethora of learning material, hence enhancing its generalization ability and robustness.
The specific mathematical expressions are calculated as follows:

Xc = σ(bn(Conv2d(Xinput))) (6)

Xout = δ(Xc ⊕ DWConv(Xc)) (7)

where Conv2d represents the two-dimensional convolution of the input image Xinput, bn
represents the normalization operation, σ represents the activation function, ⊕ represents
the concating of the two kinds of convolution, and the final δ represents shuffle, aiming to
obtain the final output Xout by shuffling this result.
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2.4.6. VoVGSCSP

The VoVGSCSP module, an advanced network module based on GSConv, is char-
acterized by the continuous integration of a GS bottleneck design. The structure of this
module is depicted in Figure 8. The fundamental concept behind this design is to achieve
a high degree of feature reuse through a one-time aggregation method employed by the
cross-stage partial network (GSCSP) module. This ensures a balance between the model
precision and speed. Therefore, not only does it enhance the model precision, but it also
significantly reduces the computational complexity and network structure.
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Upon undergoing processing by GSConv, the feature maps are fed into the main
body of VoVGSCSP, resulting in their channel dimensions reaching their maximum values;
meanwhile, their width and height reach their minimum values. This design effectively
reduces the presence of redundant repetitive information. In addition, two GSConv convo-
lutions are employed in the main body, enabling the rapid transmission of strong semantic
features and facilitating the upsampling and downsampling of feature maps. As a result,
the information processing time of the entire model is shortened.

2.5. Evaluation Metrics

To evaluate the performance of the model, various metrics were employed, including
precision (P), recall (R), and mean average precision (mAP). The calculations for these
metrics are as follows:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)
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AP =

1∫
0

P(R)dR (10)

mAP =
∑n

i=1 APi

n
(11)

During the execution of the pineapple detection task, this study adopts a compre-
hensive array of evaluation metrics to holistically evaluate the model performance. In
terms of positive sample prediction, this study classifies them into three categories: true
positive (TP), false positive (FP), and false negative (FN). TP denotes the number of samples
correctly identified by the model, intersecting with the true bounding box. FP represents
the number of samples erroneously classified as positive samples that fail to intersect with
the true bounding box. FN signifies the number of actual positive samples that the model
fails to detect.

To quantify the predictive precision of the model in various pineapple-related scenar-
ios, this paper introduces the concept of precision (P) as an evaluative metric. Precision is
defined as the ratio of correctly predicted positive samples to the total number of predicted
positive samples. Conversely, the ability of the model to detect actual positive samples is
captured by the metric of recall (R), which is calculated as the ratio of true positives to the
total number of actual positive samples.

In addition, this study also employs AP and mAP as pivotal indicators to assess the
ability of the model to detect specific categories. AP represents the area under the precision–
recall curve, while mAP is derived by averaging the AP values across all categories. This
study specifically concentrates on the detection task pertaining to a singular category,
denoted as n = 1.

To ensure efficacy of the model in real-world scenarios, particularly in the context of
pineapple harvesting, it is necessary to consider its real-time performance. This comprises
an analysis of the model inference time (i.e., the speed at which predictions are made) and
its complexity (i.e., the number of parameters involved). This paper evaluates the model
effectiveness, complexity, precision, recall, and overall performance in pineapple detection
by analyzing these aforementioned factors.

3. Experimental Results and Analysis
3.1. Comparison of Experimental Results from Different Backbone Networks

To further verify the performance of the enhanced YOLOv7 model, a strategy was
implemented in this study, involving the replacement of the backbone network of the
YOLOv7 model with MobileOne, ShuffleNetV2, GhostNet, and MobilenetV3. Pineapple
object detection experiments were conducted on the same dataset, and an in-depth compar-
ative analysis was carried out with the improved model. The experimental data for these
four lightweight models, as well as the original YOLOv7 model, are presented in Table 3.

Table 3. Comparison of experimental results with different backbone networks.

Networks Mode Size (MB) P (%) R (%) mAP (%) Fps (f/s)

YOLOv7 37.65 93.68 91.48 93.62 42.11
YOLOv7+ShuffleNetV2 29.12 96.85 89.42 91.08 46.95

YOLOv7+GhostNet 26.08 95.60 90.91 93.46 38.82
YOLOv7+MobileNetV3 28.44 94.92 91.17 92.71 32.57

YOLOv7+MobileOne 24.71 94.86 91.11 94.61 46.70
Model size (MB): the memory size of the model file; P (%): precision—the percentage of correct positive predictions;
R (%): recall—the percentage of actual positive cases correctly identified; mAP (%): mean average precision—a
metric that combines precision and recall, where higher values indicate better performance; Fps (f/s): frames
per second—the number of frames (images) the model can process in one second. Higher values indicate
faster processing.
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First and foremost, a key concern in this study was the number of parameters in
the model, particularly when considering the deployment of the model on devices with
limited computing power. In this regard, the YOLOv7+MobileOne model exhibited a
commendable performance with a size of merely 24.71 MB, which is significantly smaller
than the other reference models. Compared with the original YOLOv7 model, which had
a size of 37.65 MB, YOLOv7+MobileOne successfully achieved a nearly 35% reduction in
size. This reduction holds immense value for applications that necessitate the deployment
of the model on automated pineapple harvesting robots.

With respect to object detection performance, mAP was selected as one of the funda-
mental evaluation metrics in this study. In this aspect, YOLOv7+MobileOne achieved a
performance of 94.61%, second only to YOLOv7+GhostNet at 93.46%, and it achieved an
increase of nearly 0.99% compared with the mAP of the original YOLOv7 model. This result
unequivocally validates that YOLOv7+MobileOne can still deliver exceptional detection
performance even when the model size is significantly reduced.

This study was centered on evaluating the real-time processing capability of the model.
In this context, YOLOv7+MobileOne achieved a processing speed of 46.70 frames per
second (f/s). While slightly lower than YOLOv7+ShuffleNetV2 (46.95 f/s), this figure is
significantly higher than the original YOLOv7 model (42.11 f/s). This result unequivocally
demonstrates the exceptional detection performance of YOLOv7+MobileOne.

Based on the aforementioned comparative results, it is evident that the overall
performance of the YOLOv7+MobileOne model surpasses that of its counterparts. It is
particularly well suited for detecting pineapple targets in complex field environments.
Therefore, the MSGV-YOLOv7 model employed MobileOne as its lightweight backbone
network. However, considering the complex nature of real-world pineapple target
detection scenarios, the model necessitates an even greater performance. To this end,
additional techniques such as GsConv and VoVGSCSP were introduced to enhance the
model’s detection precision.

3.2. Ablation Experiment

In this study, a series of ablation experiments were systematically conducted to
evaluate the effectiveness of MobileOne, GSConv, VoVGSCSP, and SimSPPF modules
on performance improvements of the YOLOv7 network. The experimental results are
presented in Table 4. Under the same conditions, the baseline model without any
added modules demonstrated certain recognition capabilities, with a precision of 93.68%,
recall rate of 91.48%, and mAP of 93.62% when operating at 42.11 f/s. After the initial
introduction of the MobileOne feature extraction network, the model precision increased
to 94.86%, demonstrating a clear benefit of MobileOne in feature extraction, while the
frame rate was also slightly improved to 46.70 f/s. Continuing from MobileOne, the
addition of the GSConv module led to a further increase in precision to 95.96%, recall to
92.45%, and mAP to 95.34%. Although the frame rate slightly dropped to 45.52 f/s, in
general, it indicates that the GSConv module significantly enhanced the ability of the
model to capture detailed features. After the subsequent integration of the VoVGSCSP
module, we observed a slight decrease in precision to 94.72%, despite the recall rate and
mAP improving to 93.05% and 95.49%, respectively. Importantly, this enhancement was
achieved while maintaining a frame rate of 46.08 f/s, which highlights the effectiveness
of the VoVGSCSP module in processing complex visual information. The integration of
the SimSPPF module to the model, which included MobileOne, GSConv, and VoVGSCSP,
led to further improvements: the precision increased to 95.66%, the recall reached 92.83%,
the mAP rose to 96.65%, and there was a significant improvement in the frame rate to
59.63 f/s. These results highlight the significant contribution of the SimSPPF module,
particularly in enhancing the overall performance of the model in terms of the detection
speed for pineapples.
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Table 4. Comparison of ablation experimental results.

MobileOne GSConv VoVGSCSP SimSPPF P (%) R (%) mAP (%) FPS (f/s)

- - - - 93.68 91.48 93.62 42.11√
- - - 94.86 91.11 94.61 46.70√ √

- - 95.96 92.45 95.34 45.52√ √ √
- 94.72 93.05 95.49 46.08√ √ √ √

95.66 92.83 96.65 59.63
‘-’: This symbol signifies that the corresponding technical module has not been adopted in the current model
structure. ‘

√
’: This symbol indicates that the corresponding technical module has been integrated into the current

model structure.

3.3. Comparison of Different Object Detection Models

Through an analysis of the data presented in Table 5, a comprehensive evaluation of
the performance of five object detection models—Faster R-CNN, SSD, YOLOv5n, YOLOv8l,
and YOLOv7—can be conducted. Notably, the MSGV-YOLOv7 model exhibited a sig-
nificantly smaller size of 13.17 MB compared with other detection models such as Faster
R-CNN. Moreover, in terms of precision and recall, MSGV-YOLOv7 outperformed the afore-
mentioned models, achieving scores of 95.66% and 92.83%, respectively. Most remarkably,
the mAP of MSGV-YOLOv7 reached an impressive 96.65%, surpassing the performance of
other detection models. Additionally, the frame rate achieved by MSGV-YOLOv7 is the
highest at 59.63 f/s.

Table 5. Comparison of experimental results for different object detection models.

Experiments Mode Size (MB) P (%) R (%) mAP (%) Fps (f/s)

Faster R-CNN 139.21 85.89 78.19 81.76 27.34
SSD 28.39 91.62 86.34 90.28 30.02

YOLOv5n 48.91 93.19 87.07 91.43 37.59
YOLOv8l 42.74 94.61 90.86 93.96 48.25
YOLOv7 37.65 93.68 91.48 93.62 42.11

MSGV-YOLOv7 13.17 95.66 92.83 96.65 59.63

The model introduced in this paper not only exhibits a significant reduction in compu-
tation time but also demonstrates remarkable enhancements in detection performance. It
outperforms other models in terms of detection precision while maintaining a reasonable
detection speed. Therefore, as an efficient and advantageous solution, it distinguishes itself
in real-time pineapple recognition applications.

To thoroughly evaluate the performance of the MSGV-YOLOv7 model in real-time
pineapple recognition, this study undertook a meticulous design of comparative experi-
ments. These experiments involved a detailed comparison with three prominent detection
models widely acknowledged in the industry: Faster R-CNN, YOLOv5n, and YOLOv7. The
experimental setup comprised diverse pineapple varieties with the objective of unveiling
the comprehensive performance and advantages of MSGV-YOLOv7 in real-time pineapple
detection tasks.

The detection results of Faster R-CNN, YOLOv5n, YOLOv7, and MSGV-YOLOv7 on
the same dataset are presented in Figure 9. Through a comparative analysis, the superior
performance of MSGV-YOLOv7 in terms of precision and stability becomes evident. The
figure illustrates that MSGV-YOLOv7 exhibits higher precision when confronted with com-
plex backgrounds and small targets, such as the detection of pineapples amidst cluttered
leaf backgrounds. In contrast, Faster R-CNN and YOLOv5n exhibit some instances of
false positives or false negatives under similar conditions. MSGV-YOLOv7, on the other
hand, successfully detects the target and provides a higher confidence level. Additionally,
MSGV-YOLOv7 demonstrates a significant advantage in terms of bounding box precision.
Compared with the other three models, its bounding boxes are more compact and closely
aligned with the actual target, indicating a higher level of localization precision. Moreover,
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the stability of MSGV-YOLOv7 is noteworthy, as depicted in the figure. It consistently
maintains accurate target detection across different scenes and conditions, which is crucial
for ensuring robustness in practical applications.
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Figure 9. Comparison of detection results between MSGV-YOLOv7 and other network models.

The remarkable advantages of MSGV-YOLOv7 in terms of precision, localization
precision, and stability can be attributed to its unique network architecture and optimization
strategies. These enhancements provide a more dependable option for object detection
tasks in practical applications. Future research is expected to further refine MSGV-YOLOv7,
leading to additional breakthroughs in the field of automated pineapple harvesting.

3.4. Analysis Experiment on Feature Attributes

In this study, the utilization of Grad-CAM was implemented to produce object detec-
tion heat maps, which serve the purpose of visually highlighting significant regions in an
image. These heat maps facilitate the visualization of model detection results and unveil
the focal areas of interest for the model in this study. Grad-CAM, a visualization technique
grounded in gradient computation, was employed to derive the weights assigned to each
channel in the ultimate convolutional layer. These weights were subsequently applied to
the feature map, thereby leading to a heat map superimposed upon the original image. In
this heat map, the pixel values’ magnitude serves as an indicator of the relative importance
attributed to the corresponding region in relation to the classification decision at hand.

Figure 10 presents a comparative analysis of a heatmap, showcasing the performance
of MSGV-YOLOv7 in contrast with other mainstream network models across various
scenarios. The heatmap can intuitively show the focus of attention of the model when
extracting features. The warmer the color, the more attention of the model, and the red part
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(the warmest part) represents the focus of the model. The visual evidence clearly demon-
strates the exceptional object detection capabilities of MSGV-YOLOv7. Notably, in complex
situations involving multiple objects, or when objects are obscured by vegetation, MSGV-
YOLOv7 displays precise target localization. Additionally, compared with other models,
MSGV-YOLOv7 exhibits more concentrated and clear detection hotspots. Even in com-
plex scenes with numerous distracting background elements, MSGV-YOLOv7 proficiently
identifies the target objects. In contrast, other models, such as YOLOv5n, may sometimes
produce false positives or overlook certain objects in specific situations. However, MSGV-
YOLOv7 demonstrates greater stability in these aspects. Through the comparative analysis
of the visualization results, the enhanced MSGV-YOLOv7 model effectively showcases
its capability to extract object features, particularly in scenes with insufficient semantic
information. This attests to its stronger resilience and broader applicability.
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4. Conclusions

To optimize the efficiency of pineapple harvesting robots in recognition and target de-
tection, this paper proposed a lightweight pineapple detection algorithm based on YOLOv7.
By integrating the innovative MobileOne backbone network and the thin neck network into
the YOLOv7 algorithm, the model not only enhances its capability to capture pineapple
features but also attains high computational speed and low memory consumption. The
parameter size of the model is merely 13.17 MB, approximately one-third of the original
model. Experiments demonstrate that the model achieves a mean average precision (mAP)
of 96.65% on the dataset, with significant improvements in the precision (P), recall (R), and
frames per second (Fps). The Grad-CAM heatmap visualization experiments confirm that
the model significantly improves accuracy by focusing on pineapples, effectively resisting
interference from background elements; furthermore, it is suitable for a variety of pineap-
ple image types. Compared with other object detection algorithms, the model proposed
in this article shows significant advantages in overall performance, meeting the needs
for pineapple recognition in complex farm environments. Therefore, the MSGV-YOLOv7
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model can provide a valuable technical reference for future applications in mobile or embed-
ded devices, laying the foundation for the development of target detection for pineapple
harvesting robots and offering valuable research solutions for similar fruit detection tasks.
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