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Abstract: Millets are small-seeded cereals belonging to the family Poaceae. They are considered to
be climate-resilient and future nutritional food cereals for humans. Millets are resistant to biotic
and abiotic stressors compared to other major cereals and thrive in low-quality soils with little
maintenance and less rainfall. The importance of millets is still not well known to many people
due to the lack of popularity and cultivation in semi-arid tropics of Asia and Africa. The United
Nations has declared 2023 as the International Year of Millets (IYM 2023) to promote millet cultivation
and popularize their health benefits globally. A few years ago, the application of molecular biology
was in its infancy in millets due to the unavailability of genome sequences. Genome sequences
are available for most of the millets on NCBI and Phytozome databases. In this review, we discuss
the details of genome sequences for millets, candidate genes identified from the native genome of
millets. The current status of quantitative trait loci and genome-wide association studies in millets
are also discussed. The utilization of millet genome sequences in functional genomics research and
translating the information for crop improvement will help millet and non-millet cereals survive harsh
environments in the future. Such efforts will help strengthen food security and reduce malnutrition
worldwide in 2050.

Keywords: food security; genes; genome sequences; genome-wide association studies (GWASs);
millets; quantitative trait loci (QTL)

1. Introduction

Millets are a group of small-seeded cereal crops grown largely on marginal dry lands
or with limited access to irrigation. There are several millet species cultivated worldwide,
such as sorghum (Sorghum bicolor), pearl millet (Cenchrus americanus), finger millet (Eleusine
coracona), foxtail millet (Setaria italica), proso millet (Panicum miliaceum), little millet (Panicum
sumatrense), kodo millet (Paspalum scrobiculatum), barnyard millet (Echinochloa esculenta),
brown top millet (Urochloa ramosa), tef (Eragrostis tef ), fonio millet (Digitaria exilis), job’s
tear (Coix lacryma-jobi), guinea millet (Brachiaria deflexa), raishan (Digitaria cruciate), etc.
Millets are generally called gluten-free and are highly nutritious and contain higher protein,
minerals, vitamins, and fiber compared to major cereal crops, rice (Oryza sativa), wheat
(Triticum aestivum), and maize (Zea mays) [1]. Millets can grow with less water than most
other major cereals and are well suited to drought-like conditions [2]. Millets’ production
traditionally does not depend on artificial fertilizers, and most are unaffected by storage
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pests [3]. In addition, millets have natural biodiversity that makes them suitable for
cultivation in various agro-climatic conditions [4]. They have a short lifecycle and can be
grown between main cropping seasons and enrich the soil with their micronutrients [5].
The affordability of millets also makes it the “poor man’s food grain” [6]. The world
is now looking at millets for their enormous potential. In addition to the cultivation
advantages of millets, they are highly nutritious and climate-resilient. Because of this,
mainstream society is beginning to understand and appreciate the long-term benefits of
millets. Millets are a nutritional powerhouse, and they are now referred to as “Nutri-
Cereals” [7]. They are rich in protein, fiber, key vitamins, and mineral sources. About
80% of millets have long been an important part of a nourishing diet [8]. Millets are high
in fiber, which aids digestion and prevents constipation [9]. They are also gluten-free
and suitable for celiac patients [10]. They contain antioxidants, which help to protect
our cells from free radicals [11]. Calcium is necessary for bone health, blood vessel and
muscular contractions, and proper nerve function. Finger millet contains more calcium
(162–487 mg/100 g) than milk (124 mg/100 mL) and other cereals (10 mg/100 g of rice,
21.40/100 g of maize, 33 mg/100 g of wheat and 21.40 mg/100 g of sorghum), which
supports boosting the calcium level in the human body [12]. The highest iron content
(>11 mg/100 g) is found in pearl millet and has the potential to treat anemia [13]. It is
also high in zinc (>3 mg/100 g) and folic acid, making it ideal for pregnant women [14].
Pearl millet contains twice (9–21 g/100 g) as much protein as milk (3.4 g/100 mL) [15].
Kodo millet has three times the fiber (10.2 g/100 mg) of wheat (2.5 gm/100 mg) and maize
(2.0 g/100 g) and ten times the fiber of rice (1 gm/100 g) [1]. Hence, millets are considered
the world’s next superfood. Millets have the potential to help achieve many sustainable
development goals (SDGs) (Figure 1) [3].
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Figure 1. Role of millets in achieving the United Nations Sustainable Development Goals.

Understanding the need to promote millets’ diversity, nutritional, and ecological
benefits, the United Nations has declared the year 2023 as the International Year of Millets
(IYM 2023), following a proposal by the Government of India. The main intention of
the IYM 2023 is to increase millet production and consumption with four strategies to
improve millets’ cultivation: (1) promoting sustainable production, (2) enhanced nutrition,
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(3) wider acceptance, and (4) increased consumption. However, millets’ research is still
in its infancy with limited genomic resources. Some research laboratories have released
draft/annotated genome sequences for some millets. In this review, we have discussed the
availability of genome sequences for major (sorghum and pearl millet) and seven minor
millets (finger millet, barnyard millet, foxtail millet, proso millet, teff, fonio, and job’s
tear) and the way forward to utilize millets’ genome sequences and genomics resources
for crop improvement. We have discussed genome-wide association studies (GWASs) in
millets and summarized the identified candidate genes and the current status of millets’
molecular breeding. Finally, the role of millet genome sequences to achieve food availability
in 2050 is discussed. This review will raise awareness for millet researchers to utilize millets’
genomes for their future experiments through various molecular tools. Identifying and
characterizing more candidate genes from millets will help improve millet and non-millet
cereals for biotic/abiotic stresses and nutritional traits.

2. Nutritional Profile and Health Benefits of Millets

Millets are nutritionally excellent because their grains are rich in proteins, minerals,
flavonoids, polyphenols, and vitamins; therefore, they may offer multiple health benefits.
About 80% of millet grains have long been an important part of the nutritious diet. Many
research/review articles have already discussed the nutritional importance and health
benefits of millets [16–18]. Millets are now considered “God’s own cereal” due to their
rich nutritional profile. Consuming millets in our daily diet raises the levels of proteins
(especially adiponectin) that help protect against cardiovascular diseases [19]. Millets also
contain a higher amount of vitamin B3/niacin, which helps lower certain risk factors of
heart diseases such as high cholesterol and triglycerides and is effective in lowering oxida-
tive stress [20]. Millet grains contain the lowest carbohydrate content compared to other
cereals (especially rice) and so are highly recommended for people with type 2 diabetes [21].
Oxidative stress can cause various chronic diseases (neurodegenerative disorders, arthritis,
and diabetes) [22]. A high-fat diet is also a risk factor for the development of dementia
because it increases oxidative stress in the brain [23]. Millets are a good source of antioxi-
dants, which can help support the body’s ability to fight oxidative stress, a factor in illness
and aging [24]. Hence, consuming millets could decrease the risk of chronic diseases [24].
Millets are rich in phytochemicals (polyphenols, lignans, phytosterols, phyto-oestrogens,
phytocyanins) that help protect people from age-related degenerative diseases like diabetes,
cancer, etc. [25]. Each millet has some unique nutritional properties that help improve
human health. For example, a sufficient amount of calcium is essential for bone health,
blood vessel and muscular contractions, and to ensure proper nerve function [12]. Finger
millet has a higher calcium content than all other millets, cereals, and milk [17] and hence
is one of the best grain sources to improve/maintain proper calcium levels in humans [26].
Proso millet contains high lecithin which supports the neural health system [27]. Kodo
millet contains a high amount of potassium (>120 mg/100 g), which helps reduce abdom-
inal cramps during the menstrual cycle [28,29]. Including pearl millet in our daily diet
is an effective way to prevent iron deficiency anemia as its grains are rich in iron [13].
Overall, the consumption of millets reduces the risk of heart disease, protects from diabetes,
improves the digestive system, lowers the risk of cancer, detoxifies the body, increases
immunity in respiratory health, increases energy levels and improves muscular and neural
systems, and is protective against several degenerative diseases.

3. Germplasm Resources of Millets

Germplasm resources are an essential strategic resource for continued progress in crop
improvement for global food security and nutrition. Many millet researchers have already
discussed the genetic resource of millets in various review articles [30,31]. The recent report
on a global millets’ conservation strategy indicates that more than 479,000 germplasms of
sorghum and millets are conserved globally [32]. Millet germplasms are majorly conserved
in Asian and African countries such as India, China, Japan, Kenya, Ethiopia, Uganda, and
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Zambia. It is noteworthy that developed countries such as the US, Canada, France, Russia,
and Italy also conserve millet germplasms [31]. The International Crops Research Institute
for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India, conserves the largest
collection of millets (about 80,000 accessions of eight millets) which includes sorghum
(42,869 accessions), pearl millet (25,537 accessions), finger millet (7513 accessions), foxtail
millet (1542 accessions), barnyard millet (749 accessions), kodo millet (665 accessions), little
millet (473 accessions), and proso millet (849 accessions) (https://genebank.icrisat.org/
accessed on 6 March 2024). The ICARI-National Bureau of Plant Genetic Resources Institute
(ICAR-NBPGRI), New Delhi, India, conserves over 58,000 accessions of millet including
sorghum (25,669), pearl millet (8699), finger millet (11,667), foxtail millet (4685), proso
millet (1055), barnyard millet (2010), kodo millet (2404), little millet (2226), and brown top
millet (44). (http://genebank.nbpgr.ernet.in/SeedBank/Default.aspx; accessed on 6 March
2024). The United States Department of Agriculture (USDA-ARS) gene bank conserved
five millets’ germplasms (such as 1452 finger millet, 1314 pearl millet, 300 kodo millet,
212 little millet, and 719 proso millet) (https://www.ars.usda.gov/southeast-area/griffin-
ga/pgrcu/; accessed on 6 March 2024). Over the past 15 years, the conservation of millets’
germplasm resources has become an important part of national and international research
programs. However, the number of germplasms available for small millets particularly
little millet, kodo millet, barnyard millet, brown top millet, and other minor millets is very
low [31], because researchers have not yet prioritized those millets and most traditional
genotypes have already disappeared due to the dominance of other cash crops. Hence, the
collection and conservation of existing small millets are crucial before we lose them forever,
which may help to support millets’ improvement globally.

4. Evolution of Millets

Millets are believed to be the oldest ancient domesticated crop. There is evidence that
millets were cultivated in Asia and Africa over 5000 to 10,000 years ago [33]. Archaeob-
otanical evidence has proved that foxtail millet and proso millet were first domesticated
in China ~10,500 calendar years before the present (cal. BP) [34]. Pearl millet has its ori-
gin in Africa, and the earliest evidence of its cultivation is reported from northeast Mali
(4500 cal. BP) [35,36]. Kodo millet originated in India, and its domestication took place
about 3000 years ago [28,37]. Little millet was domesticated in several sites across India
around 6400 cal. BP [38]. Hence, millets are not new to the world; they have always been
a part of our staple foods since ancient times. Due to the ability of millets to grow on
marginal lands with low external inputs such as water, fertilizer, pesticides, etc., farmers
are trying to revive its cultivation and bring it back to the market.

5. Ploidy Level of Millets

The genome size, ploidy level, and chromosome number are of great importance for
studying the evolution of millets and the development of the breeding program [39]. In
addition, the knowledge of a plant’s genome size and ploidy status can provide clues about
the mechanisms responsible for decreases or increases in the genomic content along the
evolutionary pathway [39]. The genome size and ploidy levels varied extensively among
the millets. The ploidy level and chromosome number of each millet are provided in
Table 1. Among the millets, pearl millet, kodo millet, and finger millet have the largest
genome sizes. The genome size for little millet has not yet been estimated. Foxtail millet is
a member of the subfamily Panicoideae and the tribe Paniceae, with chromosome numbers
of 2n = 2x = 18 [40,41]. It is recognized as a diploid but is closely related to many tetraploid
and higher ploidy level species. Finger millet is an allotetraploid (2n = 4x = 36) that belongs
to the Chloridoideae subfamily [42–44]. Barnyard millet is a hexaploid (2n = 6x = 54), and
it belongs to the subfamily Panicoideae [45]. Three millets such as proso millet, kodo millet,
and little millet are tetraploid, and their chromosome range is 36–40 [46,47] (Table 1).

https://genebank.icrisat.org/
http://genebank.nbpgr.ernet.in/SeedBank/Default.aspx
https://www.ars.usda.gov/southeast-area/griffin-ga/pgrcu/
https://www.ars.usda.gov/southeast-area/griffin-ga/pgrcu/
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Table 1. Details on ploidy level and genome size of millets based on available reports.

Name of the Millets Scientific Name Chromosome
Number Genome Size (Mb) Ploidy Level Reference

Sorghum Sorghum bicolor 2x = 2x = 20 730 Diploid [48]
Pearl millet Cenchrus americanus 2n = 2x =14 ~1700 Diploid [49]

Finger millet Eleusine coracana 2n = 4x = 36 1593 Allotetraploid [42–44]
Foxtail millet Setaria italica 2n = 2x = 18 ~515 Diploid [40,41]
Proso millet Panicum miliaceum 2n = 4x = 36 ~900 Tetraploid [46]

Kodo millet Paspalum
scrobiculatum 2n = 4x = 40 ~1900 Tetraploid [47]

Little millet Panicum sumatrense 2n = 4x = 36 Unknown Tetraploid [47,50]
Japanese Barnyard millet Echinochloa crus-galli 2n = 6x = 54 ~1270 Hexaploid [45]

Teff Eragrostis tef 2n = 4x = 40 672 Tetraploid [51]
Fonio Digitaria exilis 2n = 4x = 36 716 Tetraploid [52]

Job’s tears Coix lacryma-jobi 2n = 20 1280 Diploid [53,54]

6. Genome Sequences of Millets

The field of millet genomics has grown rapidly in the past 10 years. Millet researchers
have developed genome sequences for major and minor millets except two minor millets
(little millet and kodo millet). Notably, five millet genome sequences were assembled at the
chromosome level (Figure 2). In addition, the quality of sorghum, foxtail millet, and finger
millet genome assemblies is much improved now compared to what it was a few years ago
(https://phytozome-next.jgi.doe.gov/; accessed on 8 March 2024). The genomic resources
of millets will enable millet researchers to identify candidate genes related to biotic/abiotic
stresses and nutritional and other agronomically important traits and develop various
DNA markers to conduct genetic mapping studies, which will increase millet production
in the near future. In this section, we have listed out the availability of draft and annotated
genomes of major and minor millets.

6.1. Major Millets
6.1.1. Sorghum

The first sorghum genome was released in 2009 at the chromosome level using the
BTx623 genotype [48]. The assembled genome size was ~730 Mb with 229 scaffolds and
10 chromosomes. From the genome, they have identified more than 70,000 simple sequence
repeat (SSR) markers and >34,000 annotated genes. Likewise, around 35,490 genes were
identified from the genome sequence of the Rio genotype (Table 2). A total of 21 genome
assemblies are currently available at NCBI, and many high-quality improved annotated
genome sequences are available at the Phytozome database. The current version 5.1 is
available in the Phytozome database (https://phytozome-next.jgi.doe.gov/info/Sbicolor_
v5_1; accessed on 8 March 2024). After releasing the genome sequences of sorghum, several
studies related to GWASs, transcriptomes, functional genomics, and molecular breeding
have been extensively conducted. Sorghum has entered an exciting and fruitful era due to
the abundant availability of genetic, genomic, and breeding resources for millet researchers.
Hence, the genomic resources of sorghum can serve as a reference genome for all other
millet species.

https://phytozome-next.jgi.doe.gov/
https://phytozome-next.jgi.doe.gov/info/Sbicolor_v5_1
https://phytozome-next.jgi.doe.gov/info/Sbicolor_v5_1
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Table 2. Summary of available millet genome assemblies.

Name of the Millet Genotype Name Sequenced Genome
Size Number of Scaffolds Scaffold N50

(Mb)
Number of Genes

Identified Bio-Sample ID Gen-Bank Assembly
Accession

Sorghum

BTx623 ~730 Mb * 867 68.7 34,118 SAMN02953738 GCA_000003195
Hongyingzi 724.4 Mb * 10 70.9 - SAMN38071627 GCA_033546955

Huandiaonuo 726.9 Mb * 10 70.7 - SAMN38071628 GCA_033546955
Rio 729.4 Mb * 3830 0.39 35,490 SAMN05444726 GCA_015952705

TX2783 721.4 Mb # 13 66.1 - SAMEA6819231 GCA_903166285
TX436 722.1 Mb # 13 68.1 - SAMEA6819238 GCA_903166325
Leoti 687.3 Mb # 10 68 - SAMEA111279259 GCA_947241725
Rio 817.2 Mb # 622 76.7 - SAMEA111279266 GCA_947241735

Tx430 666.2 Mb # 308 32.2 - SAMN09228096 GCA_003482435
Chinese Amber 789.4 Mb # 588 78.7 - SAMEA111279257 GCA_947241645

655,972 792.7 Mb # 835 73.8 - SAMEA111279265 GCA_947241635
506,069 795.5 Mb # 957 75.3 - SAMEA111279263 GCA_947241665
297,155 767.9 Mb # 826 74.9 - SAMEA111279261 GCA_947241675
229,841 757.5 Mb # 923 72.6 - SAMEA111279260 GCA_947241625
329,311 789.8 Mb # 1761 74.8 - SAMEA111279262 GCA_947241655
Grassl 717.4 Mb # 648 70.2 - SAMEA111279258 GCA_947241715
BTx623 374.3 Mb # 2657 0.2 - SAMN12341013 GCA_008000285
510757 768.2 Mb # 1800 74.3 - SAMEA111279264 GCA_947241685

Pearl millet

Tift 23D2B1-P1-P5 1.8 Gb * 52,033 240.6 40,658 SAMN04124419 GCA_002174835
Tift 23D2B1-P1-P5 1.8 Gb * 7 259.2 - SAMEA112192700 GCA_947561735

PI537069 1.9 Gb * 98 266.8 - SAMN20372178 GCA_020739565
PI526529 2 Gb * 839 287 - SAMN20372180 GCA_020739535
Tifleaf 3 2 Gb * 69 279.2 - SAMN20372183 GCA_020739585
PI343841 2 Gb * 912 263.7 - SAMN28616536 GCA_027745475
PI521612 1.9 Gb * 331 278.5 - SAMN20372179 GCA_020739525
PI587025 1.9 Gb * 4064 257.5 - SAMN20372182 GCA_021560375.1
PI186338 2 Gb * 139 284.6 - SAMN28616529 GCA_027789755
PI583800 1.9 Gb * 138 261.4 - SAMN20372181 GCA_020739575

Foxtail millet
Yugu1 405.7 Mb * 327 47.3 >34,584 SAMN02981383 GCA_000263155

Zhang gu ~423 Mb * 2689 1.0 >38,801 SAMN04534922 GCA_001652605

Finger millet
KNE 796-S 1.12 Gb * 1058 12.1 73,012 SAMN35346668 GCA_032690845

PR202 1.5 Gb # 1196 23.9 62,348 SAMD00076255 GCA_021604985
ML365 1.19 Gb # 525,759 23.7 85,243 SAMN04849255 GCA_002180455
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Table 2. Cont.

Name of the Millet Genotype Name Sequenced Genome
Size Number of Scaffolds Scaffold N50

(Mb)
Number of Genes

Identified Bio-Sample ID Gen-Bank Assembly
Accession

Proso
millet

Pm_0390 923 Mb * 1305 46.7 61,631 SAMN08389585 GCA_003046395
jinshu7 862 Mb * - SAMN30451036 GCA_026771285
BC332 856.2 Mb * 580 48.5 - SAMN13925972 GCA_032594955
BC475 870.7 Mb * 843 48.1 - SAMN13926115 GCA_032595135

Longmi4 846 Mb * 441 48.2 - SAMN08335224 GCA_002895445
BC477 877.2 Mb * 1031 48.2 - SAMN13926117 GCA_032595115
BC494 863.2 Mb * 722 48.1 - SAMN13926134 GCA_032595125
BC404 870.4 Mb * 813 48.1 - SAMN13926044 GCA_032595235
BC498 869.9 Mb * 753 48.2 - SAMN13926138 GCA_032595105
BC328 867.1 Mb * 799 48.2 - SAMN13925968 GCA_032595055
BC27 907.3 Mb * 1520 45 - SAMN13925667 GCA_032594635
BC426 882.1 Mb * 1166 48.3 - SAMN13926066 GCA_032595225
BC398 896.4 Mb * 1451 48.1 - SAMN13926038 GCA_032595255
BC382 861 Mb * 799 48.4 - SAMN13926022 GCA_032594965
BC418 867.8 Mb * 874 48.2 - SAMN13926058 GCA_032595215
BC407 874.9 Mb * 1052 48.2 - SAMN13926047 GCA_032595245
BC434 872.2 Mb * 994 48.5 - SAMN13926074 GCA_032595155
BC362 870 Mb * 1068 48 - SAMN13926002 GCA_032594995
BC311 890.6 Mb * 1408 48.1 - SAMN13925951 GCA_032594875
BC264 892.1 Mb * 1166 48.4 - SAMN13925904 GCA_032594675
BC350 867.7 Mb * 945 48.1 - SAMN13925990 GCA_032594985
BC360 860.2 Mb * 594 48.2 - SAMN13926000 GCA_032594975
BC292 891 Mb * 1075 48.3 - SAMN13925932 GCA_032594685
BC315 891.8 Mb * 1343 48.4 - SAMN13925955 GCA_032594835
BC310 872.1 Mb * 970 48.1 - SAMN13925950 GCA_032594855
BC136 867.8 Mb * 889 48.1 - SAMN13925776 GCA_032594655
BC235 871.9 Mb * 934 48.2 - SAMN13925875 GCA_032594705
BC217 872.5 Mb * 1137 49.3 - SAMN13925857 GCA_032594775
BC170 875.8 Mb * 929 48.1 - SAMN13925810 GCA_032594555
BC48 878.1 Mb * 1260 48.2 - SAMN13925688 GCA_032594585
BC188 861.7 Mb * 752 47.9 - SAMN13925828 GCA_032594795
BC204 871 Mb * 935 49.2 - SAMN13925844 GCA_032594715
BC244 890.4 Mb * 1443 47.8 - SAMN13925884 GCA_032594695
BC100 864.3 Mb * 883 47.8 - SAMN13925740 GCA_032594575
BC40 860.4 Mb * 846 48.6 - SAMN13925680 GCA_032594595

Barnyard Grass STB08 1.27 Gb # 19,699 1.8 108,771 SAMN03246123 GCA_025118225
- 1.5 Gb # 4534 1.8 - SAMEA104207156 GCA_900205405

* Assembly at chromosome level; # assembly at scaffold level.
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6.1.2. Pearl Millet

Pearl millet is a cross-pollinated crop with a genome size of ~1.7 Gb. Its genome was
partially assembled and published in 2017 using the inbred Tift 23D2B1-P1-P5 genotype of
pearl millet [49]. They used whole-genome shotgun and bacterial artificial chromosome
(BAC) sequencing techniques to assemble the genome for the Tift 23D2B1-P1-P5 genotype.
After stringent filtering and correction steps, 1.49 Tb of sequence data was assembled into
1.58 Gb of contigs and 1.82 Gb of scaffolds. Finally, they generated a genome sequence
around 1.76 Gb for the Tift 23D2B1-P1-P5 genotype, indicating that ~90% of the pearl
millet genome was assembled. A total of 1.22 Gb repeat elements was predicted from
the Tift 23D2B1-P1-P5 genome assembly which indicates that 77.2% of the assembled
genome is repetitive. From the genome, a total of 27,893 genes were annotated, and
10,686 genes were unannotated. They also identified transfer RNA (tRNA) (909), ribosomal
RNA (rRNA) (235), messenger RNA (mRNA) (183), and small nuclear RNA (snRNA) (752)
genes from the genome. Apart from this, 88,256 SSRs were also identified in the pearl millet
genome using a microsatellite program, which can be used for future genetics and breeding
applications. Based on their resequencing data, they also predicted 29,542,173 single-
nucleotide polymorphisms (SNPs) by PMiGAP lines. Among these, 450,000 high-quality
SNPs were identified based on principal component analysis which would be helpful for
advancing molecular breeding studies on pearl millet. Apart from this genome assembly, a
total of nine partial genome assemblies were developed by Sichuan Agricultural University
using various cultivars (Table 2). They also generated a partial genome assembly for pearl
millet at the chromosome level, and the generated genome size is between 1.9 and 2.0 Gb.
There is no doubt the available draft genome of pearl millet will provide a resource for
the millet research community to understand trait variation and accelerate the genetic
improvement of pearl millet.

6.2. Minor Millets
6.2.1. Foxtail Millet

Among the minor millets, the genome sequence was first released for foxtail millet. It
is a diploid cereal with a comparatively smaller genome (~515 Mb) than other minor millets.
Two institutes (US Department of Energy Joint Genome Institute, Berkeley, CA, USA and
Beijing Genomics Institute, Beijing, China) have released completely annotated genome
sequences for two different foxtail millet cultivars [40,41]. Zhang et al. (2012) developed
a draft genome (~423 Mb) for the Zhang gu genotype of foxtail millet [41]. The scaffold
N50 was 1.0 Mb, and 90% of the scaffolds were 380 Mb. They predicted 542,322 SNPs
from the annotated genome of foxtail millet. The Zhang gu genome comprised >46% of
transposable elements (both retroelements and DNA transposons), indicating that the
genome contains many repetitive genes. They identified 38,801 genes by integrated an-
notation pipeline methods, and the average length of annotated genes was 2522 bp. In
addition, they also identified 1367 pseudogenes in the genome. Several noncoding RNA
genes were also detected from the Zhang gu genome assembly. The second high-quality
reference genome sequence for foxtail millet was generated for the Yugu1 cultivar [40]. The
Yugu1 assembly contains 405.7 Mb of the sequence in nine chromosomes and an additional
4.2 Mb in 327 scaffolds that are unanchored by the genetic map, with an estimated genome
coverage of ~80%. Like the Zhang gu genome, the Yugu1 genome also composed of 40% of
transposable elements. The Yugu1 genome contained 24,000 to 29,000 protein-encoding
genes. Genome sequences for both cultivars are available in the NCBI database (Table 2).
Apart from this, a completely annotated genome sequence of foxtail millet (version 2.2)
is also currently available at the Phytozome database. The version 2.2 assemblies were
constructed by Program to Assemble Spliced Alignments (PASA) from ~1.28 million foxtail
millet expressed sequence tag (EST) reads sequenced at the Joint Genome Institute (JGI)
against the 8.3X. Each locus of the current version of the foxtail millet genome was deter-
mined by BLASTX alignments of proteins from sorghum, rice, Arabidopsis thaliana, and
grapevine (Vitis vinifera) genomes. Homology-based predictors FGENESH+ and GenomeS-
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can were used to predict models of each gene. Therefore, foxtail millet could serve as an
ideal surrogate genome for the future research and development of switchgrass and related
biofuel crops.

6.2.2. Finger Millet

Two draft assemblies and one completely annotated genome assembly are currently
available for finger millet. In 2017, the first draft genome assembly was released for an
Indian cultivar (ML-365) using Illumina and sequencing by oligonucleotide ligation and
detection (SOLiD) sequencing technologies [42]. Around 45 Gb of paired-end and 21 Gb of
mate-pair data by Illumina and SOLiD sequencing technologies were generated and further
used to assemble the ML-365 genome, followed by gap closure which gave a consensus
genome size of 1196 Mb, representing 82.31% of the estimated finger millet genome. About
85,243 genes (78,647 non-transposable elements related and 6596 transposable elements
related genes) were predicted based on the de novo method of gene prediction using
Augustus. Of the 85,243 genes, 52,541 genes contained the Pfam domain, and these
genes were distributed in 3254 gene families. Also, most of the identified genes were
involved in ATP binding activities and zinc ion and nucleic acid binding. Furthermore,
2866 drought-responsive genes, 1766 disease-resistance genes, 330 calcium transport and
accumulation-related genes, and 146 C4 photosynthetic pathways were captured in the
genome. Apart from this, a total of 114,083 SSRs were detected from which di- (66,805),
tri- (40,578), tetra- (2179), penta- (3010), and hexa- (1511) repeats were identified. The
identified SSR markers from this genome assembly can be further used in diverse studies,
linkage map construction, association mapping, the quantitative trait loci (QTL) mapping
of agronomically important traits, and marker-assisted breeding programs. This is the first
breakthrough report on the finger millet genome. In the next year, Hatakeyama et al. (2018)
generated draft genome sequences for another Indian cultivar (PR-202) using Illumina
MiSeq [43]. They estimated a genome around 1.5 Gb by the flow cytometry method. The
total number of scaffolds was 1897 with an N50 length > 2.6 Mb. The N50 of PR-202 was
higher than ML-365 which may allow for an RNAseq analysis of each homeolog separately
and resequencing analyses. Overall, 62,348 genes were predicted from the PR-202 genome
assembly. Among these, 57,066 genes were annotated and submitted to NCBI. In addition,
a total of 1440 universal single-copy genes were identified. Of these, 606 genes were found
to be single-copy genes, and 783 genes were duplicate genes.

The complete annotated genome sequence (version 1.0 assembly) was recently gen-
erated by Prof. Devos’ group of University of Georgia, USA for the Kenyan finger millet
cultivar (KNE 796) using mapping, error correction, and a de novo assembly tool (MECAT)
assembler [44]. The assembled size of the KNE 796 genome is 1129.7 Mb. Overall, the
assembled KNE 796 genome comprised 1058 scaffolds, with a contig N50 of 12.1 Mb, and
the average length of scaffolds was 2275 bp. The assembled genome contained 18 chromo-
somes and 1.11 billion bases (Gb). About 48,836 high-confidence and 24,176 low-confidence
genes were distributed across the annotated finger millet genome. The annotated genome
is a great opening to identify and validate the genes and understand the genetic basis of
finger millet. The annotated genome will help mine and characterize calcium and other
nutrients’ transporter and regulatory genes for further research (for example, identifying
genes involved in grain nutrient filling). The development of finger millet against blast and
other diseases by conventional breeding methods is hampered by limited genetic variability.
Hence, generating blast disease-resistant finger millet using antifungal protein-encoding
genes would be useful. The annotated genome sequence of finger millet could pave the
way to identify genes associated with blast and other diseases. Undoubtedly, the annotated
genome sequence of finger millet will be a great resource to accelerate food security and
nutrient fortification in less developed countries of Asia and Africa.
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6.2.3. Proso Millet

The normal genome size of proso millet is ~900 Mb. It is an allotetraploid cereal with
a chromosome number of 2n = 4x = 36. A total of 35 draft genome assemblies for proso
millet have been developed and submitted to NCBI (Table 2). Of these, 34 partial genome
assemblies were developed by the Chinese Academy of Sciences, and the single genome
assembly was developed by Shanghai Center for Plant Stress Biology. Interestingly, all the
partial genome sequences were assembled at the chromosome level (Table 2). Unfortunately,
no candidate genes and markers were predicted for 34 genome assemblies developed by
the Chinese Academy of Sciences. However, the partial genome assembly developed by
Shanghai Center for Plant Stress Biology predicted many candidate genes and markers from
their genome [46]. The assembled partial genome of the Pm_0390 genotype was 923 Mb.
They predicted 221,787 SNPs and 112,158 SSR markers from the Pm_0390 genotype’s partial
genome. All the identified markers were composed of di- and tri-nucleotide motifs with an
average length of ~22 bp. This resource can serve for developing SSR- and SNP-based ge-
netic markers for proso millet. They also predicted 55,930 protein-coding genes, 339 micro
RNAs (miRNAs), 1420 tRNAs, 1640 rRNAs, and 2302 snRNAs from the genome. Com-
pared to the other millets, proso millet has a higher number of partial genome assemblies.
All currently available partial genome sequences are valuable resources for small millet
breeders and will provide a foundation for studying the exceptional stress tolerance.

6.2.4. Barnyard Millet

A species-specific genome sequence for barnyard millet has yet to be developed; how-
ever, the partial genome has been developed for barnyard grass related to barnyard millet.
The draft genome for barnyard grass was developed by Zhejiang University, China [45].
They developed two partial genome sequences for barnyard grass at the scaffold level.
Around 108,771 protein-coding genes were predicted from the partial genome. In addition
to protein-coding genes, 785 miRNAs, 2306 tRNAs, 1890 rRNAs, and 3378 snRNAs were
identified in the barnyard grass genome. They predicted several gene families associated
with detoxification such as cytochrome P450 monooxygenase genes (917), glutathione
S-transferase genes (277), and many differentially expressed genes (4945) from the draft
genome of barnyard grass. Apart from this, 4945 differentially expressed genes (2534 up-
regulated and 2411 down-regulated) were identified. Two partial genome assemblies are
currently available for barnyard grass at NCBI (Table 2). This genome sequence provides
new insights into the adaptive molecular mechanisms for barnyard millet survival.

6.2.5. Other Minor Millets

Genome sequences are now available for some other minor millets. For exam-
ple, the draft genome sequence for tef was released in 2014 by the University of Bern,
Switzerland [51]. The draft genome of tef is currently available at the NCBI (Accession:
GCA_000970635.1) and Ensembl Plants (https://plants.ensembl.org/Eragrostis_tef/Info/
Index; accessed on 8 March 2024) databases. The estimated draft genome of tef is about
672 Mb, which clearly indicates that the tef genome is almost 87% sequenced. A total of
49,600 SSR markers and 38,000 transcripts were found in the draft genome of tef. The draft
genome sequence of tef is more reliable for developing molecular markers and identifying
candidate genes related to abiotic stress tolerance. In addition, the tef draft genome will
pave the way for conducting GWASs and GBS for tef improvement.

The genomic resources for fonio millet were released in 2020 at the chromosome level
using the CM05836 cultivar [52]. From the fonio genome, they predicted 59,844 protein-coding
genes with an average length of 2.5 kb. In addition, they also identified 11,046,501 high-quality
SNPs, and they were all evenly distributed across the 18 chromosomes. In the same study,
two genes, such as grain size 5 (GS5) and shattering 1 (Sh1), were identified to play an
important role in regulating the grain size of fonio and conserving the seed shattering of
fonio, respectively. The draft genome of job’s tear was developed for the Korean cultivar
(Johyun) by de novo assembly [53,54]. Around 3362 scaffolds were generated, with a total

https://plants.ensembl.org/Eragrostis_tef/Info/Index
https://plants.ensembl.org/Eragrostis_tef/Info/Index
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length of 1.28 Gb [53]. A total of 3988 differentially expressed genes (1470 up-regulated and
2518 down-regulated) related to seeds and other tissues were identified in the draft genome
of job’s tear. In addition, a total of 317 transcription factors (including basic region/leucine
zipper moti (bZIP), MYB, NAC, basic helix–loop–helix (bHLH), and ethylene response
factor (ERF)) were identified as related to seed development. All identified genes and
transcription factors will support the development of high-quality seeds of job’s tear and
other millets through molecular breeding and other biotechnological approaches. Apart
from this, 76 genes (including 57 cupin superfamily genes, 18 coixin genes, and one glutelin
gene) associated with seed storage proteins and 13 genes involved in the biosynthesis of
benzoxazinoids were also identified from the job’s draft genome. The chloroplast genome
sequence is now available for little millet [50]. The developed chloroplast genome se-
quence length was 139,384 bp, and the genome contained 91 protein-coding genes, 4 rRNA
genes, and 30 tRNA genes. This chloroplast genome of little millet may provide valuable
information for this cereal, which will help to initiate further molecular experiments for
improving this crop. The sequencing of millet genomes made it possible to assess intraspe-
cific polymorphism, identify key genes influencing the formation of significant features,
and develop molecular markers of economically valuable traits, and this has become the
basis for the genomics-assisted breeding for crop improvement. An adequate review of
the molecular breeding and functional genomics of sorghum has already been published.
Hence, hereafter, this review only focusses on discussing molecular breeding and functional
genomics for pearl millet and other minor millets only.

7. Pan-Genomic and Telomere-to-Telomere Genome Resources of Major and Minor
Millets

The available genomic resources for millets have been developed from a single germplasm
line/genotype of millets, which provides genetic information on a single genotype. Pan-genome
studies will enable the simultaneous generation of genome resources for different cultivars,
landraces, and wild species [55]. This will allow researchers to search for novel genes and alleles
that may have been inadvertently lost in domesticated crops during the historical process of
crop breeding or extensive plant breeding. Pan-genomic resources are currently available for
two major (sorghum and pearl millet) and two minor (foxtail millet and proso millet) millets. A
pan-genome analysis of 13 genetically diverse genotypes of sorghum revealed extensive hidden
genomic variations between cultivated and wild species [56]. For example, a pan-genome was
generated for 13 genotypes of sorghum to explore the genetic variations between the cultivated
and wild species. The developed pan-genome consists of core genes (58.8%), shell genes (37.9%),
private genes (3.3%), and cloud genes (0.4%). Among these, core genes are found to be involved
in RNA processing, reproductive system development, leaf development, seed development,
cell differentiation, and chloroplast organization in sorghum [56]. They also identified 19,359 and
147,899 presence and absence variants, respectively, associated with sorghum domestications
and grain color variation. In another study, the pan-genome of 176 genotypes of sorghum identi-
fied 18,898 variable genes associated with various stresses, 1788 drought-responsive genes, and
2.0 million SNPs [57]. Similarly, a pan-genome assembly of eleven pearl millet genotypes identi-
fied structural variations in endoplasmic reticulum-related genes associated with heat stress [58].
A total of 39,143 gene families, including 46.60–52.08% of core genes, 39.75–49.94% of dispens-
able genes, and 0.73–8.73% of private genes, were obtained from the developed pan-genome of
pearl millet. Additionally, 744,364 structural variations associated with heat-related genes were
identified, including 306,679 presence variations, 315,905 absence variations, 2177 inversions,
91,852 copy number variations, and 27,751 translocations [58]. In minor millets, a pan-genome
sequence has been generated for foxtail millet using 110 genotypes (35 wild, 40 landraces, and
35 modern cultivated) [59]. The developed pan-genome of foxtail millet contains 73,528 gene
families, of which 23.8%, 42.9%, 29.4%, and 3.9% are core, softcore, dispensable, and individual
genes, respectively. In addition, 14,283 gene families involved in RNA capping, light response,
and specific metabolic processes were identified from the pan-genome of foxtail millet [59]. It is
interesting to note that these gene families are not already present in the available Yugu1 refer-
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ence genome. In the same study, approximately 202,884 non-redundant structural variations
(107,151 insertions, 76,915 deletions, 18,455 translocations, and 363 inversions) and 158,906 pres-
ence and absence variations associated with foxtail millet domestication and improvement were
detected in the pan-genome of foxtail millet. Thirty-two proso millet high-quality pan-genomes
contained 27,727 core, 8288 softcore, 24,494 dispensable, and 5533 private gene families [60].
From the developed pan-genome assemblies, 207,033 structural variations and 50,515 presence
or absence variants (26,195 deletions and 24,320 insertions) related to 43 domestications and 31
agronomic traits of proso millet were identified. The developed millet pan-genome represents
an important resource for millet improvement and gene discovery. Novel genes identified
in the pan-genomes of millets can be reintroduced into high-yielding millets by implement-
ing traditional plant breeding, genetic selection, and transgenic approaches. Apart from the
pan-genome, the telomere-to-telomere genome has been developed for HYZ-T2T genotypes
of sorghum to identify structural genes, transcription factors, and transporters involved in the
biosynthetic pathways of tannins in sorghum [61]. These millet pan-genomic resources will be
useful for achieving the SDGs in developing countries by accelerating the genetic gain in arid
and semi-arid ecologies.

8. QTL Associated with Various Traits in Major and Minor Millets

In general, molecular markers help to identify QTL associated with several traits in plants.
In millets, several QTL related to various agro-morphological, biochemical, and yield-related
traits were identified. Several SSR, SNP, and Diversity Arrays Technology (DArT) markers were
widely used to identify QTL in millets. Blast diseases cause severe yield constraints of millets in
many millet-producing regions. Three QTL associated with leaf blast disease were identified in
305 recombinant inbred lines (RILs) of foxtail millet using more than 30K SSR markers [62]. Rust
disease caused by the fungus (Puccinia substriata) is one of the most important yield constraints
of pearl millet worldwide, leading to grain yield losses of up to 76% and major losses in fodder
yield and quality [63]. A total of 256 DArT and 70 SSR markers were used for the identification of
a novel QTL for pearl millet rust disease using 168 RILs [63]. Like rust disease, downy mildew
caused by Sclerospora graminicola is the most destructive disease of pearl millet [64]. A total of five
QTL associated with resistance to pearl millet downy mildew disease were identified in 187 RILs
using 88 SSR markers [65]. The identification of disease resistance QTL will be useful in cultivar
development and the study of the genetic control of disease resistance in millets. Compared to the
other millets, the contents of iron and zinc are higher in pearl millet. More than 18 QTL associated
with pearl millet grain iron and zinc content were identified using SSR and DArT markers [66,67].
After further validation of these QTL, they can be used for the development of high grain iron
and zinc pearl millet through marker-assisted breeding programs. Soil nutrient deficiency is one
of the abiotic constraints on millet production and yield. Compared to other major cereals, QTL
associated with improving nutrients’ use and acquisition efficiencies have not been identified much
in millets. Recently, more than 50 QTL associated with various agro-morphological, phosphorus
contents in shoot and roots and biomass traits were identified in 100 RILs of finger millet using
101 SSR markers under low- and high-phosphate conditions [68]. The same group also identified
eight QTL for root- and shoot-related traits under the same low- and high-phosphate conditions
using 87 SSR markers in finger millet through association mapping [69]. Apart from this, 11 QTL
related to shoot-, root-, and biochemical-related traits were identified in finger millet grown under
drought stress [70]. Many QTL for various agro-morphological, yield, biomass, growth, and other
related traits were detected in finger millet, pearl millet, foxtail millet, and proso millet by various
researchers (Table 3). All the identified QTL set a foundation for fine mapping, the identification of
candidate genes, the elaboration of molecular mechanisms, and use in millet breeding programs
through marker-assisted selection. No QTL have been identified yet in millet under salinity, cold,
heat, or other abiotic stress conditions. The availability of the genomic sequence of millets would
accelerate the development of markers to assist genotypic classification and breeding practices.
Previously, researchers used EST array molecular makers for the identification of QTL in many
millets. These are low-throughput molecular markers that limit the efficiency and accuracy of
QTL mapping. Also, it is very expensive and time-consuming. The genome sequence of millets
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will allow millet researchers to rapidly identify millions of markers (SSR, SNP, EST-SSR, DArT,
etc.), which will enable the generation of large-scale genotypic data for linkage mapping analysis.
Apart from this, using molecular markers developed from genome sequences to detect QTL will
increase the efficiency and accuracy of QTL which can definitely be used for the millet breeding
program. The genome sequence will also allow for the identification of candidate genes associated
with QTL and is useful for conducting gene expression and functional characterization studies.

Table 3. Summary of QTL associated with various traits in major and minor millets.

Name of the
Millets Number of RILs Number and Types

of Markers Used
Number of QTL

Identified Targeting Traits References

Pearl millet

106 95 SSR, 2 STS, and
208 DArT 44 FT, PH, PL, and GW [71]

168 256 DArT and
70 SSR 1 Rust disease [63]

317 235 DArT and 33 SSR 23 FL, PH, PL, and TGW [72]

188
96 SSCP-SNP, 96 SSR,
96 EST-SSR, and 43

STS
18 PL, PD, and GS [73]

187 88 SSR 5 Downy mildew disease [65]
317 258 DArT and 63 SSR 19 Grain iron and zinc content [66]
210 372 SSR 22 Grain iron and zinc content [67]

149 95 RFLP, SSR, TRAP,
and EST-SSR 24 Dry stover yield and GY [74]

172 26 SSR and 20 RFLP 24 Downy mildew disease [75]
50 RFLP and 29 SSR 3 GY [76]

Foxtail millet

305 35,065 SNP 3 Leaf blast [62]
164 1047 SNP 47 SW, PW, GW, and TGW [77]
333 3744 SNP 26 PH [78]

543 48,790 SNP 57 PH, PL, PD, PNL, FID, SID,
PW, GW, and TGW [79]

215 20,748 SNP 39 Hull color traits [80]

439 33,579 SNP 59
HD, PL, TN, PW, PD, FLL,
FLD, PH, SD, SNN, code

number, CGN, TGW, and NL
[81]

164 2297 bin and 74 SSR 221

SL, SD, SNN, PDL, TN, FLL,
FLW, PL, PD, SDY, GN, bristle

length, SW, PW, GW, and
TGW

[82]

124 9968 SNP 11 PH, PDL, PD, FID, SID, and
TID [83]

400 43,001 SNP 5 Anther and hull color [84]

Finger millet

100 101 SSR 92 SDW, RDW, ShL, RHL, RHD,
and SPC and RPC [68]

- 87 SSR 15 Leaf blast, PH, TN, NPT, NF,
RL, and GY [85]

- 87 SSR 8 RDW, SDW, and RL [69]

- 87 SSR 11 RL, RDW, and biochemical
traits [70]

151 5422 SNP 8 DF, PH, PN, LBS, and PBI [86]
190 46 SSR 2 DF, FLW, and PH [87]

Proso millet 93 833 SNP 18
HD, PH, PDL, lodging, PL,
grain shattering, TGW, and

GPP
[88]

Abbreviations: CGN, Code Grain Number; Dart, Diversity Arrays Technology; DF, Days to 50% Flowering; EST-SSR,
Expressed Sequence Tag-Derived Simple Sequence Repeat; FID, First Internode Diameter; FLL, Flag Leaf Length; FLW,
Flag Leaf Width; FT, Flowering Time; GN, Grain Number; GPP, Grains Per Panicle; GS, Grain Size; GW, Grain Weight; GY,
Grain Yield; HD, Heading Date; LBS, Leaf Blast Severity; NF, Number of Fingers; NL, Neck Length; NPT, Number of
Productive Tillers; PBI, Panicle Blast Incidence; PD, Panicle Diameter; PDL, Peduncle Length; PH, Plant Height; PL, Panicle
Length; PN, Panicle Number; PNL, Panicle Neck Length; PW, Panicle Weight; RDW, Root Dry Weight; RFLP, Restriction
Fragment Length Polymorphism; RHD, Root Hair Density; RHL, Root Hair Length; RIL, Recombinant Inbred Line; RL,
Root Length; RPC, Root Phosphorus Content; SD, Stem Diameter; SDW, Shoot Dry Weight; SDY, Spikelet Density; ShL,
Shoot Length; SID, Second Internode Diameter; SL, Stem Length; SNN, Stem Node Number; SNP, Single-Nucleotide
Polymorphism; SPC, Shoot Phosphorus Content; SSR, Simple Sequence Repeat; STS, Sequence-Tagged Site; SW, Straw
Weight; TGW, Thousand Grain Weight; TID, Third Internode Diameter; TN, Tiller Number; and TRAP, Target Region
Amplified Polymorphism.
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9. Genome-Wide Association Studies (GWASs) in Millets

QTL mapping based on linkage analysis provides high power to detect QTL for a
trait of interest. It has a very low mapping resolution because of the few recombination
events that it takes into consideration which would ultimately lead to long linkage blocks.
High-throughput genotyping technologies such as genotyping-by-sequencing (GBS) and
genome-wide association studies (GWASs) help to generate high-quality genome-wide
genetic markers, which enable the detection of marker–trait associations (MTAs) or QTL for
crop improvement. A total of 706,646 SNP markers were developed from 407 foxtail millet
genotypes by GWASs [89], and the developed SNP markers were used to identify 87 QTL
associated with various panicle-related traits in foxtail millet (Table 4). GWASs were also
used to identify 81 MTAs for several agronomic, plant growth, and yield-related traits by
10,000 high-quality SNPs in 142 foxtail millet genotypes [90]. The same group used GWASs
to identify 74 MTAs associated with ten nutritional elements using the same 10,000 SNPs
in 93 foxtail millet accessions [91]. In pearl millet, a total of 87,748 DArT markers were
developed from 281 cultivars by GWASs. Among these, 58,719 high-quality SNPs were
used to identify 78 MTAs for iron, zinc, and protein content [92]. A total of 392 pearl millet
cultivars were used to develop 21,633 SNPs by GWASs, and the developed SNPs helped
to identify 18 QTL for flowering time, plant height, tillering, and biomass [93]. In another
study, 1132 MTAs for six starch-related traits were identified in 166 genotypes of pearl millet
by GWASs using 78,000 SNPs [94]. In proso millet, 13 MTAs for agronomic and seed-related
traits were identified by 2412 high-quality SNPs developed through GWASs [95]. A total
of 190 genotypes of finger millet were used to generate 169,365 SNPs by a combination
of GBS and a GWAS, which were used to identify several MTAs for iron, zinc, calcium,
magnesium, potassium, and sodium and protein contents [96]. Apart from the above-
mentioned studies, several QTL and MTAs were identified for many traits using both
GWAS and GBS techniques in millets (Table 4). To date, there is no information regarding
GWASs and GBS for little millet, brown top millet, tef, fonio millet, barnyard millet, and
kodo millet. A GWAS should be carried out to identify QTL and MTAs for various traits in
millets under biotic and abiotic stress conditions (Figure 3), which will help to develop a
new cultivar via breeding programs. The identified QTL and MTAs by GWASs and GBS
might be used for millet breeding programs. The genome assembly enables the scanning of
SNP markers developed by GWASs across the complete set of DNA or genomes. It helps to
find genetic variations associated with any particular traits. Once the new genetic traits are
identified, researchers can use the traits for a further millet breeding program. Such studies
are particularly important to find genetic variations that contribute to common complex
diseases and environmental stresses.

Table 4. Identification of QTL/MTAs by genome-wide association studies (GWASs) in major and
minor millets.

Name of the
Millet

Number of
Genotype

Number of
SNPs

Number of
QTL/MTA
Identified

Targeting Traits Reference

300 79,132 14 Stalk rot diseases in grain [97]

Sorghum

390 268,830 108 Yield per panicle, grain number per panicle, and
1000-grain weight [98]

315 136,285 101
Plant height, panicle length, panicle exsertion, stem

circumference, tiller number, internode number,
flowering time, leaf angle, and seed number

[99]

300 265,487 42
Shoot and root weight, shoot and root length,

chlorophyll contents, and anthocyanin content in shoot
under cold and heat stress

[100]

374 265,487 14 Leaf firing and leaf blotching under heat stress [101]

194 44,515 21 Final emergence percentage, seedling survival, and
seedling vigor under cold stress [102]

245 85,585 42 Crude protein, neutral detergent fiber, acid detergent
fiber, hemicellulose, and cellulose contents [103]
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Table 4. Cont.

Name of the
Millet

Number of
Genotype

Number of
SNPs

Number of
QTL/MTA
Identified

Targeting Traits Reference

212 268,289 2 Low seed deterioration and emergence rate [104]

1425 72,190 102
Plant height, presence or absence of awns, glume cover,
pericarp color, panicle compactness and shape, panicle

exsertion, smut resistance, and male sterility
[105]

634 260,000 70 Amylose and amylopectin contents in grain [106]

Sorghum

2000 142,567 81 Seed size [107]
403 341,514 52 Grain carotenoids (β-Carotene and Zeaxanthin) [108]

242 6,094,317 19 Panicle length and width, panicle compactness, and
peduncle recurving [109]

219 73,730 >80 Plant height, flowering time, forage biomass, grain
weight, and water use efficiency under drought stress [110]

245 85,585 338 Plant height, tiller number, stem diameter, and fresh
weight per plant [111]

96 192,040 40 Heading date, plant height, dry yield, and phenolic
compounds [112]

354 6186 79 Plant height and drought-tolerance indices [113]

162 193,727 100

Seed area size, length, width, length-to-width ratio,
perimeter, circularity, distance between intersection of
length and width, center of gravity, and seed darkness

and brightness

[114]

Pearl millet

392 21,663 18 Biomass, flowering time, plant height, and tillering [93]
281 58,719 78 Iron, zinc, and protein content [92]

197 76,000 897 Starch-, lipid-, antioxidant-, vitamin-, sucrose-, and
flavone-related traits [115]

222 67,000 218 Antioxidant biosynthesis [116]

166 78,000 1132 Readily digested starch, slowly digested starch, resistant
starch, total starch, and available starch [94]

Foxtail millet

916 2,584,083 512 Morphology characteristics, yield components, growth
time, disease resistance, and coloration [117]

104 30,000 67 Eleven nutritional-related traits [118]

407 706,646 87
Panicle length, main panicle diameter, panicle weight per

panicle, grain weight per panicle, and thousand-grain
weight

[89]

827 161,562 257
Top second leaf width, main stem width, panicle

diameter of main stem, panicle length of main stem, per
plant grain weight, and main stem panicle weight

[119]

107 72,181 53

Plant height, stem diameter, leaf length, leaf width,
chlorophyll SPD value, spike length, spike weight, spike

diameter, grain length, grain width, and grain
length/width ratio

[120]

93 10,000 74
Grain nutritional elements such as potassium, nickel,
calcium, boron, magnesium, phosphorus, sulfur, zinc

manganese, and iron
[91]

142 10,000 81
Flag leaf length, flag leaf width, peduncle length, panicle
length, tiller maturity, grain yield, and thousand-grain

weight and plant height
[90]

Finger millet

190 169,365 418 Grain nutrition traits (calcium, iron, sodium, potassium,
magnesium, zinc) and protein content [96]

113 23,000 109

Basal tiller number, culm thickness, days to 50%
flowering, days to 50% maturity, ear length, ear width,
flag leaf blade length, flag leaf blade width, fingers per
head, grain yield, length of longest finger, plant height,

peduncle length, and width of longest finger

[121]

113 2977 40 Seed protein content, grain yield, and days to maturity [122]

Proso millet 88 494,200,000 13 Plant height, leaf number, seed length, seed width, seed
perimeter, seed length-to-width ratio, and seed color [95]
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10. Identification and Characterization of Candidate Genes from Native Genome
Sequences of Millets

In earlier studies when the genome sequences of millets were not generated, re-
searchers used the sequences of closely related cereals to design primers and characterize
the genes in millets for various biotic and abiotic stress conditions. The availability of
millet genome sequences has paved the way for the identification and functional charac-
terization of several candidate genes related to biotic, abiotic, and other stresses in many
millets (Table 5). Interestingly, several candidate genes related to major environmental
stresses (drought, salinity, and heat) have been identified from the annotated genome
sequences of foxtail millet, which will certainly help identify the key candidate genes for
further characterization studies in the future. In foxtail millet, the expression pattern of
187 basic helix–loop–helix (bHLH) genes was analyzed under several abiotic and phytohor-
mone treatments [123] (Table 5). A total of 52 soluble-N-ethylmaleimide-sensitive-factor
accessory-protein receptor (SNARE) [124], 35 DNA binding with one finger (Dof) [125],
and 103 WRKY genes [126] were particularly responsive to drought stress in foxtail millet.
Twelve phosphate transporter 1 (PHT1) family genes were identified specifically for foxtail
millet, which help improve phosphorus uptake, translocation, and remobilization under
low-phosphate stress [127]. Further, the identified key PHT1 genes were functionally char-
acterized by yeast complementation assay [128]. The identified 29 high-affinity potassium
(HAK) transporters can increase the potassium concentration in foxtail millet tissues and
enhance foxtail millet growth and yield under potassium-deficiency soil [129]. Twelve natu-
ral resistance-associated macrophage proteins (NRAMPs) were developed from the foxtail
millet genome support to alleviate cadmium and other heavy metals in millet tissues and
grains [130]. In finger millet, 12 PHT1 and 6 zinc-regulated, iron-regulated transporter-like
protein (ZIP) family transporters were detected, and their expression pattern was analyzed
under an individual or combined deficiency of phosphorous and zinc conditions [131].
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This study revealed the expression pattern of PHT1 and ZIP family transporters under a
differential supply of phosphate and zinc. Apart from this report, 116 nucleotide-binding
site–leucine-rich repeat (NBLRR) genes were identified from the native genome of finger
millet, and they were analyzed in blast disease-infected finger millet [132]. Blast disease is
one of the major biotic constraints on finger growth and yield. The identified NBLRR genes
may contribute to alleviating the understanding of blast disease in finger millet. Eight clas-
sical drought-responsive genes were also identified from the annotated genome of finger
millet, and they were analyzed in drought-tolerant and drought-sensitive genotypes [133].
More than 250 MYB genes were identified from the pearl millet genome responding to
cold, high temperature, osmotic stress, drought, salinity, abscisic acid, salicylic acid, and
methyl jasmonate [134,135] (Table 5). To date, only 180 NAC genes have been identified
from the proso millet genome associated with drought stress [136]. There are more than
30 draft gene assemblies for proso millet, but it is regrettable that research progress is very
poor compared to other millets. It is good to note that more than 1000 candidate genes
have been identified and their expression pattern analyzed in various tissues of millets
related to drought and salinity stress. We feel that many key genes associated with drought,
salinity, and other stresses have been identified in foxtail millet. This clearly represents
that foxtail millet can serve as a model millet for other minor millets such as brown top
millet, fonio millet, little millet, green foxtail, tef, and other cereals. However, functional
genomics research in millets is still in its infancy. In recent years, the genome editing
tool CRISPR/Cas has gained popularity among plant science researchers to study the
function of genes and generate stress-resistant and nutrient-rich plants. The CRISPR/Cas9
system has been widely applied in diverse plants, including millets [137]. This tool has
been successfully implemented in sorghum, tef, and foxtail millet. The knockout of the
SEMIDWARF-1 gene in tef through the CRISPR/Cas9 system enabled the development
of lodging-resistant varieties (dwarf plants) of tef [138]. Induced site-directed mutations
in the kafirin genes of sorghum by CRISPR/Cas9 improved protein digestibility and vit-
reous endosperm [139,140]. Herbicide-tolerant foxtail millet was developed by targeting
two genes (acetolactate synthase (SiALS) and acetylcoenzyme A carboxylase (SiACC)) through
CRISPR base editors (cytosine and adenosine base editors) [141]. The knockout of two
carotenoid cleavage dioxygenase genes (SbCCD8a and SbCCD8b) reduced orobanchol produc-
tion and parasite weed (in particular Striga) germination in sorghum [142]. Hence, a further
functional characterization of key genes from already available reports through genome
editing approaches will help to enhance millet growth, which will support improving food
availability in 2050.

Table 5. Details of candidate genes identified from native genome sequences of millets.

Name of the
Millet

Name of the
Genes

Name and Total Number of Genes
Identified Treatments Reference

Pearl millet

MYB 208 (PgMYB1–PgMYB208) Cold, high temperature, osmotic stress, drought,
and salinity [134]

MYB 279 (PgMYB1-PgMYB279) Dehydration and salinity stress, abscisic acid,
salicylic acid, and methyl jasmonate [135]

WRKY 97 (PgWRKY1-PgWRKY97) Dehydration and salinity stress [143]
SBP 18 (PgSBP1-PgSBP18) Drought, salinity, and abscisic acid [144]
NAC 151 (PgNAC1-PgNAC151) Drought and salinity stress [145]

Foxtail millet

BZR 7 (SiBZR1 to SiBZR7) Abscisic acid and salinity stress [146]

MADS-box 89 (SiMADS1–SiMADS89) Acid, alkali, salt, drought, flooding, dark, heat and
cold stresses [147]

bHLH 187 (SibHLH1-SibHLH187) Acid, alkali, drought, salinity, heat, cold, flooding,
and darkness conditions [123]

nsLTP 45 (SinsLTP1-SinsLTP45) Drought, salt, and cold stress [148]
SOD 8 (SiSOD1-SiSOD8) Drought and salinity [149]

GATA 28 (SiGATA1-SiGATA28) Acid, alkali, salinity, drought, dark, flooding, heat,
and cold [150]

SAUR 72 (SiSAUR1-SiSAUR72) Drought, salinity, abscisic acid, salicylic acid and
gibberellic acid [151]

SNARE 52 (SiSNARE1-SiSNARE52) Drought stress [124]
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Table 5. Cont.

Name of the
Millet

Name of the
Genes

Name and Total Number of Genes
Identified Treatments Reference

Foxtail millet

SPL 18 (SiSPL1 to SiSPL18) Acid, alkali, salinity, drought, flooding, dark, heat,
and cold [152]

GST 73 (SiGST1-SiGST73) Osmotic, salinity, cold stress, and abscisic acid [153]
CLE 41 (SiCLE1-SiCLE41) Gibberellic acid treatment [154]
Dof 35 (SiDof1-SiDof35) Drought stress [125]

LecRLK 113 (SiLecRLK1- SiLecRLK113) Drought and high temperature [155]
CCT 19 (SiCCT1-SiCCT19) Abscisic acid, drought, and salinity [156]

MAPK 16 (SiMAPK1-SiMAPK16) Abscisic acid, gibberellic acid, jasmonic acid,
drought, salinity, cold, and heat [157]

MKK 11 (SiMKK1-SiMKK11) Abscisic acid, Gibberellic acid, jasmonic acid,
drought, salinity, cold, and heat [157]

MAPK 93 Cold, salinity, and drought and abscisic acid and
jasmonic acid [158]

CDPK 29 (SiCDPK1-SiCDPK29) Drought and abscisic acid [159]

CYP450 331 Drought, salinity, abscisic acid, low-temperature,
and herbicide treatments [160]

AP2/ERF 171 (SiAP2/ERF1-SiAP2/ERF171) Dehydration and salinity stress [161]

ATG 37 Drought, salt and cold, and nitrogen and carbon
starvation [162]

NF-Y 39 (10 NF-YA, 13 NF-YB, and 13 NF-YC) Drought, salinity, osmotic, and oxidative stress [163]
HAK 7 (SiHKT1-SiHKT7) Salt stress [164]

MYB 209 (SiMYB1-SiMYB209) Salinity, dehydration, abscisic methyl jasmonate,
and salicylic acid [165]

LBD 33 (SiLBD1-SiLBD33) Drought, salinity, and abscisic acid [166]
TRX 35 (SiTRX1-SiTRX35) Drought and salinity stress [167]

HAT 24 (SiHAT1-SiHAT24) Nitrate and phosphate deficiency, salinity, and
drought [168]

HD-Zip 47 (SiHD-ZIP1-SiHD-ZIP47) Dehydration, salinity, and abscisic acid [169]
GSK 8 (SiGSK21, 23, 24, 11, 12, 13, 31 and 41) Dehydration, salt, and oxidative stress [170]
NPF 92 Low-nitrate stress [171]
PTI1 12 (SiPTI1–1 to SiPTI1–12) Salinity stress [172]

DIR 38 (SiDIR1-SiDIR38) Salinity, drought, and higher concentrations of
calcium and cadmium stress [173]

SPCP 10 Cold, heat, salinity, drought, and various
phytohormones [174]

AAT 94 Drought and salinity [175]
LOX 13 (SiLOX1-SiLOX13) Salt and drought [176]

REM 21 (SiREM1-SiREM21) Abscisic acid, gibberellic acid, methyl jasmonate,
drought, and salinity [177]

WRKY 103 (SiWRKY1-SiWRKY103) Drought stress [126]
PHT1 12 (SiPHT1;1-SiPHT1;12) Phosphate stress [127]

NRAMP 12 (SiNRAMP1-SiNRAMP12) Cadmium stress [130]
HAK 29 (SiHAK1-SiHAK29) Potassium deficiency and salt stress [129]

NRT1 and NRT2 3 NRT1 (NRT1;1, 1;11 and 1;12) and 1
NRT2 (SiNRT2;1) Low N stress [178]

BOR 1 (SiBOR1) Boron stress [179]
ZIP 7 (SiZIP1-SiZIP7) Drought stress [180]

Finger millet

PHT1 12 (EcPHT1;1-EcPHT1;12) Phosphate and zinc stress [131]
ZIP 6 (EcZIP1-EcZIP6) Phosphate and zinc stress [131]
ckx 20 (EcCKK1-EcCKK10) Various biotic and abiotic stress [181]

NBLRR 116 (EcNBLRR1-EcNBLRR116) Blast disease Magnaporthe grisea infection [132]

Proso millet NAC 180 (PmNAC1-PmNAC180) Drought stress [136]

Abbreviations: AAT, Amino acid transporter; AP2/ERF, APETALA2/ethylene-responsive element binding
factor; ATG, Autophagy-associated gene; BHLH, Basic helix–loop–helix (bHLH); BOR, Boron transporter; BZR,
Brassinazole Resistant; CDPK, Calcium-dependent protein kinase; CLE, Clavata3/embryo-surrounding region;
ckx, Cytokinin oxidase/dehydrogenase; CYP450, Cytochrome P450 monooxygenase; Dof, DNA binding with
one finger; DIR, Dirigent; HAT, Histone acetyltransferase; GSK, Glycogen synthase kinase; GST, Glutathione S-
transferase; HAK, High-affinity potassium transporter; HD-Zip, Homeodomain leucine zipper; LBD, Lateral organ
boundaries domain; LecRLK, Lectin receptor-like kinase; LOX, Lipoxygenase; MAPK, Mitogen-activated protein
kinase; NF-Y, Nuclear Factor Y; NPF, Peptide transporter; NBLRR, Nucleotide-binding site–leucine-rich repeat;
NRAMP, Natural resistance-associated macrophage protein; NsLTP, Non-specific lipid transfer protein; PHT1;
Phosphate transporter 1; PTI1, Pto-interacting 1; REM, Remorin; SAUR, Small auxin-up RNA; SBP, SQUAMOSA
promoter binding protein-like proteins; SNARE, Soluble-N-ethylmaleimide-sensitive-factor accessory-protein
receptor; SOD, Superoxide dismutase; SPL, Squamosa promoter binding-like; Shaker potassium channel protein
(SPCP); TRX, Thioredoxins; and ZIP, Zinc-regulated, iron-regulated transporter-like protein.

11. Will Genome Sequences of Millets Help Improve Food and Nutritional Security
by 2050?

The world needs to produce more food to feed a rapidly growing world population,
which is expected to reach 8.5 billion by 2030 and 9.7 billion by 2050 [182]. In addition,
climate change, water scarcity, poor soil quality, and plant diseases are reducing the
current availability of foods in many places worldwide. More than 50,000 plant species are
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available for human consumption, but less than 20 of them provide most of the world’s
food supply [183]. Among them, three major cereals (rice, wheat, and maize) account for
most of the calories consumed by humans every day. We cannot assume that these three
major cereals will feed more than 9 million people in 2050. Also, it is difficult to cultivate
these three cereals in the future’s toughest environments. Millets are one of the oldest
food grains known to humans, dating back to 3500 BC. Millets are capable of growing in
drought conditions, under irrigated conditions, and very low rainfall conditions and have
a low water footprint [184]. Millets do not require much fertilizer or pesticides to grow,
so they are a highly profitable grain for small farmers on a limited budget [3]. Millets,
with their extraordinary adaptability and resilience, have proven themselves a powerful
tool in the fight against global food security [185]. They are not just cereals; they are
the embodiment of substances for billions of people, especially in regions where harsh
climates and resources limitations pose formidable challenges to agriculture. The story of
millets does not stop at feeding the world’s growing population. It extends to a profound
commitment to environmental sustainability. The current annotated and draft genome
sequences of major and minor millets have revolutionized the field of genomics and created
significant molecular insights. Genome sequencing will help to develop millets with
improved yield and nutritional values and superior resistance to various environmental
stresses. Genome sequences play an important role in characterizing essential genes within
a millet genotype by a variety of approaches including structural and functional analyses,
linkage mapping, and gene editing. All these techniques have facilitated the genetic
improvement of plants by understanding complex trait structures. The use of genome
sequences in molecular breeding programs can effectively increase millet grain yield and
productivity. In addition, genome sequences will help to optimize the utilization of genetic
assets in different genotypes of millets. More than 30 thousand millet cultivars are globally
available [31]. There is no doubt that millet genetic resources will play an important role for
food security and sustainable agriculture. In a world grappling with climate change and
its associated woes, the resilience of millets offers a glimmer of hope, demonstrating how
a small yet mighty grain can contribute to soil health and reduce the ecological footprint
of agriculture.

12. Conclusions and Future Perspectives

The availability of millet genomes facilitates the breeding and selection of millets,
which are essential to support ongoing and future food security. However, researchers
are trying to completely annotate the already available partial genome sequences of pearl
millet, fonio millet, tef, job’s tear, proso millet, and barnyard millet (Figure 3). The complete
annotation of pearl millet, fonio millet, tef, job’s tear, proso millet, and barnyard millet
genome sequences will enable the rapid identification of the key genes that determine highly
important traits in millets. Identifying markers and candidate genes from the available
genome sequences would help millet improve against biotic and abiotic stresses. Also, this
will allow for more efficient millet breeding by facilitating the selection of important traits.
Genome sequences are not yet available for brown top millet, little millet, and kodo millet.
Developing millet genome sequences for these three millets will support the improvement
of these three millets. Genome editing is a famous tool in biotechnology to dissect the role
of any candidate genes in any plants. Such novel techniques should be implemented in
millets to dissect the already identified key genes related to biotic and abiotic stresses. The
need for a rapid genetic improvement of millets is made more urgent by climate change,
which demands new genotypes adapted to new and harsh environments. Maintaining
millet genetic resources in seed banks and the conservation of the wild millet genotypes
provide the genetic resources that are required for sustainable food production. More
attention should be given to the collection and conservation of little millet, brown top
millet, tef, fonio millet, job’s tear, kodo millet, proso millet, and barnyard millet, because
most of the traditional germplasms of those millets have already disappeared from the
world. Improving the nutritional contents of each millet through nutritional transporter
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gene manipulation may help enhance the nutritional availability in seeds of millets. In
addition, several differentially expressed genes and molecular markers have already been
identified for major and minor millets through transcriptomic resources. Hence, millet
researchers can try to use the transcriptomic resources of millets for identifying candidate
genes and developing molecular markers for those millets without complete annotated
genome sequences.
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