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Abstract: With the improvement in living standards and growing appreciation for flaxseed’s nutri-
tional value, global demand for flaxseed and its economic significance are continuously increasing.
As a major flaxseed producer and exporter, China plays a crucial role in the development of its
agricultural economy. Flaxseed, one of China’s five key oil crops, is renowned for its rich nutritional
content. This study employed a literature review to systematically examine the research status
of key flaxseed dehulling technologies in China. It explored the characteristics, efficiencies, and
quality differences among various dehulling methods, while also drawing on advanced techniques,
such as chemical and ultrasonic dehulling, to provide new perspectives and theoretical support for
flaxseed dehulling. Comprehensive analysis revealed that mechanical dehulling (the impact method
and rolling and rubbing method) is the primary method used in China. The study also identified
the issues in current flaxseed dehulling research in China and offers suggestions to guide future
improvements and innovations in flaxseed processing, aiming to enhance the quality and nutritional
value of flaxseed to meet diverse market demands.
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1. Introduction

Flax is a category within the Linaceae family, taxonomically divided into five genera:
Linum, Dasylinum, Syllinum, Linastrum, and Cathartolinum. Flaxseed is the seed of
the flax plant (Linum usitatissimum L.) belonging to the Linaceae family. Flax is mainly
divided into oil flax, fiber flax, and dual-use flax (oil and fiber) categories, with resistance
to barrenness, cold, and drought, high value, and other characteristics [1]. It is mainly
produced in the United States, Canada, India, and China [2,3]. In recent years, China’s flax
sowing area has expanded, with an average annual sowing area of about 3.23 × 109 m2, and
an average annual total output of about 3.6 × 105 t, second only to that of Canada and India.
Gansu Province is one of the main areas producing of flax in China, where the sowing area
ranks first among the seven major flax-producing areas [4]. Its average annual sowing area
is about 9.7 × 108 hm2 and average annual total output is about 1.51 × 105 t, accounting for
30.5% of the national sowing area and for 38.67% of the country’s total output, respectively;
the province’s sowing area and production rank first in the country [5–7].

Flaxseed is one of the important oil crops in Northwest China and North China, and
the residual meal after oil extraction can be used as a protein source in animal and poultry
feed [8–11]. Flaxseed is also utilized in food processing and can be used as medicine [12].
In recent years, the industrial applications of flaxseed gum and flax fiber have also been
increasing [13–18]. To achieve better processing and utilization of flaxseed, expand its ap-
plications in food processing, and improve the quality and nutritional value of flaxseed [19]
to meet diverse market needs, dehulling treatment of flaxseed has gradually become a
research hotspot.

Currently, flaxseed dehulling in China is primarily via mechanical methods, such as
the impact method and rolling and rubbing methods. While these approaches have yielded
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certain outcomes, numerous deficiencies persist. Most notably, the single-pass dehulling
rate remains relatively low, necessitating multiple cycles. Moreover, there is limited in-
corporation of efficient and environmentally friendly emerging dehulling technologies,
such as chemical and ultrasonic dehulling methods. Consequently, this study conducted
an in-depth analysis of the prevailing key dehulling technologies and the current state
of the flaxseed dehulling process in China. The aim was to provide novel insights and
innovative perspectives for advancing flaxseed dehulling techniques in China, thereby
offering valuable theoretical support and a reference for future research and development
endeavors in this field.

2. Intrinsic Properties of Flaxseed and Significance of Dehulling

Flaxseed, known as the “golden seed”, is generally flat and oval, with a hard, thick,
and smooth outer skin, and a relatively large proportion of kernel to husk [20]. It is widely
used in food processing and plays a crucial role in medicine, health products, and feed
additives [21]. Studies show the primary nutrients of flaxseed are concentrated in the
kernel, which is abundant in unsaturated fatty acids, high-quality plant proteins, and other
essential nutrients [22–25]. Notably, the kernel contains α-linolenic acid, an essential fatty
acid with cardiovascular, brain, and retinal health benefits [26–28], as well as phosphorus,
potassium, vitamin B, and other trace elements [29–31]. Additionally, the kernel has anti-
cancer, anti-aging, and gastrointestinal health properties. The seed coat contains insoluble
fiber as well as anti-nutritional factors [32].

Flaxseed dehulling is of significant importance in expanding applications in food
processing. It not only enhances the quality and grade of flaxseed but also increases nutri-
tional value and reduces anti-nutritional factors, making it more suitable for subsequent
processing. Additionally, while flaxseed cake is utilized as livestock feed, its utilization
rate is often low, leading to resource wastage [33,34]. Therefore, flaxseed dehulling offers
positive benefits for both food processing and consumption. Through in-depth research and
application of flaxseed dehulling processes, exploring optimal processing and utilization
methods for flaxseed can further uncover potential applications in various fields.

3. Research Status of Prevailing Dehulling Technologies

Presently, the relatively mature dehulling methods in China include chemical de-
hulling, enzymatic dehulling, microwave/roasting dehulling, steam explosion dehulling,
and mechanical dehulling. In recent years, dehulling methods such as infrared dehulling
and ultrasonic dehulling have also appeared.

3.1. Chemical Dehulling

Chemical dehulling utilizes alkaline (or acidic) solutions, ethanol, or other chemical
solvents to soften or degrade the seed coat tissue. It is commonly employed to remove the
outer layers of grains, legumes, oil crops, certain fruits, and tubers, thereby improving the
edibility and processing utilization rate. The mechanism of chemical dehulling is illustrated
in Figure 1.
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Shi et al. [35] investigated the heat-alkali dehulling process of peony seeds and determined
the optimal process conditions for peony seed dehulling based on single-factor experiments.
They found that the best conditions were achieved with a NaOH concentration of 9%, a
heating time of 5 min, and a heating temperature of 80 ◦C. Liu et al. [36] studied the wet de-
hulling and hot air drying processing of sesame seeds. Using the dehulling rate, brightness,
and yellowness score as indicators, they determined the optimal process conditions for wet
dehulling of sesame seeds through single-factor and orthogonal experiments. The optimal
conditions were found to be an alkali solution mass concentration of 0.9 g/mL, soaking
temperature of 60 ◦C, soaking time of 5 min, and a material–liquid ratio of 1:6. Under the
optimal dehulling conditions, the comprehensive score of sesame seed quality was 154.51.
This dehulling process combined with hot air drying can produce high-quality sesame
seeds. Zhu et al. [37] studied the effects of various factors on the dehulling efficiency of
hazelnuts in the alkali dehulling process through single-factor and orthogonal experiments
using European hazelnuts as the test material. They optimized the process conditions of
alkali dehulling and obtained the optimal process parameters, providing references for sub-
sequent research. Liang et al. [38] disclosed an invention of a method for separating sesame
husks and kernels based on ethanol wet filtration (Figure 2). Using anhydrous ethanol or
95% ethanol for defatting crushed sesame seeds, they effectively separated sesame husks
and kernels through wet filtration. This method is characterized by its simplicity, high
separation efficiency, low energy consumption, low pollution, and high comprehensive
recovery rate.
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Comprehensive analysis shows that the chemical dehulling method is simple to
operate, has relatively high efficiency, achieves uniform dehulling, and is not affected by
the external shape of the material, making it widely adaptable. However, it can easily lead
to issues such as chemical solvent residues, nutritional losses, and environmental pollution.

3.2. Biological Dehulling

Biological dehulling mainly relies on the catalytic action of biological enzymes to
degrade the seed coat tissue and achieve dehulling. Ma et al. [39] summarized the role of
enzymes in the dehulling process of buckwheat, aiming to provide an important theoretical
basis for the key technology of buckwheat seed dehulling. Song et al. [40] used cellulase
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and xylanase for enzymatic dehulling of sesame seeds (Figure 3), achieving a dehulling
rate of up to 98.3%. This process can replace the traditional alkaline wet dehulling process
and meets the requirements of green and environmentally friendly production. Wang
Jianhui et al. [41] utilized a biological composite enzyme to remove the seed coat of lotus
seeds, not only preserving the original color and flavor of the lotus seeds but also reducing
production costs. Wu et al. [42] studied an enzymatic method for removing the seed coat
of oil-tea camellia seeds, which avoids nutritional losses in the kernels and features low
consumption, environmental friendliness, and mild conditions.
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Overall, biological dehulling technology has the characteristics of high efficiency, mild-
ness, and environmental friendliness. Compared to chemical dehulling, enzymatic dehulling
is more costly, time-consuming, and requires stringent reaction conditions. Therefore, it is
necessary to weigh the pros and cons to decide whether to adopt enzymatic dehulling.

3.3. Mechanical Dehulling

Mechanical dehulling removes the skin through physical force and mechanical action,
with various methods such as rolling and rubbing, shearing, impact, extrusion, etc. [43–46].
It has wide applicability, featuring simple operation, diverse methods, and ensures food
quality and safety. The working principle is shown in Table 1.

Table 1. Mechanical dehulling principle.

Dehulling Method [47–51] Dehulling Principle Characteristics

Rolling and rubbing method

Utilizes crushing and frictional forces
between high-speed rotating abrasive
rollers or grinding wheels and
conical rolls.

Suitable for seeds with weak shell-kernel adhesion
like peanuts and rapeseed. High efficiency but prone
to material damage, unsuitable for soft surfaces.

Shear method

Under the shearing action between
the knife disk and rotating plate,
seeds experience shear forces that cut
through the seed coat,
achieving dehulling.

Minimal kernel breakage, and low mass loss, but
susceptible to seed leakage and requires high
equipment precision, resulting in lower
dehulling efficiency.

Impact method

By utilizing centrifugal forces, seeds
undergo high-speed motion, colliding
with the drum wall, causing the seed
coat to rupture and detach,
achieving dehulling.

Suitable for seeds with weak adhesion and brittle
coats. Simple and low-cost, but challenging to
control impact forces, leading to higher
damage rates.

Extrusion method

The dehulling process is achieved by
compressing the seed coat, separating
it from the kernel, and thus
accomplishing dehulling.

Suitable for dehulling hard-shelled materials, it
offers high efficiency but faces challenges with
varying raw materials, leading to increased seed
breakage rates. Oily seeds are especially problematic
due to oil seepage during squeezing, causing
adhesion and hindering kernel separation.

3.3.1. Rolling and Rubbing Method

Huang et al. [52,53] developed an extrusion milling camellia seed dehulling machine
(Figure 4), employing a roller and cylindrical sieve mechanism. The device is characterized
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by operational simplicity, stable performance, and low raw material moisture requirements.
Under specific conditions, it achieves a minimum dehulling rate of 98.5%, with less than
4% hull content in kernels and less than 1% kernel content in hulls. Zhu et al. [54], through
comparative dehulling experiments with different pretreatments, found that dehulling
ginkgo nuts pre-treated by boiling, microwave, and drying processes, using a grinding
wheel with a 10 mm gap and a 15◦ incline, resulted in nearly 100% shell breaking rates,
with whole kernel rates of 98%, 94%, and 97% respectively. These results provide a basis for
the optimized design of ginkgo nut dehulling devices. Hou et al. [55], based on the physical
and mechanical properties of castor capsules, designed a double-conical castor dehulling
and cleaning device, achieving a clean dehulling rate of 92.03% and a breakage rate of 3.1%.
This device offers high dehulling efficiency and broad adaptability, meeting the industrial
processing needs for castor. Fan et al. [56,57] invented a grinding-type sunflower seed
hulling device, conducting two hulling operations on sunflower seeds. Employing the
principle of aerodynamics with a suction fan for sorting the dehulled materials, this device
achieves complete dehulling and impurity removal while maintaining the integrity and
cleanliness of the seeds, thus enhancing the automation and efficiency of the dehulling and
cleaning process.
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Figure 4. Oil-tea camellia seed sheller: (1) feed hopper; (2) feed regulating baffle plate; (3) spiral
ribs and straight ribs; (4) cylindrical screen; (5) frame; (6) automatic dosing gate; (7) discharge port;
(8) settling chamber; (9) fine shell outlet; (10) coarse shell outlet; (11) main motor; (12) belt pulley;
(13) motor; (14) blower; (15) belt guard; (16) belt; (17) main shaft; (18) bearing block; (19) drum.

3.3.2. Shear Method

Shearing dehulling is generally not used alone, but rather combined with impact, ex-
trusion, and rolling and rubbing in a multi-mode approach. Li et al. [58] designed a toothed
roll-type dehulling mechanism for mechanically dehulling knife beans. The mechanism
utilizes the principle of combined extrusion and shear to generate a tearing effect on the
shell, which meets the performance requirements of the mechanized dehulling processing
of the knife bean. Hao et al. [59] designed a cone-plate peanut shelling device, which
accomplishes dehulling through the shearing and grinding of the upper and lower cone
plates, achieving a 97.84% dehulling rate and 3.27% damage rate, providing a reference for
the research and improvement of peanut shelling machines. Wan [60] designed a clamping-
type freshwater chestnut dehulling machine, as shown in Figure 5. In this machine, the
freshwater chestnuts are first longitudinally cut open by the rotating transversal cutting
blade, which is fixed on the baseplate. Subsequently, the shearing and extrusion between
two pairs of rubber rollers rotating at different speeds are utilized to dehull the pre-cut
freshwater chestnuts. Through theoretical analysis, simulation, and prototype testing, the
optimal working parameters for the horizontal cutting and dehulling units were studied,
providing a theoretical basis for the design and application of dehulling equipment.
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3.3.3. Impact Method

The impact method is considered ideal for dehulling small-grained oil crops [61],
because it avoids hull-kernel adhesion and utilizes relatively simple dehulling equipment
and processes without material grading. Sharma et al. [62,63] studied the dehulling perfor-
mance of a centrifugal impact-type camellia seed dehuller, achieving higher whole kernel
rates and dehulling efficiency under lower moisture content and suitable rotational speeds.
This machine is applicable for small or medium-sized enterprises to dehull camellia and
similar seeds. Yu et al. [64] developed a rapeseed dehulling and separation device utilizing
centrifugal and impact forces, attaining an 85% dehulling rate, with kernels containing 4%
hull, hulls containing 1% kernel, and a 3% powder rate after industrial trials. This device
has a simple structure, and advanced technical indicators, and is well-suited for industrial
applications. Guo et al. [65,66] employed a two-stage impact dehulling method to optimize
the performance of a dehulling machine (Figure 6). Initially, rapeseeds are accelerated and
impacted against a toothed ring by a centrifugal disc for preliminary dehulling, followed
by a secondary dehulling plate to further enhance the dehulling rate. Ranjeet et al. [67]
developed a centrifugal melon seed dehuller based on the centrifugal collision principle,
achieving a 51% dehulling rate and a 32% seed damage rate. While this device has a simple
structure and low maintenance cost, its dehulling rate is relatively low, and seed damage is
significant, necessitating optimization of structural parameters.
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3.3.4. Extrusion Method

Wang et al. [68] developed an innovative pine seed sheller with two counter-rotating
extrusion rollers with arched (Figure 7), indented surfaces and a guiding device for precise
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nut positioning and feeding, achieving a dehulling rate with more than 98% whole kernel
retention. This technology, showcasing versatility, is also applicable to hazelnuts and
apricot kernels. Guo et al. [69] introduced a side extrusion-type apricot kernel shelling
machine, noted for its simplicity, cost-effectiveness, and superior dehulling performance,
making it ideal for small-to-medium scales and a diverse variety of processing methods. Li
et al. [70,71] presented a walnut cracking device using an extrusion-friction mechanism,
systematically exploring the impact of walnut physical properties on cracking efficiency
to establish optimal design parameters. Zhu et al. [72,73] designed a lotus seed dehulling
machine (Figure 8) that integrates mechanical cutting and extrusion with an internal feed
sorting system for eliminating size classification, and enhancing adaptability to seeds of
various sizes. The machine incorporates a unique suspended vibratory dehulling mecha-
nism (Figure 8b), achieving a 92% dehulling rate, 100% whole kernel retention, and less
than 10% damage rate, fulfilling the high standards of fresh lotus seed processing. Its
design prioritizes simplicity, robustness, and cost-effectiveness, promoting its potential for
widespread use in lotus cultivation.
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Figure 8. Schematic of lotus seed sheller: (a) overall structure diagram; (b) suspended vibratory de-
hulling mechanism; (1) driving wheel; (2) speed regulating motor; (3) suspended vibratory dehulling
device; (4) chute; (5) V-belt; (6) hopper; (7) discharge wheel; (8) discharge wheel cover; (9) frame;
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pin; (16) blade holder; (17) right guide rail.
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3.4. Other Dehulling
3.4.1. Microwave/Roasting Dehulling Method

The microwave/roasting dehulling technique utilizes thermal energy from a mi-
crowave or roasting oven to induce moisture evaporation within the intricate tissue struc-
tures of the material. This evaporation leads to cellular dehydration and tissue shrinkage,
consequently facilitating the separation of the husk from the kernel. Notably, microwave
energy primarily acts on the material’s surface, whereas roasting promotes internal heat-
ing. Materials with high moisture content are well-suited for microwave dehulling, while
those with a higher fat content are more amenable to roasting dehulling. This method
is characterized by its operational simplicity, rapid processing speed, high efficiency, ex-
ceptional dehulling efficacy, and minimal material degradation, rendering it one of the
widely adopted pretreatment techniques. In a pioneering study, Zhang et al. [74] con-
ducted a comparative evaluation of four distinct dehulling methods using peanut kernels
as the test material. The findings revealed that the frozen-microwave roasting dehulling
method yielded superior results, achieving a 100% dehulling rate. The detailed process
flow is illustrated in Figure 9. Notably, the dehulled peanut kernels exhibited the lowest
peroxide value, a visually appealing bright appearance, and a significant reduction in
rancidity, thereby effectively preserving the intrinsic quality and organoleptic properties of
the peanut kernels.
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The limited effectiveness of employing singular techniques, such as microwave treat-
ment [75] or roasting [76], in achieving satisfactory husk removal has been well documented,
often resulting in undesirable color alterations in chestnut kernels. To address this limita-
tion, He et al. [77] devised an innovative approach that synergistically combined microwave
treatment and roasting for the husk removal of chestnuts. The method involved an initial
microwave pretreatment stage to loosen the chestnut husk layer, followed by a subsequent
roasting step to facilitate the complete removal of the chestnut skins. This integrated
process yielded an impressive husk removal rate of up to 97.96%. Concurrently, Oomah
et al. [78] conducted a comprehensive investigation into the impact of microwave treatment
on the husking efficiency of sesame seeds. Their findings conclusively demonstrated that
microwave pretreatment significantly enhances the husking efficiency of sesame seeds.
Notably, this combined microwave and roasting technique exhibits promising potential for
extension to the husking treatment of various other oilseed varieties.

3.4.2. Steam Explosion Dehulling Method

The steam explosion process involves two distinct phases: high-temperature steam
cooking and instantaneous pressure release explosion [79]. The principle involves sub-
jecting fibrous materials to high temperatures (160–260 ◦C) and pressures (0.69–4.83 MPa)
for a predetermined duration. Under these extreme conditions, steam diffuses into the
intricate microstructure of the lignocellulosic fiber cell walls, effectively weakening the
adhesive forces between the kernel and its enclosing hull or husk. Upon completion of the
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high-pressure steam treatment, an abrupt depressurization and cooling phase is initiated,
triggering the rapid release of the high-pressure gaseous species confined within the mate-
rial matrix. Sudden release induces substantial expansion and rupturing of the fibrous cell
walls, consequently facilitating the desired separation of the kernel from its surrounding
hull or husk [80]. The principle is illustrated in Figure 10.
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Tian et al. [81] proposed a steam dehulling machine (Figure 11) that utilizes a steam
boiler to generate high-temperature and high-pressure steam. The steam is conveyed
through pipelines and rotary joints into a horizontally positioned, rotatable steam reaction
vessel. Material is fed into the steam reaction vessel through the discharge port of the top
feeder. As the steam reaction vessel rotates, the high-temperature and high-pressure steam
acts on the surface of the material, causing the outer skin to separate and fall away from
the inner core. The dehulled material is discharged from the bottom discharge port of
the steam reaction vessel and transported to the external collection pool via a mesh belt
conveyor for further processing. Through the synergistic action of mechanical rotation
within the steam reaction vessel and exposure to high-temperature, high-pressure steam,
this machine achieves continuous, rapid, and automated dehulling treatment of various
materials. Liu et al. [82] disclosed a steam dehulling machine, as illustrated in Figure 11,
which employs high-temperature and high-pressure steam treatment to rapidly transform
the internal moisture of the product into pressurized water. Subsequently, relying on
the substantial expansion energy released during the depressurization and evaporation
process, the pressurized water effectively separates the outer skin from the pulp, ultimately
achieving the desired dehulling outcome.
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In summary, the steam explosion dehulling method has been an emerging economic
physicochemical pretreatment approach in recent years. It is not limited by material shape,
can better preserve flavor and nutritional value, and features high efficiency, and low-
consumption environmental friendliness. However, the equipment cost is relatively high,
making it unsuitable for low-budget or small-scale production demands.

3.4.3. Ultrasonic Dehulling Method

The principle of ultrasonic dehulling is based on high-frequency sound waves
(20–100 kHz) [83,84]. Under the influence of ultrasonic waves, tiny bubbles in the liq-
uid undergo cyclic expansion and collapse, resulting in the generation of extremely high
localized pressure and temperature within the liquid [85,86]. This phenomenon, known as
“growth-collapse” cavitation, along with the shearing effect of the liquid jet, disrupts and
loosens the surface tissue of the grains, facilitating the decomposition of macromolecules
such as cellulose in the cortex or cell wall components. Simultaneously, the oscillation of
sound waves enhances cell membrane permeability, expediting penetration and softening
of the grains. Additionally, localized high temperatures induce protein denaturation or
alteration of other constituents between the cortex and endosperm, thereby reducing the
bonding force within the husk and enabling effective dehulling [87–89]. The dehulling
mechanism is illustrated in Figure 12.
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Fang et al. [90] employed ultrasonic-assisted alkaline peeling technology to process
walnut kernels. The process flow is illustrated in Figure 13. Through single-factor experi-
ments, the researchers determined four influencing factors: NaOH concentration, alkali
solution temperature, alkali solution treatment time, and ultrasonic power. They optimized
the dehulling process conditions of walnut kernels using the response surface methodology.
This method demonstrated easy dehulling, high whole kernel yield, and a high dehulling
rate. The peeled walnut kernels exhibited a crispy texture, milky-white color, and no
alkaline taste, providing valuable insights for further research into ultrasonic dehulling
techniques. Sunil et al. [91] utilized the response surface methodology to investigate the
impact of ultrasound on the dehulling of black beans. The results revealed that increasing
ultrasound power and treatment time significantly enhanced the dehulling yield and re-
duced dehulling loss. The dehulling yield reached 75.71%, with a dehulling loss of 12.72%.
Compared to mere soaking, ultrasound pretreatment effectively improved the dehulling
efficiency of black beans.
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Overall, ultrasonic pretreatment is an efficient, gentle, and environmentally friendly
dehulling technique that significantly improves the effectiveness of the dehulling process
while ensuring high product quality [92,93]. However, the efficacy of dehulling is suscepti-
ble to limitations imposed by the size and shape of the raw materials. Large or irregularly
shaped raw materials hinder the propagation and action of ultrasound, thereby impacting
the uniformity of the dehulling process.

3.4.4. Infrared Dehulling Method

The principle of infrared dehulling relies on the thermal effect of infrared radia-
tion [94,95]. Surface tissues selectively absorb infrared radiation energy, leading to rapid
moisture vaporization and expansion within these tissues. This process weakens the bond
between the hull and the kernel, making it a current research focus in dehulling technology.
Jong et al. [96,97] validated selective heating characteristics using infrared technology,
enabling targeted heating of surface tissues for dehulling. Gao et al. [98] optimized infrared
parameters for rice drying and dehulling, aiming to provide valuable references for infrared
technology applications in grain pretreatment. Kate et al. [99] achieved a 92.77% ginger
dehulling rate, 6.94% dehulling loss, and 9.6% unhulled rate through infrared dehulling
experiments. Li et al. [100–103] designed an infrared tomato peeling device (Figure 14),
utilizing infrared emitters to heat and soften tomato surfaces, achieving effective tomato
peeling by improving heating uniformity and radiation intensity through rotation.
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Infrared dehulling achieves selective heating by precisely controlling the parameters
of infrared radiation. It rapidly and effectively removes seed coats without damaging the
kernels, offering advantages such as low losses, high efficiency, environmental friendliness,
and flexible control. Additionally, infrared pretreatment disrupts cell structures, promoting
oil release and significantly increasing rapeseed oil yield [104]. However, the successful
application of infrared dehulling technology requires thorough research and testing tailored
to specific materials and requirements to ensure high efficiency and applicability.
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4. Current Status of Flaxseed Dehulling Technologies in China

In the early stages of oilseed processing in China, traditional manual methods were
primarily used for dehulling. However, research on oilseed dehulling and separation
equipment began to emerge gradually in the early 20th century. Developed by Huazhong
Agricultural University, the rapeseed shell-kernel separation machine incorporates a pneu-
matic system for suction-based material transport and air separation, as well as a me-
chanical system comprising a centrifugal impact dehuller and dual separation units. The
operating principle involves fracturing rapeseed kernels under centrifugal and impact
forces, then conveying the resulting mixture of dehulled shells, kernels, seeds, and powder
to a vibrating screen in the first separation unit. The screen’s oscillatory motion, driven
by an eccentric wheel, creates a suspended, stratified state of the mixture under suction,
enabling the separation and extraction of shells and powder, which are collected via a
cyclone separator. The kernel-seed mixture then undergoes further separation by airflow
to remove residual shells, before proceeding to the second separation unit where purified
kernels are collected using another cyclone separator, while any un-dehulled whole seeds
are recycled for reprocessing. This machine achieves kernel and hull contents of less than
4% and 5%, respectively. The Oil Crops Research Institute of the Chinese Academy of
Agricultural Sciences has developed a shell-kernel separation device [105] that utilizes the
principle of centrifugal collision to evenly feed the mixture of dehulled shells and kernels
onto a fluidized screening plate of a sorting box. An upward airflow is introduced at
the lower end of the fluidized screening plate, causing the mixture to suspend and move
forward under the action of the screening plate and airflow. Gradually, shells, kernels,
and un-dehulled whole seeds form three distinct layers. Powder, shells, and kernels are
then separately extracted through three suction ports positioned at different heights, while
un-dehulled whole seeds are discharged from the end of the screening plate and returned
to the dehuller for reprocessing. The extracted shells, kernels, and powder are further
separated and collected using a cyclone separator. This process ultimately achieves a kernel
content in shells of 2% to 4% and a shell content in kernels of less than 2%. Li et al. [106,107]
developed a flaxseed dehuller based on centrifugal collision, utilizing electrostatic adsorp-
tion to separate kernels and hulls. At optimal conditions, it achieved <1% kernel content in
hulls and <3% hull content in kernels, with simple operation but high power consumption,
seed breakage rate, and cost, hindering large-scale production. Ding et al. [108,109] utilized
rolling action from dynamic/static sand discs and flaxseeds themselves for shell-kernel
separation (Figure 15). The adjustable-clearance structure suits various seed sizes, but
frequent disc replacement leads to seed damage and low efficiency. Xiao proposed auto-
mated flaxseed processing equipment based on electrostatic separation [110], achieving
continuous sterilization, dehulling, and separation. It utilizes opposing rollers for crush-
ing/dehulling and an electrostatic belt for automatic hull-kernel separation, improving
efficiency but with a complex structure, high power consumption, breakage rate, and waste.
Wang et al. proposed a new dehulling process: pretreatment → enzymatic hydrolysis →
liquid nitrogen freezing → centrifugal impact → kernel [111]. Li et al. developed a centrifu-
gal collision dehuller [112] based on this, improving efficiency through pretreatment with
low losses and good kernel integrity, but risking chemical residues and weak continuous
capacity for industrial demands. Currently, the advanced TFYMZ-200 (Figure 16) employs
pneumatic and electrostatic dehulling. Through a control panel, airspeed is adjusted to
separate flax seeds from the hulls. After dehulling, the mixture undergoes an initial selec-
tion via a vibrating air separator. Subsequently, the principle of electrostatic adsorption is
employed for the further precise separation of flax seeds from their hulls. This machine
boasts a raw material processing capacity of up to 200 kg/h, with both the kernel content in
seeds and the seed content in hulls being below 2%, indicating a high dehulling rate. The
equipment is stable, reliable, and highly automated, capable of dehulling, hull removal,
and sorting of flaxseed materials, thus meeting the demands of industrial processing.
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Figure 16. Flaxseed dehulling equipment TFYMZ-200: (1) input hopper; (2) main part of the equip-
ment; (3) leaf-spring conveyor; (4) spiral elevator; (5) vibrating air-separator; (6) electric control
cabinet; (7) electrostatic air separator; (8) vertical air-separating system; (9) bucket elevator.

An analysis of the current literature reveals that China has conducted extensive re-
search on flaxseed component extraction and nutritional value. However, studies focusing
on the fundamental properties and parameters of flaxseed remain scarce, leading to inad-
equate theoretical guidance [113]. Currently, flaxseed dehulling equipment is still in the
experimental stage, with few manufacturers producing such equipment at scale. Although
efforts have been made domestically to develop various types of new dehulling machinery
based on traditional methods, progress has been slow. The few mature models available
and limited batch production capabilities significantly lag behind the increasing demand
for deep processing of agricultural products. Many technical challenges still need to be
addressed, necessitating further optimization and research in this area.

5. Issues and Development Suggestions

Comprehensive analysis reveals that there are several issues with flaxseed dehulling
technology in China. To address these challenges and further promote innovative develop-
ment, it is recommended to implement further improvements.

1. Insufficient foundational research on flaxseed in China. The mechanical properties
and dehulling kinetics of flaxseed remain inadequately studied, hindering accurate
modeling and simulation of the dehulling process. This lack of theoretical guid-
ance leads to deficiencies in process design and equipment development. Therefore,
strengthening theoretical research on flaxseed dehulling is essential to provide a
scientific basis for process and equipment design and parameter optimization.
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2. Innovative and efficient flaxseed dehulling technologies are essential to address the
inefficiencies and substantial losses of current mechanical methods in China, which
achieve dehulling rates of ≤80% with losses ≥10% [114]. Exploring eco-friendly,
advanced techniques such as ultrasonic, enzymatic, and microwave-assisted de-
hulling [78,91,115], and developing chemical reagents for selective seed coat dis-
solution, hold promise for improving dehulling quality and yield. Moreover, the
advancement of rapid, real-time monitoring technology for dehulling quality is cru-
cial for process optimization and represents a significant avenue for innovation in
flaxseed processing.

3. The industrial production system for flaxseed dehulling equipment needs improve-
ment. Existing equipment is predominantly in the external design and small-scale
testing phase. It is imperative to encourage enterprises to increase technological
investment and drive the development of automated, intelligent, and large-scale
flaxseed dehulling equipment.

6. Conclusions

This study performed a comprehensive analysis of key and advanced dehulling
technologies, summarizing methods and process flows across different techniques, and
examined their characteristics and the variance in dehulling outcomes. The goal is to
foster innovative development in China’s flaxseed dehulling technology by providing
new theoretical insights and support. It finds that mechanical dehulling, the predominant
method in China, achieves less than 80% efficiency with a damage rate of more than 10%,
lagging significantly behind international standards. This shortfall is attributed to a lack of
in-depth theoretical research on flaxseed, insufficient equipment innovation, and delayed
process improvements, with many dehulling machines still at the experimental stage.

The future development of flaxseed dehulling technology in China should focus
on: (1) intensifying research on flaxseed’s physical and chemical properties and dehulling
mechanisms to underpin process and equipment innovation; (2) continuous optimization of
mechanical dehulling technology, including key component design and process parameters,
while advancing automation and intelligence; (3) exploring more environmentally friendly
dehulling methods, coupled with the development of detection technologies for real-time
quality monitoring to adjust processes and improve flaxseed quality and nutrition; and
(4) encouraging enterprise investment in standardization and large-scale production to
meet diverse market demands. This approach aims to provide valuable insights and
guidance for the advancement of flaxseed dehulling technology in China.
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