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Abstract: In order to solve the problem of image boundary segmentation caused by the irregularity
of paddy fields in southern China, a high-precision segmentation method based on the improved
MultiResUNet model for paddy field mapping is proposed, combining the characteristics of paddy
field scenes. We introduce the attention gate (AG) mechanism at the end of the encoder–decoder skip
connections in the MultiResUNet model to generate the weights and highlight the response of the
field ridge area, add an atrous spatial pyramid pooling (ASPP) module after the end of the encoder
down-sampling, use an appropriate combination of expansion rates to improve the identification of
small-scale edge details, use 1 × 1 convolution to improve the range of the sensory field after bilinear
interpolation to increase the segmentation accuracy, and, thus, construct the AM-UNet paddy field
ridge segmentation model. The experimental results show that the IoU, precision, and F1 value of the
AM-UNet model are 88.74%, 93.45%, and 93.95%, respectively, and that inference time for a single
image is 168ms, enabling accurate and real-time segmentation of field ridges in a complex paddy
field environment. Thus, the AM-UNet model can provide technical support for the development of
vision-based automatic navigation systems for agricultural machines.

Keywords: segmentation of ridges on fields; deep learning; attention gate mechanism; atrous spatial
pyramid pooling

1. Introduction

Unmanned driving in an agricultural setting is the technical core and construction foun-
dation of intelligent farm machinery [1]. In recent years, as the construction of unmanned
farms has gradually increased, agricultural unmanned machines have been successfully
applied to large areas in standardized farms [2]. However, in the southern hilly areas of
China, the construction of standardized farmland is relatively lagging behind, the farmland
boundaries tend to form irregular curves or folded lines [3], and the farmland boundary
positioning information on which the unmanned agricultural machinery relies is not easy
to obtain. In particular, it is difficult and labor-intensive to manually obtain the boundary
in paddy field environments; additionally, the boundary is mostly formed after cyclic
cultivation, and the frequent modification of its edge ridges will also lead to poor timeli-
ness of the point-picking work [4]. Therefore, the development of an environment-aware
real-time detection technology for border ridge agricultural machinery is of great practical
significance and scientific value in order to promote unmanned operations on farmlands
with irregular borders in the hilly areas of south China.

Border ridge identification is the basis for obtaining boundary positioning information,
and there are two main ways to achieve this using environment perception technology,
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namely, the use of LiDAR or machine vision to obtain environmental information. Vargh-
ese et al. [5] used LiDAR point cloud tracking and modified the convex hull formation
algorithm to decompose point cloud data, thus realizing the accurate extraction of building
boundaries. Sun et al. [6] proposed a redundant feature point filtering algorithm, whereby
LiDAR point cloud data were filtered and road boundaries were accurately segmented
through the method of fusing boundary features with vehicle prediction trajectories, with
recognition accuracy reaching 93%. Chen et al. [7] used the local maxima filtering algorithm
and marking control watershed segmentation algorithm to detect the single-tree canopies
of fruit trees, and extracted single-tree canopy information based on the canopy contour
features. Chen et al. [8] pre-processed images using the Cb component in the YCr-Cb color
space and carried out filtering, threshold segmentation, and morphological operations to
extract the rice–wheat harvesting boundary line; the processing of a single image took 0.64 s.
Hou et al. [9] used visual algorithms such as coarse extraction and dynamic segmentation of
the lane line region to complete real-time detection of lane line boundaries. Cheng et al. [10]
proposed a non-local mean denoising method based on integral graph acceleration and
Tukey’s bi-weight kernel function to achieve wear detection on tool wear images by means
of morphological reconstruction of extreme points extracted from the wear region. These
studies indicate that devices based on LiDAR and cameras are the main sensor devices used
for boundary detection; however, there are significant differences between the boundary
detection methods, and there are still problems such as the singular nature of scenes and
low segmentation accuracy.

Traditional image segmentation mainly uses the Otsu method to obtain the threshold
required for image segmentation. The Otsu method uses the image histogram to select the
appropriate threshold to maximize the variance between the target and the background
to achieve the purpose of image segmentation. When the difference in the gray value of
the image is not significant, it is difficult to achieve accurate image segmentation [11]. In
traditional image processing, to extract local features such as color, texture, and shape
through expert knowledge and complex parameter adjustments. However, manual feature
extraction methods do not fully represent image semantics, and extractors are generally
application-specific and are poor in generalization and robustness [12]. Due to the dynamic
characteristics of paddy fields, such as uneven terrain, changing weed conditions, varying
weather conditions, and fluctuating lighting, traditional image processing methods lack the
robustness to cope with the complex and ever-changing environment of paddy fields and
advanced machine learning algorithms need to be considered [13]. Convolutional neural
networks, with strong feature-learning ability, can be effectively used for the extraction
of features using image spatial information [14,15], and good results have been achieved
in terms of the segmentation of farmland areas [16,17]. In recent years, image segmenta-
tion methods based on deep neural networks have been widely used for farmland image
segmentation and boundary extraction from UAV remote sensing images [18–21]. Fully
convolutional networks can automatically extract deep semantic features, thus realizing
end-to-end learning, and are more accurate and faster than the traditional support vector
machine methods. These studies show that deep learning semantic segmentation can
achieve pixel-level accurate segmentation with good generalization ability and robustness,
which provides technical support for our subsequent research on navigation path extrac-
tion and the development of vision-based automatic navigation systems for agricultural
machinery. The UNet model, due to its symmetric encoder–decoder architecture, has been
applied for the semantic segmentation of medical images with great success [22], and has
been increasingly used for agri-environmental image segmentation. Song et al. [23] added
skip connections and depth-separable convolution on the basis of the SegNet segmentation
model to achieve the effect of recognizing sunflower collapse in high-resolution remote
sensing images. Ibtehaz et al. [24] introduced the MultiRes module with a residual structure,
which achieved significant segmentation results on a more difficult small-sample medical
dataset. Diao et al. [25] replaced the DoubleConv structure in the traditional UNet network
by the ASPP structure to generate an ASPP-UNet network with a better row segmentation
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performance for maize crop, which successfully meets the accuracy and real-time demands
of agricultural robot vision navigation, and can function effectively under varying envi-
ronmental pressures. Chen et al. [26] proposed a detection model for sesame and weeds
based on YOLOv4. They integrated an attention mechanism into the SPP structure by using
local importance pooling, and introduced an adaptive spatial feature fusion structure at the
feature fusion level. This effectively improved the detection accuracy while maintaining a
fast detection speed.

In agriculture, image processing tasks for paddy field environments present unique
challenges due to the complex background and varying object scales. Objects in these
fields exhibit significant scale differences within images, necessitating models with robust
multi-scale information processing capabilities. The ASPP technique offers significant
advantages in this context, effectively enhancing the model’s ability to process multi-scale
information and accurately capture semantic details across different object scales. Further-
more, research based on the UNet network combined with ASPP technology demonstrates
the applicability of ASPP in the UNet framework. Integrating ASPP technology with the
UNet network effectively enhances the model’s ability to perceive complex backgrounds
and object boundaries. Particularly, with the addition of an attention mechanism, the
model’s semantic segmentation ability is further improved, resulting in more accurate
and refined semantic segmentation of paddy field environments while maintaining rapid
detection speeds.

For the semantic segmentation of field ridges in paddy field environments, this study
proposes a network structure combining an attention gate (AG) module and an atrous
spatial pyramid pooling (ASPP) module based on the MultiResUNet model, and the
feasibility and high accuracy of the proposed model are verified through an ablation
experiment and model comparison experiment. The main points of improvement are
as follows:

(1) Adding attention gate structure skip connections at the end of encoder–decoder
skip connections in MultiResUNet, generating attention coefficients through sigmoid
activation and passing them to the input coding layer using trilinear interpolation
to highlight semantic regions related to the field ridges during up-sampling, and
suppressing target-independent feature responses.

(2) Adding the ASPP module after the end of coding down-sampling, using a smaller
combination of expansion rates to improve the identification of field ridge edge
details, adding one-way parallel average pooling to integrate global information, and
using 1 × 1 convolution to achieve channel dimensionality reduction after bilinear
interpolation, in order to enhance the range of sensory fields for feature semantics
and further improve the segmentation accuracy of the field ridge region.

2. Materials and Methods
2.1. Data Acquisition

The agricultural field information acquisition system based on the Yanmar rice trans-
planter used in the experiment mainly included a ZED camera (StereoLabs, San Francisco,
CA, USA), an NVIDIA TX2 (Nvidia, Santa Clara, CA, USA), a display, and so on, as shown
in Figure 1. The ZED camera was fixed directly above (50 cm) the front of the vehicle using
a flip bracket, and the camera turning angle and height could be adjusted. The camera’s
properties include a frame rate of 100 FPS, a field of view of 90◦60◦110◦, an aperture of
f/2.0, and a depth range of 0.5–20 m. The embedded processor of choice—the NVIDIA
TX2—is based on the Pascal™ (Bellevue, WA, USA) architecture and has 8 GB of memory,
as well as 59.7 GB/s memory bandwidth.

The paddy field image acquisition time period was divided into four phases: 18 Jan-
uary 2020, 5 March 2020, 18 April 2021, and 5 June 2021. The acquisition times were between
7:00 and 11:00 and 14:00 and 17:00, including three time periods in both the morning and
afternoon, and the weather included cloudy and sunny days. The image acquisition loca-
tions were Nanchang City, Jiangxi Province (28◦64′80′′ E, 115◦68′75′′ N), and Yichun City,
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Jiangxi Province (27◦94′73′′ E, 114◦26′21′′ N), as shown in Figure 2. For each experiment,
the rice transplanter was driven along the edge of the field, the distance between the front
wheels and the field was 40 cm, the driving speed was 0.75 m/s, the camera was set to
shoot diagonally at a 45◦ pitch angle, the height of the camera from the ground was 40 cm,
and the image acquisition interval was 0.1 s. In total, 840 samples of paddy field images
with a complete set of scenes and clear features of the field were screened.
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2.2. Dataset Construction

Due to the complex environment of the paddy fields, data acquisition in the ploughed
paddy fields was carried out in the early, middle, and late rice cultivation periods. The
paddy field ridge images acquired in the early and middle rice cultivation periods were
mainly composed of six types of image, namely: scenes of green vegetation cover, no
vegetation cover, water surface reflections, water surface shadows, uneven distributions of
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the water surface, and rutted marks. The green vegetation field images were collected in
early June, with a large amount of green vegetation on the surface of the field, typical of a
paddy field after plowing and before rice transplanting. Images of fields without vegetation
were collected in early January (i.e., in winter), with withered vegetation covering the
surface of the fields and a small amount of water frozen on the field surface, accompanied
by part of the rice stubble stalks; this is typical of a fallow paddy field after harvesting
in winter. Water surface reflections were associated with the outdoor light intensity and
caused a loss in imaging performance due to localized whitening of the reflective region of
the paddy field content; this phenomenon mostly occurred in summer at around midday.
Shadow blocking, due to oblique illumination from the Sun causing shadows on the field,
was mostly distributed in the morning and afternoon hours. The uneven distribution of
the water surface was due to excessive water release after plowing, and the surface of
the paddy field had localized bare mud surfaces. Rutted marks were generated after the
operation of agricultural machinery, and were mostly distributed in the scenes where the
surface water level was low and the field was not fully plowed.

In order to improve the data distribution balance and enhance the model’s general-
ization ability, we applied various transformations to each original image, as shown in
Figure 3. We employed data enhancement such as random rotation, shifting, cropping, and
scaling, while color transformations include adding noise and adjusting the hue, saturation,
and brightness values. To implement these transformations, we used Python (3.6) scripts
to call OpenCV vision library functions to expand the collected 840 images of paddy field
ridges to 3400 images.
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2.3. Dataset Preparation

In this study, the paddy field ridge dataset was labeled at the pixel-level using the
image annotation tool LabelMe (5.3.1) with manual visual annotation. As shown in Figure 4,
the pixel value for a labeled field ridge area was 1, while the pixel value for a non-field
ridge area was 255. The data were stored according to the format of publicly available
dataset PASCAL VOC 2012, and the dataset was divided into a training set of 2380 images,
a validation set of 680 images, and a test set of 340 images in a ratio of 7:2:1. Table 1
demonstrates the division of the dataset.

Table 1. Dataset segmentation.

Dataset Proportions Images

Training dataset 70% 2380
Validation dataset 20% 680

Test dataset 10% 340
Full data 100% 3400
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2.4. MultiResUNet Model

In this study, the image segmentation and extraction method for paddy field ridges
was developed on the basis of the MultiResUNet network. The MultiResUNet model is
mainly divided into an encoder–decoder architecture, as shown in Figure 5. In the encoding
stage, the input image is first subjected to four instances of MultiResBlock convolution,
which contains three 3 × 3 serial convolutions and 1 × 1 residual connection for image
feature extraction, in order to enhance its multi-scale semantic information representation
ability. A maximum pooling operation with a size of 2 × 2 and a step size of 2 is performed
after each convolution. Subsequently, in the decoding stage, the extracted feature matrix
is mapped and up-sampled using a 2 × 2 transpose matrix, after which the features are
convolved through four MultiResBlock convolutions. The ResPath residual join is also
introduced in the encoder–decoder stage, in order to ensure depth consistency before and
after the join, thus improving the prediction accuracy.
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In this study, the paddy field scenes have strong environmental complexity, the field
area is small compared to the background area, and the number of field data is small.
MultiResUNet has excellent segmentation advantages on datasets of complex scenes, and
possesses strong multi-scale semantic extraction and classification ability, allowing it to
quickly extract small field areas. It also has good applicability for the segmentation of field
images that show strong characteristics of perspective (i.e., where near objects appear big
and distant objects appear small).
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2.4.1. MultiResBlock Module

Figure 6 shows the schematic structure of the MultiResBlock. In order to prevent
too large a number of parameters from affecting the model training effect, the MultiRes-
Block convolutional structure uses three 3 × 3 convolutional kernels, in order to simulate
the effect of 5 × 5 and 7 × 7 convolutional kernels and to enhance the non-linearity of
the model. The memory requirement of the convolutional layers is increased through
incrementally increasing the memory requirement of the convolutional layers from 1 to
3, instead of maintaining the same memory requirement of the convolutional layers for
all three layers. Furthermore, to obtain additional spatial information and to maintain the
image size, a residual join is added and a 1 × 1 convolutional layer is introduced, which is
finally fused using an add operation to form the MultiResBlock module. The model adds
several convolutional layers to strengthen the depth of the network and avoid the gradient
disappearance or explosion phenomena that tend to occur in deep neural networks during
the training process.
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2.4.2. Res Path Structure

The Res Path structure is shown in Figure 7. The use of skip connections in the
MultiResUNet structure enables semantic information to be passed from the encoder to the
decoder and, as there are large semantic differences between the shallow features in the
encoder and the corresponding deep features in the decoder, directly splicing the two will
affect the accuracy of the prediction results. Therefore, in order to reduce the difference
between the encoder and decoder features, the encoder features are functionally mapped
using a convolution operation before connecting them with the corresponding features
in the decoder. Using 4, 3, 2, and 1 convolutional blocks in the Res Path, respectively, the
encoder–decoder structure maintains a consistent depth before connecting through the
non-linear operation of 3 × 3 convolutional layers with a 1 × 1 residual structure.
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2.5. AM-UNet Semantic Segmentation Model for Paddy Field Ridges

The research object of this study is paddy field ridges, which are similar in appearance
to the background color and texture of the paddy field. The background (paddy field
surface) also accounts for a much larger proportion of the image than the target area (field
ridges), and its specific differentiation is reflected in the edges of the field ridge area, as
well as the degree of severance between the local area of the field ridges and the overall
paddy field. Therefore, the segmentation task is more sensitive to the model’s context
awareness and its ability to correctly transfer multi-scale semantic information. In the
original model, the Res Path structure has the problem of insufficient fusion of multi-scale
feature information in the process of semantic information transfer, resulting in inaccurate
segmentation of paddy fields. Therefore, in this study, an attention gate (AG) mechanism
is added to the front end of the Res Path, which highlights the significant target region
and suppresses the background region response that is not related to the segmentation
target, in order to improve the accuracy of semantic information transfer. Meanwhile, the
MultiResBlock module in the fifth down-sampling of the encoder and the up-sampling
of the decoder is replaced with an ASPP null-space module, which improves the model’s
ability to extract multi-scale features. Based on the above improvements, an AM-UNet
semantic segmentation model for paddy fields is proposed in this study. The improved
AM-UNet semantic segmentation network model structure is shown in Figure 8.
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2.5.1. Attention Gate (AG) mechanism

The main focus of this study is a binary classification problem based on paddy fields
and ridges, wherein the background paddy field region is large and the target ridge features
account for a relatively small proportion. Therefore, in order to inhibit the feature response
of the background region of paddy fields and to highlight the feature response of the ridge
region, an attention gate (AG) [27] is introduced as a spatial attention module, which can
be expressed using the following mathematical formulae:
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where ε1 is the ReLU function; ε2 is the Sigmoid function; Wk
g , Wk

x , and ξk are convolution

operations; and bg and bξ are bias terms. An additive attention map T j
att can be obtained

after the computation of Equation (1), following which a 1 × 1 convolution operation is
performed on it. Based on this, the Sigmoid computation of Equation (2) is introduced to
compress the features, output the weight values within the range [0, 1], and obtain the soft
attention map.

The structure of the AG attention mechanism is shown in Figure 9, where g is the
feature matrix of the decoding region and x is the feature matrix of the encoding region.
After an additive attention map is obtained through summing the g and x features, a soft
attention map is obtained by applying the ReLU activation function, 1 × 1 convolution,
and Sigmoid activation. To ensure that the image size is constant, a Resampler resampling
step is added after the activation function and the feature representation of the background
region is suppressed. Introducing the AG module into the skip connection of the UNet
network structure can significantly enhance the feature extraction ability of the network
for the paddy field ridge region, effectively suppressing the influence of the background
region on target segmentation.
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2.5.2. Atrous Spatial Pyramid Pooling (ASPP) Module

ASPP was first proposed for the DeepLabv2 [28] model, and has been widely used in
the field of image semantic segmentation due to its superior multi-scale feature extraction
performance. In this study, we use an ASPP module composed of 3 × 3 null convolutions
with expansion rates of 1, 3, 5, and 7, and a global average pooling layer in parallel. We
add a Batch Normalization layer and ReLU activation function after each parallel null
convolution operation, and use a cascade operation to fuse the features of each channel,
allowing for better extraction of the fine-scale land features in the images of the ridges and
furrows. The structure of ASPP is shown in Figure 10.
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3. Results and Analysis
3.1. Platform Parameters

The experimental hardware environment was a Lenovo P720 workstation with 256 G
of running memory, an NVIDIA model RTX5000 GPU, and an Intel Xeon Gold 6142 CPU
(2.6 GHz). The running environment was based on the Ubuntu 16.04 operating system,
CUDA version 10.0, and CUDNN version 7.4.0, and was implemented in the pytorch deep
learning framework using the Python programming language.

3.2. Evaluation Indices

In order to quantify the segmentation performance of the AM-UNet model on the
paddy field ridge dataset, we selected the intersection over union (IoU), precision (P), and
F1 score as metrics to evaluate the performance of the network structure [29]. The formulae
for these evaluation indices are as follows:

IoU =
TP

TP + FN + FP
, (3)

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

F1 = 2· Precision·Recall
Precision + Recall

, (6)

where TP indicates that the model prediction and label values are both true, FP indicates
that the prediction value is true and the label value is false, and FN indicates that the
prediction value is false and the label value is true. IoU is a common evaluation metric,
which is used here to indicate the degree of overlap between the mask predicted by the
model and the label mask. The F1 value is the harmonic mean of the precision and recall,
making it a combined evaluation metric of the precision and recall.

3.3. Evaluation Index

The stochastic gradient descent (SGD) [30] used in the MultiResUNet model is an im-
proved algorithm based on batch gradient descent (BGD). It approximates the loss function
with a first-order Taylor expansion and solves for the minimum value of the approximated
function, which is then used as the initial value for the next iteration. Although the conver-
gence speed is fast on large data samples and an optimal solution can be obtained without
training on all data, it is highly dependent on the current batch and the update is unstable,
presenting periodic oscillations. Therefore, the improved AM-UNet network training pro-
cedure was optimized for convergence using Adam’s first-order algorithm [31]. The loss
function used in the training process was Dice Loss [32], with the following formulae:

dice = 1 − 2|X ∩ Y|
|X|+ |Y| , (7)

where X is the sum of predicted field pixels and Y is the sum of real field pixels.
In this study, we used the Adam first-order optimization algorithm in comparison

with the SGD algorithm, combined with momentum and the RMSProp algorithm, and
synchronously optimized and updated the network parameters as follows:

wt = wt−1 − Φt

⌢
mdw»
⌢

ndw + γ
, (8)
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yt = yt−1 − Φt

⌢
mdy√
⌢

ndy + γ
, (9)

where wt, yt, and Φt are the network weights, bias, and learning rate in the tth iteration,
respectively;

⌢
mdw and

⌢
mdy are the bias-corrected momentums of wt and yt, respectively;

√» ⌢
ndw and

√
⌢

ndy are the bias-corrected values of wt and yt, respectively; and γ is a
hyperparameter, the value of which is taken as 10−8 in this study. To accelerate the
convergence of the network, exponential decay was used to regulate the learning rate of
the iterations, calculated as follows:

Φ = Φ0g f (t/10), (10)

where Φ is the learning rate in the current iteration, f () denotes downward rounding, g is
the rate decay factor, t is the number of current iterations, and Φ0 is the initially defined
learning rate.

The AM-UNet model was trained using the Adam first-order optimization algorithm
and the SGD algorithm separately, in order to compare the performance of both algorithms
with an increase in the number of iterations. The initial learning rate was set to 0.0001 for
training, the exponential decay rate for first-order moment estimation was set to 0.9, the
exponential decay rate for second-order moment estimation was set to 0.999, the batch
size was set to 4, and the number of running iterations was 20,000. The training loss curve
is shown in Figure 11. The blue curve presents the performance change when using the
Adam first-order optimization algorithm. In the first 10,000 iterations of training, the loss
value decreased greatly, and there were local oscillations; when the number of iterations
reached 16,000, the loss value tended to flatten out, and the model was more stable; and,
when the number of iterations reached 20,000, the loss value converged to 0.056. The red
curve presents the performance change for the SGD stochastic gradient descent algorithm.
As the number of iterations increased, the loss value gradually decreased. In the first 12,000
training iterations, the loss value decreased greatly and the oscillation amplitude was larger;
when the number of iterations reaches 18,000, the loss value tended to be flat; and, at 20,000
iterations, the loss value converged to 0.092. In the SGD algorithm, each iteration’s weights
are changed in the training process, and therefore the model is more stable; however, as the
weights of the SGD algorithm are adjusted in each iteration during the training process,
the model can easily skip the optimal solution, and the oscillation causes the loss value
to fluctuate up and down. Therefore, it can be seen that the use of the Adam first-order
optimization algorithm resulted in a more stable model performance.
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3.4. Ablation Experiment

In order to verify the contributions obtained through introducing the AG mechanism
and ASPP structure into the model, the model using MultiResUNet as the backbone feature
extraction network was used as the baseline model, and an ablation test was conducted on
the basis of this model. The results of the experiment are shown in Table 2. The introduction
of the AG module improved the IoU, precision, and F1 value on the paddy field ridge
dataset by 0.6, 0.55, and 0.74 percentage points, respectively, with respect to the baseline
model; the introduction of the ASPP structure improved the IoU, precision, and F1 value
on the paddy field ridge dataset by 1.33, 0.92, and 1.38 percentage points, respectively, with
respect to the baseline model. Referring to the AG module and the ASPP structure alone,
each evaluation index was improved to different degrees, and the introduction of the ASPP
structure resulted in a greater improvement than the AG module.

Table 2. Results of the paddy field ridge dataset ablation experiment.

Method IoU P F1

Baseline 85.71 90.84 91.77
+AG 86.31 91.39 92.51

+ASPP 87.04 91.76 93.15
AG + ASPP 88.78 93.56 94.01

The introduction of the AG module and ASPP structure at the same time strengthened
the model’s ability to segment targets; in particular, the IoU, precision, and F1 value
were improved by 3.07, 2.72, and 2.24 percentage points, respectively, on the paddy field
ridge dataset. The AG module significantly enhanced the feature extraction ability of the
network on the paddy field ridge region and effectively suppressed the influence of the
background region on target segmentation. The ASPP structure plays an important role in
the identification of small targets; it combines the semantics of the different sensory fields
without losing information, better extracts the target image information, and better extracts
the fine-scale features of landmarks in field images. Therefore, the AG module and ASPP
structure proposed in this study improved the accuracy of the model and allowed it to
better recognize the paddy field ridges.

3.5. Comparison of the Performance of Different Models

In order to further validate the classification accuracy of paddy field ridges under
different features, 100 images of paddy field ridges categorized as type a (green vegetated
ridges), type b (unvegetated ridges), type c (uneven distribution of water surfaces), type d
(reflections on the water surface), type e (shaded occlusion), and type f (rutted marks) were
selected as a test set from the 680 validation images and 340 test images in the paddy field
ridge dataset. The related training parameter settings were kept the same. Based on these
data, the experimental results obtained with the proposed method were compared with the
results of the UNet, MultiResUNet, and PSPNet models, as these models were widely used
in semantic segmentation due to their advantages of simple structure, high accuracy, and
generalizability. The segmentation results are shown in Figure 12, and the performance
metrics are given in Table 3.

Figure 11 shows the test results for the original and labeled images obtained with the
UNet, MultiResUNet, PSPNet [33], and AM-UNet models for the six different types of
southern paddy field images.

For segmentation of the most common paddy field scene—fields with green vegetation—
the UNet model showed local background misclassification, while the PSP and MultiResUNet
models were not fine enough in their edge recognition. The edge lines on both sides of the
field were too smooth, which made it difficult to express the complexity of the edges of the
field. In comparison, the improved AM-UNet model achieved the best results in terms of
segmentation completeness and detail retention. For the segmentation of scenes with no
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vegetation, a reduction in the number of weeds in the field led to an improvement in the
distinction between field ridges and paddy fields, and the four models were able to carry
out accurate segmentation of field ridges. For the segmentation of scenes with an uneven
water distribution, due to the presence of bare mud surfaces in the paddy field area, the
UNet and MultiResUNet models presented erroneous segmentation, while the segmentation
results of the PSPNet model were incomplete and the recognition effect was not good. Again,
the AM-UNet model had the best results in terms of segmentation completeness and detail
preservation, and therefore the AM-UNet model performed better in this scenario.
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Table 3. Performance evaluation on different types of paddy field.

Type
UNet PSPNet MultiResUNet AM-UNet

IoU P F1 IoU P F1 IoU P F1 IoU P F1

Green vegetated ridges 85.82 90.95 92.27 83.72 90.28 91.60 87.46 91.23 92.80 89.51 95.49 94.51
Unvegetated ridges 86.34 91.36 92.78 84.61 91.08 92.27 88.14 92.69 93.26 92.25 96.84 95.03

Surface reflection 82.89 89.17 91.06 81.24 88.46 90.20 84.83 90.23 91.69 87.13 92.18 93.68
Surface shadows 84.63 89.51 90.13 81.83 89.28 88.77 86.87 91.82 90.91 87.89 92.36 93.08
Uneven surface

distribution 83.04 89.28 89.69 82.05 89.14 91.25 83.26 89.31 91.13 88.79 93.71 93.27

Rutted marks 82.72 88.86 91.52 80.27 88.13 89.71 85.36 91.09 92.55 86.87 90.14 94.14
Average 84.24 89.86 91.24 82.29 89.39 90.63 85.98 91.06 92.06 88.74 93.45 93.95

For the segmentation of fields with water reflection, the UNet, PSPNet, and MultiRe-
sUNet models all misidentified the soil clods in the paddy field, and did not achieve good
results in recognizing the difference between local soil clods and the whole field. However,
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the AM-UNet model accurately captured the difference between the two and realized accu-
rate segmentation. From the comparison of scene segmentation under shadow masking, the
segmentation results obtained with the UNet and PSPNet models showed different degrees
of segmentation breaks in the field boundary region, mistakenly segmenting part of the
field with shadow into the background paddy field. Both the MultiResUNet and AM-UNet
models were able to accurately recognize the shadowed area. In the segmentation of scenes
with rutted marks, the rutted marks formed a block similar to the field in the background
area of the paddy field. The MultiResUNet model produced some incorrect segmentation
in the rutted marks area. UNet and PSPNet did not present a high degree of completion of
the segmentation of the field, given that the segmented area was smaller than the actual
field area. In contrast, AM-UNet provided the most accurate segmentation in the rutted
marks scenario.

In general, the AM-UNet model performed better than the other three models for
field segmentation in scenes with green vegetated fields, unvegetated fields, water surface
reflections, water surface shadows, an uneven distribution of the water surface, and rutted
marks; it also had the highest field edge fit and greater robustness for field segmentation
under multiple interference elements.

Table 3 provides the segmentation performance parameters of each model in the six
types of paddy field scenarios, from which it can be seen that the mean precision of the
AM-UNet model provided an improvement of 3.59, 4.06, and 2.39 percentage points, when
compared with the UNet, PSPNet, and MultiResUNet models, respectively. Furthermore,
the mean IoU of the improved AM-UNet model was better than that of the UNet, PSPNet,
and MultiResUNet models by 4.5, 4.34, and 2.76 percentage points, respectively; and the F1
value of the AM-UNet model was improved by 2.71, 3.32, and 1.89 percentage points when
compared with the UNet, PSPNet, and MultiResUNet models, respectively. Table 4 presents
the training and inference times for different models. The AM-UNet model exhibited a
noticeable increase in the number of network parameters compared to the UNet, PSPNet,
and MultiResUNet models. However, considering the improvement in its segmentation
capability, we deemed this increase acceptable.

Table 4. Performance evaluation on different models.

Model IoU/% F1/% Training Time/h Inference Time/ms

PSPNet 82.29 90.63 19.6 150
UNet 84.24 91.24 21.2 147

MultiResUNet 85.98 92.06 28.8 155
AM-UNet 88.74 93.95 31.2 168

Our comparative tests demonstrated that the improved AM-UNet model performed
best, in terms of all evaluation indices, and achieved significant segmentation effects in
the test set of paddy field ridges under six different classification scenarios, with good
robustness and precision, IoU, and F1 values of 93.45%, 88.74%, and 93.95%, respectively.
The model’s inference time for a single image is 168ms, indicating that it can perform
approximately 5.95 inferences per second. Given that the camera’s field of view remains
consistent, with the semantically segmented paddy field ridges measuring about 5m in
length in each image, it can accurately, and in real time, segment the ridges in the complex
paddy field environment at the normal operating speed of the agricultural machine. This
capability provides crucial technical support for developing a vision-based automated
navigation system for agricultural machinery.

4. Discussion

In this study, we analyzed the environmental characteristics of paddy field ridges and
proposed the AM-UNet model. This model incorporates an attention gate mechanism at the
front-end of the encoder–decoder skip connections within the MultiResUNet architecture.
Additionally, it integrates an atrous spatial pyramid pooling (ASPP) module following
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the downsampling stage. These enhancements are designed to refine the segmentation
accuracy of paddy field ridges and minimize the misidentification between the background
and target regions. The results showed that the model had better segmentation accuracy
and applicability along the edges of the paddy field ridges and the surrounding background
area. When compared with the improved Floodfill algorithm [34] for paddy field ridge
segmentation, our method did not require the input of preset points. Unlike traditional
image processing, which relied on manual feature design and selection and was susceptible
to interference from factors such as field lighting and road conditions which resulted in poor
generalization ability, we adopted an end-to-end deep learning framework. This framework
automatically learned image features through a multilevel network structure, thereby
eliminating the need for manual feature design and extraction inherent in traditional
methods. Our approach exhibited strong adaptability and generalization capabilities.

Although the model proposed in this study accomplishes accuracy and speed in
segmentation, it still has some limitations. (1) The incorporation of the attention gate
(AG) and atrous spatial pyramid pooling (ASPP) module, despite enhancing segmentation
accuracy, introduces a reduction in the model’s inference speed due to the computational
demands of the kernel. At present, our model achieves an inference speed of 168 ms per
single image. While this meets the real-time segmentation demand under the normal
operating speed of agricultural machines, considering the time consumption of other
algorithms in the subsequent visual navigation system, there is still room for further
improvement in the model’s inference speed. (2) The paddy field ridge dataset is deficient
in paddy field ridge images captured within well-lit environments. As a consequence, the
segmentation performance in well-lit environments remains unvalidated. In upcoming
research endeavors, we will strive to acquire additional paddy field ridge images captured
in well-illuminated natural settings. Subsequently, these images will be integrated into
the paddy field ridge dataset to validate the segmentation efficacy of the AM-UNet model
across various environmental contexts. Additionally, we intend to optimize the structure
of the enhanced network deployment by leveraging TensorRT acceleration technology to
reduce the number of model parameters. This optimization aims to enhance segmentation
efficiency and achieve real-time segmentation. Furthermore, we plan to employ the inverse
perspective mapping method on the segmented images to obtain the coordinate set of the
paddy field ridge boundary. The navigation route is formulated according to its boundary
coordinates, preparing the technology for the next step of guiding unmanned agricultural
machines in a paddy field environment.

5. Conclusions

(1) In this study, a segmentation model based on the MultiResUNet model was con-
structed to address the difficult problem of accurate segmentation of paddy field
images representing the paddy field environment in southern China. The improved
model introduces an attention gate (AG) at the end of the encoder–decoder skip
connection in the MultiResUNet model, highlights the feature response of the field
ridge region, and introduces an atrous spatial pyramid pooling (ASPP) module after
down-sampling the encoder to improve the recognition accuracy regarding the small-
scale edge details of field ridges. These improvements allow the model to realize the
accurate recognition and segmentation of field ridge images in a complex environ-
ment, providing technical support for the development of vision-based automatic
navigation systems for agricultural machines.

(2) The experimental results show that the segmentation accuracy, average intersection
over union, and average F1 value of the optimized model in the validation set were
93.45%, 88.74%, and 93.95%, respectively, better than those obtained with the UNet,
MultiResUNet, and PSPNet methods. When compared with the existing MultiRe-
sUNet model, the proposed model’s segmentation accuracy, intersection over union,
and average F1 value were improved by 2.39, 2.76, and 1.89 percentage points, re-
spectively, and the inference time for a single image was 168ms, enabling accurate
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and real-time segmentation of field ridges in a complex paddy field environment.
Therefore, the introduction of the attention mechanism and spatial pyramid pool-
ing significantly improved the segmentation effect of the model for paddy field
ridge images.
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