
Citation: Yang, F.; Liu, Y.; Yan, J.; Guo,

L.; Tan, J.; Meng, X.; Xiao, Y.; Feng, H.

Winter Wheat Yield Estimation with

Color Index Fusion Texture Feature.

Agriculture 2024, 14, 581. https://

doi.org/10.3390/agriculture14040581

Academic Editor: Francesco Marinello

Received: 8 February 2024

Revised: 31 March 2024

Accepted: 5 April 2024

Published: 6 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Winter Wheat Yield Estimation with Color Index Fusion
Texture Feature
Fuqin Yang 1, Yang Liu 2,3, Jiayu Yan 1, Lixiao Guo 1, Jianxin Tan 1, Xiangfei Meng 1, Yibo Xiao 1

and Haikuan Feng 2,3,*

1 College of Civil Engineering, Henan University of Engineering, Zhengzhou 451191, China;
fqyang@haue.edu.cn (F.Y.); yu224409@163.com (J.Y.); kwok@home.hpu.edu.cn (L.G.);
tanjianxin0521@163.com (J.T.); 18738500976@163.com (X.M.); 13140576721@163.com (Y.X.)

2 Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs,
Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China; liuyanghe810@cau.edu.cn

3 National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University,
Nanjing 210095, China

* Correspondence: 2020201097@stu.njau.edu.cn

Abstract: The rapid and accurate estimation of crop yield is of great importance for large-scale
agricultural production and national food security. Using winter wheat as the research object, the
effects of color indexes, texture feature and fusion index on yield estimation were investigated based
on unmanned aerial vehicle (UAV) high-definition digital images, which can provide a reliable
technical means for the high-precision yield estimation of winter wheat. In total, 22 visible color
indexes were extracted using UAV high-resolution digital images, and a total of 24 texture features in
red, green, and blue bands extracted by ENVI 5.3 were correlated with yield, while color indexes and
texture features with high correlation and fusion indexes were selected to establish yield estimation
models for flagging, flowering and filling stages using partial least squares regression (PLSR) and
random forest (RF). The yield estimation model constructed with color indexes at the flagging and
flowering stages, along with texture characteristics and fusion indexes at the filling stage, had the best
accuracy, with R2 values of 0.70, 0.71 and 0.76 and RMSE values of 808.95 kg/hm2, 794.77 kg/hm2

and 728.85 kg/hm2, respectively. The accuracy of winter wheat yield estimation using PLSR at the
flagging, flowering, and filling stages was better than that of RF winter wheat estimation, and the
accuracy of winter wheat yield estimation using the fusion feature index was better than that of color
and texture feature indexes; the distribution maps of yield results are in good agreement with those
of the actual test fields. Thus, this study can provide a scientific reference for estimating winter wheat
yield based on UAV digital images and provide a reference for agricultural farm management.

Keywords: UAV; color index; fusion texture; partial least squares; random forest

1. Introduction

Wheat is one of the most important food rations in China, and its production is directly
related to national food security and social stability. The timely, rapid, and accurate fore-
casting of yields is of great significance to the development of the national economy, early
warning of food security, precise fertilization in agriculture, and agricultural insurance [1,2].
Satellite remote sensing provides a new method for estimating crop yields on a large scale
because of its large coverage area and short detection period, and in particular, the mobility
and flexibility of unmanned aerial remote sensing and its ability to quickly obtain the key
growth parameters of a specific growth period of crops are also important [3,4].

In recent years, remote sensing technology has been rapidly applied in crop yield
estimation. Currently, there are three main types of methods used for winter wheat yield
prediction using remote sensing data: (1) the remote sensing spectral index yield empirical
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regression method, (2) the potential stress yield model, and (3) the crop dry matter yield
model [5].

The empirical statistical regression model directly establishes the relationship between
remote sensing and yield [6–8], generally using partial least squares regression, support
vector machine regression, neural network regression, random forest regression, and other
deep learning methods to establish the relationship between remote sensing and yield,
regardless of the complex process of crop yield formation, and it establishes a concise
and transparent model that is easy to compute. Still, this yield model has no apparent
physical mechanism; it struggles to reflect crops’ growth and development process truly.
Tao et al. [9] constructed a winter wheat yield estimation model by selecting the vegetation
index and red-edge parameters, and the results show that the vegetation index fused with
red-edge parameters could significantly improve the estimation effect of the yield model.
Zhang et al. [10] used a UAV with a digital camera and a multi-spectral camera to extract
different color feature models, vegetation coverage, and vegetation index from images.
They constructed a regression model for cotton yield using multiple linear regression
methods. The results show that the model established by multiple variables had the best
effect. Fei et al. [11] adopted the ensemble Bayesian model averaging (EBMA) method
to improve model performance; compared to the best-performing individual model, the
EBMA models obtained a weak accuracy improvement by integrating only the linear
models or the nonlinear models. Tao et al. [12] constructed a winter wheat yield estimation
model based on the uncrewed aerial vehicle (UAV) hyperspectral data using a vegetation
index fused with plant height employing partial least squares regression, neural network
regression, and random forest regression. The R2 and RMSE values of the optimal yield
model for winter wheat constructed using the partial least squares method were 0.77 and
648.90 kg/ha. The R2 and RMSE of the optimal yield model for winter wheat constructed
using the Random Forest method were 0.44 and 1009.82 kg/ha.

Potential stress yield considers the physiological factors of the crop itself and the
growing environmental conditions affecting its growth. It obtains these parameters to
estimate the model yield based on remote sensing data [13,14]. This model is reasonable,
but how to effectively determine and estimate crop potential stress yield is still a problem
that needs further research. The crop dry matter yield model is mainly based on remote
sensing information data, used to assess the quality of dry matter on the crop ground, and
then based on the relationship between dry matter and fruit, it obtains a more reasonable
remote sensing yield estimate model. This method has a certain degree of mechanical
rationality, and the model is relatively stable. Although the model is rather complex, it
involves agronomic parameters and has recently become a research hotspot [15]. Wang
et al. [16] constructed a yield estimation model for winter wheat using a vegetation index
fused with meteorological data, soil moisture content, and other multi-source data using a
random forest algorithm in a yield prediction model for wheat at different growth stages,
constructed by the random forest algorithm. The accuracy of the yield prediction model
with the characteristic variables of May in the October sub-annual and April in the October
sub-annual was high; the R2 values were 0.85 and 0.84, and the RMSE values were 821.55
and 832.01 kg/hm2.

The crop dry matter yield model is mainly based on remote sensing information data,
which are used to estimate the quality of the dry matter on the crop ground, and then
based on the relationship between dry matter and fruit, it obtains a more reasonable remote
sensing yield estimate. This method has a certain degree of mechanical rationality, and the
model is relatively stable. Although the model is relatively complex, it involves agronomic
parameters, and has become a research hotspot in recent years. Zhang et al. [17] used
the dynamic fraction of post-anthesis phase biomass accumulation to estimate the winter
wheat harvest index, and then used this to obtain an estimated yield. Huang et al. [18]
developed a data assimilation framework coupling remote sensing information with the
WOFOST-PROSAIL model to estimate wheat yields in the North China Plain, and the
results show that the method improved crop yields at the regional scale. Chen et al. [19]
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obtained the critical stages of winter wheat information from remote sensing data, and
simulated and adjusted the climatic information in the crop model (MCWLA-Wheat). They
assimilated the spatial difference of LAI into the crop model MCWLA-Wheat using the
constant gain Kalman filter algorithm.

RGB cameras have become one of the more commonly used sensors on UAVs due
to their cheapness, and the ease of their operation and data processing; RGB images
represent the color of each pixel by combining the three basic colors of red, green, and blue.
Texture features represent another important type of remote sensing information, which
can reflect the properties of the object itself and help to distinguish between two different
objects [20,21]. Texture features are those that refer to changes in the grey level of the image,
which are related to spatial statistics and reflect the properties of the image itself. Datasets
such as those regarding the spectra and textures acquired by UAV have successfully been
used to predict various plant traits, such as grain yield [20], biomass [21] and so on. Ma
et al. [22] extracted the visible vegetation indices and texture features from RGB images for
cotton yield monitoring, and the results show that the yield model constructed with the
RF_ELM model is optimal the R2 and RMSE were, respectively, 0.9109 and 0.91277 t/ha. Qu
et al. [23] assessed the feasibility of using RF and XGBoost models to predict wild blueberry
yields according to the color and texture feature data acquired from drone RGB images.

In terms of model selection, machine learning can establish generalizable models from
a large amount of training data, which are increasingly being applied by many scholars
in precision agriculture [24–27]. Cui et al. [28] used PLS, support vector machine (SVM),
ridge regression (RR) and k-nearest neighbors (KNN) for faba yield estimation based on
RGB and multispectral data from drones. The results show that the R2 value of RF is
higher than those of other machine learning algorithms, followed by PLS. Alabi et al. [29]
used five machine learning models (Cubist, XGBoost, GBM, SVM and RF) for soybean
yield estimation, and the results show that the Cubist and RF estimation models were
optimal; their R2 was 0.89. Cheng et al. [30] used PLSR, SVM and RF for winter wheat
yield estimation, and the RF model had the highest estimation accuracy, with R2 and RMSE
values of 0.560 and 1634 kg/hm2, respectively. Fan et al. [31] used RR, SVM and RF for
maize yield modeling. The results show that RF modeling worked best, and its R2 was 0.88.
These results indicate that the RF and PLSR methods are reliable when used in evaluating
the relationship between input parameters and yield.

Although remote sensing information combined with agronomic parameters can sim-
ulate the physiological growth process of crops, it requires a large amount of agronomic
information, hindering the wide application range of the model. However, empirical
statistics can establish a quantitative relationship between crop parameters and remote
sensing information with fewer data, so it is widely used for the estimation of crop physio-
logical and biochemical parameters. UAV remote sensing is widely used to estimate the
physiological and biochemical parameters of crops due to its advantages of high efficiency,
high resolution, low operational cost, and flexibility. The above studies used UAV imagery
to analyze individual vegetation indexes or multiple vegetation indexes for crop yield
estimation. However, there are few methods for winter wheat yield estimation using UAV
digital color indexes and texture feature fusion. In this study, the construction of a winter
wheat yield model was carried out using color indexes, texture features, and the fusion of
color indexes and texture features to explore the different remote sensing information types
as the independent variable factors. Empirical statistical regression and machine learning
methods were used to improve the accuracy of yield estimation, providing a scientific
method for fast and efficient wheat yield prediction.

2. Materials and Methods
2.1. Experimental Design

The experiment was conducted at the National Precision Agriculture Research Demon-
stration Base in Xiaotangshan Town, Changping District, Beijing, China, which ranges from
116◦34′ E to 117◦00′ E and 40◦00′ N to 40◦21′ N, with an average elevation of 36 m. The
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terrain is flat, and the land is characterized by a warm, temperate continental monsoon
climate suitable for wheat growth. Wheat was sown in October 2014 and harvested in
June 2015. The two main types of wheat varieties were Jing 9843 (J9843) and ZhongMai
175 (ZM175). These are the main wheat varieties grown in North China. The leaves of
the J9843 variety are spread out and have a high protein content; the leaves of Zhongmai
175 variety are upright and have a low protein content. Fertilizers were applied with
four nitrogen levels: N1 (0 kg/hm2), N2 (1/2 normal nitrogen, 195 kg/hm2), N3 (normal
nitrogen, 390 kg/hm2) and N4 (3/2 normal nitrogen, 585 kg/hm2). Setting the nitrogen in
this way ensures that there are no settings of the same level in any subdivision, whether
viewed horizontally or vertically, as well as enabling the use to eliminate differences in
land. Water was mainly applied with W1 (rainfall), W2 (normal water), and W3 (2 times
normal water). Setting the moisture in this way could enable us to reduce the impacts of
neighboring plots and ensure the easy movement of equipment. The plants were planted
traditionally. The length of the experimental field was 84 m in the east–west direction and
32 m in the north–south direction, with 16 plots for each treatment, and each treatment was
repeated three times. Replicates 2 and 3 were used for modeling, and replicate 1 was used
for verification. The detailed statistics are shown in Table 1. There were 48 plots in total, as
shown in Figure 1.

Table 1. Descriptive statistics of yield (kg/hm2) for the calibration and validation datasets.

Dataset Min Mean Max Standard
Deviation

Coefficient of
Variation (%)

Calibration 3345 5669 8792 1484 26.60
Validation 3744 6149 8362 1198 20.12
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Figure 1. Experimental design: (1) J9843—Jing 9843, ZM175—ZhongMai 175; (2) nitrogen treatments,
N1—0 nitrogen, N2—1/2 normal nitrogen, N3—normal nitrogen, N4—3/2 normal nitrogen; (3) water
treatments, W1—rainfall, W2—normal water, W3—2 times normal water.

2.2. Data Acquisition
2.2.1. Yield Acquisition

Wheat yield data were measured during the winter wheat harvest. Representative
samples were selected from 1 m2 of each plot, which grew similarly to the whole plot, and
the samples obtained were placed in bags and brought back to the laboratory. The wheat
was sun-dried to a constant weight, and the yield of each plot was weighed.

2.2.2. Acquisition of Digital Images by UAV

An eight-rotor UAV equipped with a DSC-QX100 digital camera was used to acquire
digital images of winter wheat during the flagging (26 April 2015), flowering (13 May



Agriculture 2024, 14, 581 5 of 16

2015) and filling (22 May 2015) stages. The flying height of the UAV was at an altitude of
50 m; it flew at a speed of 4 meters per second, and aerial photographs of the experimental
field were taken at noon under a clear and cloudless sky, with a spatial resolution of
0.013 m. The flight time was 15 min, and the heading and lateral overlap were 80%. The
digitization footprint of the approach was 10476 Mb/ha. The digital images were stitched
with PhotoScan software version 1.1.6 (Agisoft LLC, St. Petersburg, Russia) to obtain a
digital elevation model (DEM) and digital orthophoto (DOM) of the experimental field, as
described in reference [8,32].

2.3. Color Indexes Selection

Based on the DOM of the winter wheat test field, the average DN (Digital Number)
values of the red (red, R), green (green, G), and blue bands (blue, B) of winter wheat in each
plot in the DOM image were extracted using ArcGIS software (version 10.7; Esri, Redlands,
CA, USA). The DN values of R, G and B were normalized; the values obtained after the
normalization of R, G and B are defined as r, g and b. The formula is as follows:

r = R/(R + G + B) (1)

g = B/(R + G + B) (2)

b = B/(R + G + B) (3)

Based on the visible light color index available in the literature, 16 color indexes were
selected, as well as the defined R, G, B, r, g, and b, for a total of 22 color indexes, as shown
in Table 2.

Table 2. Color index.

Color Feature Index Formula References

R R = R Red band
G G = G Green band
B B = B Blue band
r r = R/(R + G + B) Normalized red band
g g = G/(R + G + B) Normalized green band
b b = B/(R + G + B) Normalized blue band

r/b r/b [33]
g/b g/b [33]

r − b r − b [33]
r + b r + b [33]
g − b g − b [33]

(r − b)/(r + b) (r − b)/(r + b) [33]
(r − g − b)/(r + g) (r − g − b)/(r + g) [21]

EXG EXG = 2g − b − r [34]
GRVI GRVI = (g − r)/(g + r) [35]

MGRVI MGRVI = (g2 − r2)/(g2 + r2) [25]
RGBVI RGBVI = (g2 − br)/(g2 + br) [35]

WI WI = (g − b)/(r − g) [35]
EXR EXR = 1.4r − g [35]
NDI NDI = (r − g)/(r + g + 0.01) [36]
VARI VARI = (g − r)/(g + r −b) [37]
EXGR EXGR = 3g −2.4r − b [38]

2.4. Texture Feature Acquisition

Image texture features reflect the frequency of hue changes in an image [39,40], which
depends not only on surface features, but also on the angle of illumination. In 1973 Haralick
et al. proposed the Gray Level Co-occurrence Matrix (GLCM) to describe texture features.
The texture calculation was performed in the “Co-occurrence Measures” in ENVI software
(version 5.3; Boulder, CO, USA). Eight texture features were extracted in four directions (0◦,
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45◦, 90◦ and 135◦) from the red, green, and blue bands using the GLCM, and the texture
features in four directions were averaged to obtain eight texture features for each band.
Then, in ArcGIS, the region of interest was delineated for the image of each plot, and the
average texture value of each region was extracted and was used as the final texture feature
value for this plot. The eight texture feature values were mean (mean), variance (var),
homogeneity (hom), contrast (con), dissimilarity (dis), entropy (ent), second moment (sec),
and correlation (cor). The corresponding texture features in the red band are, respectively,
mean_R, var_R, hom_R, con_R, dis_R, ent_R, sec_R and cor_R. The connected texture
features in the green band are, respectively, mean_G, var_G, hom_G, con_G, dis_G, ent_G,
sec_G and cor_G. The corresponding texture features in the blue band are, respectively,
mean_B, var_B, hom_B, con_B, dis_B, ent_B, sec_B, and cor_B.

2.5. Data Analysis and Accuracy Evaluation

Partial least squares regression (PLSR) [41,42] and random forest (RF) [43,44] were
used to construct the estimation model of winter wheat yield. Partial least squares are a
mathematical optimization technique that finds the best function match for a data set by
minimizing the sum of squared errors. It combines multiple linear regression, typical corre-
lation, and principal component analyses. It simultaneously realizes regression modeling,
simplifies the data structure, and analyzes the correlation between independent variables,
which brings excellent variables to the statistical analysis of multivariate data and has
good robustness in the established model. PLSR model building and charting were done
using MATLAB2020a (commercial mathematical software produced by MathWorks, Natick,
MA, USA) software and Excel2007 (Microsoft Office Software, Redmond, WA, USA). The
random forest algorithm is an integrated learning method proposed by Breiman in 2001. It
is a classifier containing many decision trees that can handle classification and regression
problems, and is also suitable for problems with dimensionality reduction. RF regression
combines multiple decision tree models to solve regression problems. Its basic principle
is that each tree randomly extracts a portion of features from a sample, then constructs
a decision tree from the training data, and finally combines the results of all the decision
trees to produce a final prediction.

2.6. Precision Evaluation

The coefficient of determination (R2) and root mean square error (RMSE) [45] were
used to evaluate the accuracy of the winter wheat yield model. R2 reflects the stability of
the model’s establishment and validation; the closer R2 is to 1, the better the stability of
the model is, and the measured value fits the predicted value to a high degree. RMSE is
used to test the model’s forecasting ability; the smaller the RMSE is, the better the model’s
estimation ability is.

3. Results and Discussion
3.1. Correlation between Color Indexes and Yield

Table 3 shows the results of the correlation analysis between the color indexes of
digital images and yield. From Table 3, we see that there is no correlation between the
color indexes g/b and WI and the yield at the flowering stage. In contrast, other color
indexes are significantly correlated. During the flagging and flowering stages, g−b was
significantly correlated with yield at 0.05, and the rest of the color indexes were considerably
associated with yield at 0.01. At the flagging stage, the color index with the highest absolute
correlation value with yield was EXR, with a value of 0.6813. The performance metrics
EXR, VARI, GRVI, NDI, and MGRVI were selected as independent variables for the winter
wheat yield model construction. During the flowering stage, the color index with the
highest absolute correlation value with yield was r, with a value of 0.7635. The performance
metrics r, VARI, EXR, GRVI, and NDI were selected as the independent variables for
yield model construction. During the filling stage, the remaining color index had a highly
significant (0.01) correlation with yield. In contrast, the color index with the highest absolute
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correlation value with yield was r, with a value of 0.7521. r, (r – g − b)/(r + g), EXR, NDI,
and GRVI were selected as the independent variables for constructing the yield model.

Table 3. Correlation between color index and yield.

Color Feature Index Flagging Stage Flowering Stage Filling Stage

r −0.6763 ** −0.7635 ** −0.7521 **
VARI 0.6806 ** 0.7609 ** 0.7327 **
EXR −0.6813 ** −0.7604 ** −0.7395 **
GRVI 0.6798 ** 0.7579 ** 0.7336 **
NDI −0.6797 ** −0.7579 ** −0.7336 **

MGRVI 0.6796 ** 0.7568 ** 0.7335 **
(r − g – b)/(r + g) −0.6696 ** −0.7552 ** −0.7484 **

EXGR 0.6485 ** 0.7315 ** 0.7100 **
r − b −0.6495 ** −0.7161 ** −0.7187 **
r/b −0.6436 ** −0.7092 ** −0.7034 **

(r-b)/(r + b) −0.6442 ** −0.7082 ** −0.6938 **
g 0.5325 ** 0.6841 ** 0.6721 **

EXG 0.5325 ** 0.6841 ** 0.6721 **
r + b −0.5325 ** −0.6841 ** −0.6721 **

RGBVI 0.4580 ** 0.6642 ** 0.6454 **
b 0.5832 ** 0.4528 ** 0.3710 **

g − b −0.2965 * 0.3410 * 0.4420 **
g/b −0.3921 ** 0.2056 NS 0.3212 NS

WI 0.4178 ** 0.0698 NS 0.0811 NS

Note: * indicates significance at the 0.05 level, ** indicates significance at the 0.01 level, and NS indicates
not relevant.

3.2. Correlation between Texture Feature Indexes and Yield

Table 4 shows the results of a correlation analysis of digital image texture feature
indices with yield. Table 4 shows that some texture feature indices do not correlate well
with yield. During the flag-picking period, the best absolute value of texture feature
index correlation with yield was MEAN_R, with a value of 0.5296. The performance
metrics MEAN_R, MEAN_G, SEC_G, SEC_R, and ENT_G were selected as the independent
variables for yield modeling. During the flowering stage, the best absolute value of
correlation between texture character index and yield was MEAN_G, with a value of 0.5136,
and the performance metrics MEAN_G, MEAN_R, MEAN_B, COR_B, and COR_G were
selected as the independent variables for yield modeling. During the filling period, the
best absolute value of texture feature index correlation with yield was MEAN_R, with a
value of 0.6263, and the performance metrics MEAN_R, MEAN_B, MEAN_G, SEC_G, and
ENT_G were selected as the independent variables for yield modeling.

Table 4. Correlation between texture features and yield.

Texture Features Flagging Stage Flowering Stage Filling Stage

MEAN_R −0.5296 ** −0.5052 ** −0.6263 **
VAR_R −0.2586 * −0.0513 NS 0.2215 NS

HOM_R 0.4229 ** 0.0778 NS −0.2890 *
CON_R −0.0325 NS −0.0808 NS 0.0694 NS

DIS_R −0.3215 * −0.0759 NS 0.2374 NS

ENT_R −0.4844 ** −0.0404 NS 0.3418 *
SEC_R 0.4950 ** 0.0228 NS −0.3488 *
COR_R −0.0650 NS −0.3299 * 0.1795 NS

MEAN_G −0.5001 ** −0.5136 ** −0.5169 **
VAR_G −0.2943 * −0.0517 NS 0.2152 NS

HOM_G 0.4404 ** 0.0541 NS −0.3058 *
CON_G −0.0525 NS −0.0760 NS 0.0702 NS
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Table 4. Cont.

Texture Features Flagging Stage Flowering Stage Filling Stage

DIS_G −0.3520 * −0.0645 NS 0.2417 NS

ENT_G −0.4878 ** 0.0050 NS 0.3595 **
SEC_G 0.4966 ** −0.0270 NS −0.3676 **
COR_G −0.0602 NS −0.3814 ** 0.2121 NS

MEAN_B −0.4145 ** −0.4318 ** −0.5373 **
VARE_B −0.2831 * −0.0493 NS 0.1471 NS

HOM_B 0.4265 ** 0.0639 NS −0.2477 NS

CON_B −0.0500 NS −0.0764 NS 0.0530 NS

DIS_B −0.3405 * −0.0659 NS 0.1776 NS

ENT_B −0.4718 ** −0.0126 NS 0.3010 *
SEC_B 0.4798 ** −0.0081 NS −0.3072 *
COR_B −0.0495 NS −0.3905 ** 0.1893 NS

Note: * indicates significant at the 0.05 level, ** indicates significant at the 0.01 level, and NS indicates not relevant.

3.3. Inversion of Winter Wheat Yield Model
3.3.1. Yield Inversion Based on Color Indexes

A regression model for winter wheat yield was developed based on five color indexes
using partial least squares regression and random forest (Table 5 and Figures 2 and 3). The
results show that: (1) The PLSR yield estimation model was more accurate than the RF yield
estimation model based on visible vegetation index at three stages. (2) The yield estimation
model at the filling stage was better than that at the flowering and flag-picking stages when
using the PLSR model for yield estimation. Due to the instability of the random forest
model, the model used for estimating yield at the filling stage had a lower R2 (0.01) than
the model used for estimating yield at the flowering stage, but it was better than that of the
model used for estimating yield at the flag-picking stage.

Table 5. Analysis results of color indexes and yield.

Flagging Stage Flowering Stage Filling Stage
Modeling Testing Modeling Testing Modeling Testing

R2 RMSE
(kg·hm−2) R2 RMSE

(kg·hm−2) R2 RMSE
(kg·hm−2) R2 RMSE

(kg·hm−2) R2 RMSE
(kg·hm−2) R2 RMSE

(kg·hm−2)

PLSR 0.68 848.68 0.36 1654.29 0.70 808.95 0.60 905.40 0.75 738.48 0.24 1145.22
RF 0.52 1052.53 0.34 1626.26 0.67 857.28 0.43 1079.48 0.66 936.62 0.37 1150.43
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Figure 3. Verification results of different stages’ yield prediction using the RF method based on
color indexes.

The validation results indicate (Figure 2) that most of the predicted yield values
during the flag-picking stage were far away from the 1:1 line, and most of the regions
were underestimated in terms of yield; most of the yield values during the flowering
stage were near the 1:1 line, and only a few regions were undervalued in terms of yield,
whereas the model accuracy during the grouting stage was poor. The predicted yield was
underestimated in some regions compared to the actual yield, and some were overestimated
and far away from the 1:1 line.

From the verification results in Figure 3, we can see that most of the predicted yield
values in the flag-picking period were near the 1:1 line, and most of the expected yield
values were underestimated; most of the predicted yield values in the flowering period
were near the 1:1 line, but the expected yield values in some regions were underestimated.
Many predicted values were underestimated in the filling period, and the predicted yield
values In some areas were near the 1:1 line.

In Figure 4, we can see significant differences among replicates 1, 2, and 3 regarding
area, with most of replicate 2’s area awarding higher yields than replicates 1 and 3, and most
of replicate 1’s estimated area awarding higher yields than replicates 3. The yields under
rainfed level treatments were lower, and were mainly distributed below 5280 kg/hm2, and
the yields under two times water irrigation were better than those under regular water
irrigation. The wheat yield under standard N application was around 7500 kg/hm2, which
remained relatively high with excessive N application.
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3.3.2. Yield Inversion Based on Texture Feature Indexes

Partial least squares regression and the random forest algorithm were used to establish
a regression model for winter wheat yield based on five texture feature indices (Table 6 and
Figures 5 and 6). The results show that: (1) the PLSR yield estimation model was more
accurate than the RF yield estimation model based on texture feature indexes at three stages.
(2) The yield estimation model at the filling stage was superior to the yield estimation
model at the flag-picking and flowering stages.

Table 6. Analysis results of texture features and yield.

Flagging Stage Flowering Stage Filling Stage
Modeling Testing Modeling Testing Modeling Testing

R2 RMSE
(kg·hm−2) R2 RMSE

(kg·hm−2) R2 RMSE
(kg·hm−2) R2 RMSE

(kg·hm−2) R2 RMSE
(kg·hm−2) R2 RMSE

(kg·hm−2)

PLSR 0.49 1056.4 0.27 1765.35 0.49 1056.20 0.25 1133.59 0.71 794.77 0.40 1241.21
RF 0.16 1396.38 0.16 1390.63 0.43 1125.97 0.36 1115.12 0.45 1110.89 0.30 1192.71
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Figure 5 shows that most of the yield predictions in the picking stage needed to be
underestimated. Aside from the 1:1 line, some yield predictions in the flowering were, and
only some areas were overestimated, while others were underestimated. Some yields were
around the 1:1 line at the filling stage, and some other areas were minimized.

The results indicate (Figure 6) that most of the predicted yield values in the flag-picking
stage were underestimated and far away from the 1:1 line. In contrast, some predicted
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yield points in the flowering and grouting stages were near the 1:1 line, some points were
underestimated, and the underestimated value was more than the overestimated value.

Figure 7 shows that there were significant regional differences among these regions.
In the rainfed treatment (W1), winter wheat yield was distributed below 5027 kg/hm2. In
the normal water (W2) and two times normal water (W3) treatments, winter wheat yield
was larger, and the yield was concentrated in the range of 5027–8085 kg/hm2, compared
with that in the W3 treatment, which was higher than that in the W2 treatment.
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3.3.3. Yield Inversion Based on Fusion of Color Indexes and Texture Feature

In this study we selected the color indexes and texture feature fusion for yield inversion
to predict the yield more effectively. The performance metrics EXR, VARI, GRVI, MEAN_R
and MEAN_G were selected as independent variables to be used in the model for the
estimation of the yield of winter wheat during the flag-picking stage. The performance
metrics r, VARI, EXR, MEAN_G and MEAN_R were selected as independent variables to
participate in the inversion of the yield model during the flowering stage. The performance
metrics r, (r − g − b)/(r + g), EXR, MEAN_R and MEAN_B were selected as independent
variables to participate in the inversion of yield model during the filling stage. The results
are shown in Table 7 and Figures 8 and 9. The result show that (1) the PLSR yield estimation
model was more accurate than the RF yield estimation model based on visible vegetation
indexes fused with texture feature indexes at three stages. (2) The yield estimation model
at the filling stage was equal or superior to the yield estimation model at the flag-picking
and flowering stages.
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Table 7. Modeling and verification of fusion index and yield.

Flagging Stage Flowering Stage Filling Stage
Modeling Testing Modeling Testing Modeling Testing

R2 RMSE
(kg·hm−2) R2 RMSE

(kg·hm−2) R2 RMSE
(kg·hm−2) R2 RMSE

(kg·hm−2) R2 RMSE
(kg·hm−2) R2 RMSE

(kg·hm−2)

PLSR 0.73 775.75 0.32 1406.08 0.72 780.21 0.60 801.95 0.76 728.85 0. 52 859.94
RF 0.57 975.47 0.38 1523.90 0.70 804.74 0.52 928.46 0.70 1163.96 0.41 1081.54
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fusion of color indexes and texture features.

The results indicate (Figure 8) that the yield regions were still underestimated in
most regions during the flag-picking period, and the predicted and measured yield values
of flowering and grouting stages were distributed near the 1:1 line. The overestimated
yield areas of the flowering stage numbered higher than those of the underestimated
yield, and the overestimated yield areas of the grouting stage were equal to those of the
underestimated yield.

Figure 9 shows that most of the regional yield values were underestimated during the
flag-picking stage, and the predicted and measured yield values were near the 1:1 line in
the flowering and irrigation stages, with most of the yield values being underestimated
and very few points being seriously underestimated.

As shown in Figure 10, the yields of the regions for replicates 1, 2, and 3 were sig-
nificantly different. Under rainfed treatment, there were significant differences between
replicates 1, 2, and 3, but no significant difference in yield between replicates 1 and 2. Under
rainfed treatment with no nitrogen application, the yield ranged from 3206 kg/hm2 to
5427 kg/hm2, and double water irrigation was shown to increase winter wheat yield.
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4. Discussion

Accurate early yield estimates are important for food security and the formulation of
agricultural policies. In recent years, UAV-based remote sensing data have increasingly
been used for the assessment of grain crops such as corn [25] and wheat [31]. Our study
extracted color indexes and texture features from UAV digital images, and employed
machine learning for winter wheat yield estimation. This method can be used to obtain
high accuracy at a relatively low cost.

4.1. The Impact of Growth Period on Yield

Due to the different canopy structures at the flagging, flowering, and irrigating stages
of winter wheat, the color features and texture features obtained by a UAV equipped
with a digital camera are different, resulting in the greater accuracy of the yield models
constructed via other methods in the flagging, flowering, and irrigating stages [46]. The
flag-picking and flowering stages are the stages of both vegetative and reproductive growth
for wheat. Wheat in the filling stage enters the reproductive growth stage, and its water
consumption in the flag-picking stage is large, which is the critical period to determine the
number of ears per mu and the number of grains per ear. Wheat in the flowering stage is
the most sensitive to fertilizer, light, and temperature. A lack of water or a low temperature
will make wheat pollination poor, affecting the seed setting rate and thousand-grain weight.
In the filling stage, the leaves and stems of wheat produce starch through photosynthesis,
and the transformed proteins are stored in the wheat seeds through assimilation. The filling
stage also accelerates the growth of wheat, and many wheat grains are produced at this
stage. The remote sensing images collected during these three periods can accurately reflect
the yield, consistent with the growth periods selected in the literature [9,30].

4.2. The Impact of Different Algorithms on Yield Estimation

To date, many machine learning models (such as RF and PLSR) have been successfully
used for early crop yield estimation. Because the sensitivities of different bands to yield
are different, the precision of yield modeling is greater in different growth periods. This
study selected five color indexes, five texture feature indexes, and color indexes fused with
texture feature indexes to construct yield models in the flagging stage, flowering stage, and
filling stage according to the sensitive yield bands in the three growth stages [23]. It was
found that the PLSR model achieved better yield estimation accuracy than the RF model
in the three growth stages, which may have been caused by inconsistencies between the
importance of projection variables used in PLSR and the importance of the out-of-pocket
data set used as variables in RF. Whether using RF or PLSR methods, the accuracy of
production estimation using color indexes fused with texture feature indexes is greater
than the accuracy of production estimation using color indexes or texture feature indexes.
The yield model constructed by Ma et al. [22] with color feature indices fused with texture
feature indices is optimal; the R2 was 0.91. The R2 of the yield modeled by Qu et al. [23] by
use of color feature indices fused with texture feature indices was 0.77. The wheat yield
prediction model constructed by Liu et al. [47] with color feature indices fused with texture
feature indices was verified, and its R2 was 0.629, which is 16.27% higher than that of the
color index model. This study’s findings are consistent with those of [22,23,47].

5. Conclusions

Most color indexes in different growth stages significantly correlate with yield (p < 0.01).
In contrast, only a few texture feature indexes were here significantly associated with yield
(p < 0.01). The optimal color indexes, texture feature indexes and color indexes combined
with texture indexes were used as input factors in the yield model. PLSR and RF were used
to establish winter wheat yield estimation models at different growth stages. The results
show that:
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(1) A model for estimating winter wheat yield using color indexes fused with texture
feature indexes outperforms wheat yield models constructed using color indexes or
texture feature indexes;

(2) The wheat yield model constructed by PLSR was superior to the yield model con-
structed by RF for the flagging stage, flowering stage, and filling stage. The R2 and
RMSE values of the optimal yield model modeled with PLSR were 0.75, 0.71 and 0.76
and 738.48 kg/hm2, 794.77 kg/hm2 and 728.85 kg/hm2 when using color indexes,
texture indexes and color indexes fused with texture indexes, respectively, as the
independent variable in the filling stage;

(3) A winter wheat yield distribution map can be used to more effectively monitor winter
wheat yield distribution and provide a more scientific method for guiding fertilization
and irrigation, and increasing yield.

Of course, current research and modeling methods also have some limitations. Firstly,
this study only used color indexes and texture features extracted from RGB images, which
can affect the accuracy of yield prediction. Further research should consider the use of
high-spectral-resolution data. The applicability of the model needs to be validated in the
future by considering the use of data collected from more years and locations.
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