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Abstract: Sorting unreelable inferior cocoons during the reeling process is essential for obtaining
high-quality silk products. At present, silk reeling enterprises mainly rely on manual sorting, which
is inefficient and labor-intensive. Automated sorting based on machine vision and sorting robots is a
promising alternative. However, the accuracy and computational complexity of object detection are
challenges for the practical application of automatic sorting, especially for small stains of inferior
cocoons in images of densely distributed cocoons. To deal with this problem, an efficient fine-grained
object detection network based on attention mechanism and multi-scale feature fusion, called AMMF-
Net, is proposed for inferior silkworm cocoon recognition. In this model, fine-grained object features
are key considerations to improve the detection accuracy. To efficiently extract fine-grained features of
silkworm cocoon images, we designed an efficient hybrid feature extraction network (HFE-Net) that
combines depth-wise separable convolution and Transformer as the backbone. It captures local and
global information to extract fine-grained features of inferior silkworm cocoon images, improving
the representation ability of the network. An efficient multi-scale feature fusion module (EMFF) is
proposed as the neck of the object detection structure. It improves the typical down-sampling method
of multi-scale feature fusion to avoid the loss of key information and achieve better performance.
Our method is trained and evaluated on a dataset collected from multiple inferior cocoons. Extensive
experiments validated the effectiveness and generalization performance of the HFE-Net network and
the EMFF module, and the proposed AMMF-Net achieved the best detection results compared to
other popular deep neural networks.

Keywords: attention mechanism; multi-scale feature fusion; object detection; inferior cocoon
recognition; sericulture

1. Introduction

Silk garments are popular worldwide and have become a symbol of high-end fashion
due to their lightness, softness, elegance, and comfortable texture. The production of
silk consists of the following stages: cocoon breeding and collection, cocoon harvesting,
reeling, silk weaving, printing and dyeing, and manufacturing of the finished product.
Each step in the above chain requires specialized skills and experience to ensure that final
silk products, such as raw silk, silk, garments, apparel, and home textiles, are of high
quality and aesthetically pleasing.

With the booming development of artificial intelligence technologies, the mulberry
sericulture industry has witnessed a transformation in the process of production and man-
agement with intelligence and automation. Such changes have already yielded significant
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achievements in several key areas of the industry. Researchers have employed deep learn-
ing techniques to enhance traditional sericulture practices. By collecting and analyzing
data, they enable real-time monitoring of the growth environment and health status of silk-
worms [1–3], facilitating intelligent breeding approaches. Furthermore, image processing
algorithms are utilized to automate the counting of silkworm eggs [4], addressing issues
such as egg damage, labor-intensive processes, and inefficiency associated with manual
counting. Additionally, machine vision algorithms are applied for the gender classification
of silkworm cocoons [5–8]. Since male cocoons yield finer silk than female cocoons, this
classification helps to minimize the mixing of varying silk qualities, thereby enhancing the
production of superior silk within the mulberry sericulture industry.

In reeling enterprises, production techniques and processes need to be strictly con-
trolled to obtain higher quality raw silk. The basic and key part is to select high-quality
cocoons. At present, reeling enterprises mainly rely on manual sorting to pick cocoons
that cannot be reeled. However, this sorting method is inefficient and requires a high
intensity of manual labor. Additionally, the sorting quality of this method relies on the
subjective consciousness of workers, and the poor environment in which cocoon sorting
takes place will expose workers to irreversible health hazards. Automatic sorting is urgent
and a good alternative method in reeling enterprises. The identification of inferior cocoons
is the first step in automatic sorting. The present related research has developed from using
image processing algorithms to deep learning AI models to identify and classify cocoon
characteristics. For example, Vasta et al. [9] used multiple cameras and image processing al-
gorithms to identify the shapes, sizes, and external stains of silkworm cocoons, respectively,
improving existing sorting solutions through multi-step methods and machine learning
algorithms. Yang et al. [10] proposed a machine vision-based cocoon quality detection algo-
rithm, which realizes the identification and detection of single cocoons, douppion cocoons,
yellow-spotted cocoons, and thin-skinned cocoons. Li et al. [11] proposed an improved
YOLOv3 group cocoon species detection model to achieve the rapid and accurate identi-
fication of some group cocoon species. However, the above studies could only recognize
cocoons with large defects and obvious features, and they failed to deal with cocoons with
small differences. As depicted in Figure 1, the actual sorting environment is characterized
by a high density of cocoons, which poses a challenge for efficient and accurate fine-grained
identification using conventional deep learning methods and image processing algorithms.
Specifically, cocoons labeled with rectangular and elliptical boxes are categorized as having
inferior quality. While the cocoons enclosed by elliptical boxes can be readily identified due
to distinct visible defects, those marked by rectangular boxes exhibit less apparent defects.
This makes it difficult for standard object detection algorithms to accurately identify and
classify them. Consequently, there is a need to develop specialized fine-grained detection
algorithms tailored to discern the subtle differences in the inferior cocoons labeled with
rectangular boxes.

Feature extraction is a critical component in the field of deep learning as it dictates
the model’s ability to comprehend the input image data. Convolutional Neural Networks
(CNNs) and Transformers are recognized as two potent approaches for feature extraction,
each with unique strengths that contribute to the advancement of various applications
within the domain. The basic structure of a CNN consists of the following four main
parts: convolutional layers, activation functions, pooling layers, and fully connected layers.
Among them, convolutional layers utilize convolutional kernels to slide over the input
feature map and perform element-wise multiplication and accumulation, thus capturing the
local features of the input data. Pooling layers are used to achieve a reduction in the spatial
dimensions of the feature map to retain the most important information. Fully connected
layers are used to flatten the outputs of the convolutional and pooling layers and output the
final prediction. Activation functions are used to introduce nonlinearities to the network,
thus facilitating the model to learn complex patterns. CNNs [12–14] excel at capturing local
patterns through convolutional and pooling layers, which not only facilitate the extraction
of textural and shape features but also reduce the computational complexity, thereby
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enhancing the model’s generalization. Notably, CNNs have been widely implemented in
various industries and achieved great progress due to their strong local perception and
trainable efficiency. However, considering that the actual cocoon sorting environment
is highly dense, the differences between cocoon categories are minor, and the defects in
inferior cocoons occupy fewer pixels, directly applying CNNs to extract features usually
results in poor model performance. On the other hand, Transformer [15] is based on the
self-attention mechanism and adjusts feature representation according to the correlation of
different positions in the input sequence. Its main advantage is that it allows the model
to simultaneously consider all elements in the sequence when processing the sequence
rather than relying only on local or adjacent information, thus facilitating the model to
globally model the input image. ViT [16] and its successors [17–21] have demonstrated the
potential to tackle vision tasks by processing image patches through Transformers, yet they
often require extensive datasets and sophisticated training strategies to achieve competitive
performance. Despite their advancements, Transformers face challenges in localized feature
extraction and exhibit a quadratic increase in computational complexity with higher image
resolutions, which can be impractical for certain applications.
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Figure 1. Example diagram of cocoon distribution in a sorting scenario and images of different
categories of mulberry cocoons.

For the fine-grained recognition of silkworm cocoons, it is crucial to efficiently extract
fine-grained features such as the shapes and spot defects of inferior cocoons. Meanwhile,
in scenarios where cocoons are densely packed, potentially occluded, or interconnected,
the intricate silk’s intertwining amplifies the complexity. Therefore, it is equally important
to obtain global information, which can help the model better understand the complex
correlations between cocoons and provide a more comprehensive feature representation,
thus improving the accuracy of object detection. To this end, we propose a hybrid feature
extraction network (HFE-Net) based on a CNN and Transformer to combine the advantages
of the above two network structures to fully extract the fine-grained features of silkworm
cocoons. Additionally, to better fuse the multi-scale features obtained from the feature
extraction network HFE-Net, we construct an efficient multi-scale feature fusion module,
EMFF, which optimizes the downsampling method of typical multi-scale fusion modules
and alleviates the problem of the loss of key detail information in the downsampling process.
Based on the proposed HFE-Net and EMFF, and combined with object detection head, we
propose an efficient object detector named AMMF-Net for fine-grained cocoon detection.

In summary, the main contributions of this paper are as follows:
(1) A novel hybrid network, HFE-Net, combining the advantages of both CNN and

Transformer is proposed for efficiently extracting fine-grained cocoon image features.
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(2) To address the problem of key information loss caused by the downsampling of
existing multi-scale fusion modules, an efficient multi-scale feature fusion module, EMFF,
is designed to effectively improve the fine-grained detection accuracy.

(3) Based on the proposed efficient fine-grained feature extraction network, HFE-Net,
and the optimized multi-scale feature fusion module, EMFF, the object detection algorithm
(AMMF-Net) for cocoon sorting is constructed. Extensive experiments demonstrate that the
constructed object detection algorithm AMMF-Net achieves the best speed and accuracy
trade-off.

2. Materials and Methods
2.1. Dataset

This work utilized three different datasets for training and evaluating our constructed
innovative feature extraction network HFE-Net as well as the network AMMF-Net for
fine-grained cocoon object detection.

Firstly, we selected ImageNet-100 [22] as the dataset for training the backbone network
HFE-Net, which is a subset of the ImageNet-1K dataset in the 2012 ImageNet Large-Scale
Visual Recognition Challenge. ImageNet-100 contains a total of 100 image categories, with
each category containing about 1300 images for training and 50 images for validation, and
its rich image samples and diverse category information help to improve the generalization
ability and representation learning of our feature extraction network.

Secondly, in order to validate the performance of the constructed object detection
network AMMF-Net, we chose the VOC07 + 12 dataset [23], which is a commonly used
public object detection dataset containing a total of 21,503 images in 20 object categories
with detailed annotation information. We utilized this dataset as a benchmark dataset to
evaluate the performance and effectiveness of our approach in the object detection task.
Additionally, the training and testing sets were divided in a manner in which the training
and validation sets of VOC2007 and VOC2012 (with 16,551 images in total) were used as
the training sets for the model, and the testing set of VOC2007 (containing 4952 images)
was used as the testing set for the model.

Finally, for the fine-grained detection task of silkworm cocoons, we constructed a
dataset focusing on mulberry silkworm cocoons, which contains multiple subcategories of
mulberry silkworm cocoons. As shown in Figure 2a, we utilized an industrial camera setup
to capture images of silkworm cocoons. Specifically, during the image acquisition process,
we simulated the actual distribution of cocoons on a conveyor belt, such as the dense
distribution of silkworm cocoons and occlusion. This approach allowed us to construct
a dataset that closely resembles real industrial sorting scenarios. One of the captured
silkworm cocoon images is displayed in Figure 2b, which illustrates the subtlety of defect
features in images due to angles, as might be encountered in actual sorting environments.
Then, the captured images were screened to eliminate blurred and redundant images,
resulting in 2386 images. To optimize the training process of the model and improve the
generalization capability of the model, we obtained a total of 14,316 images for the training
of the object detection model by performing data augmentation operations on the cocoon
images by flipping them horizontally and vertically and rotating them by 30 degrees,
60 degrees, 90 degrees, and 120 degrees. And the division ratio of the training set and
testing set was 9:1.
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2.2. Overview Architecture

As shown in Figure 1, the types of mulberry silkworm cocoons mainly include normal
cocoons, douppion cocoons (cocoons with two or more pupae inside), floss cocoons (co-
coons with loose cocoon layers and unclear wrinkles), thin skinned cocoons (cocoons with
thin, inelastic layers), imprinted cocoons (cocoons with severe imprints on the surfaces
of the cocoon layers), mouthed cocoons (cocoons with a hole in the cocoon layer, includ-
ing moth mouth, rat mouth, maggot mouth, insect mouth, etc.), yellow spotted cocoons
(cocoons with severe yellow spots on the cocoon layers), and deformed cocoons (cocoons
with irregular shapes). Among them, the douppion cocoon and the normal cocoon are
good cocoons that can be reeled normally, while the rest are inferior cocoons that cannot
be reeled or are difficult to reel. These unreelable inferior mulberry cocoons need to be
selected to improve the overall quality of raw silk. As we can see in Figure 1, the cocoon
categories have a similar appearance to each other, and the spots in inferior cocoons occupy
a small number of pixels, resulting in insufficient feature information to distinguish cocoon
categories. In addition, the cocoons in the actual cocoon sorting environment are very
dense. Therefore, it is difficult to process the above image data well using existing object
detection algorithms. A detection algorithm with a fast speed and strong feature extraction
capability is needed to achieve the fine-grained identification of silkworm cocoons.

This section describes our proposed method for fine-grained cocoon recognition,
whose overall flowchart is shown in Figure 3. We first introduce the proposed efficient
hybrid feature extraction network (HFE-Net), followed by the efficient multi-scale feature
fusion module (EMFF), and then the overall fine-grained cocoon detection network based
on attention mechanism and multi-scale feature fusion (AMMF-Net).

2.3. Hybrid Feature Extraction Network (HFE-Net)

Inspired by CNN and Transformer network structures, we propose a novel hybrid
feature extraction network (HFE-Net) as shown in Figure 4. The proposed model combines
the advantages of a CNN’s robust local modeling capability and Transformer’s strong global
modeling capability, aiming to achieve excellent performance in fine-grained cocoon feature
extraction. The network structure adopts a hierarchical structural design, where the input
image resolution gradually decreases as the network stage deepens, while the semantic
information is gradually enriched. Thus, the model has a multi-scale receptive field to
facilitate the subsequent detection of cocoons at different scales using the extracted features.
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As we can see in Figure 4, the proposed HFE-Net consists of stem [24], a local feature
extraction block (LFEB), and a global feature extraction block (GFEB). Among them, stem
consists of a number of stacked 3 × 3 convolutions with a stride of 2 or 1, which are
used to reduce the input image resolution and extract local information; LFEB is used
for shallow feature extraction, which is more concerned with extracting texture detail
features in local regions of the image; a GFEB is used for deep feature extraction, which is
mainly used to extract the global information of the image. HFE-Net efficiently utilizes the
advantages of both a CNN and Transformer, aiming to make full use of local and global
information and maintain computational efficiency. Li et al. [25] pointed out that existing
typical hybrid strategies (using convolutional blocks in the shallow stages and Tranformer
blocks in the deep stages of the network) perform sub-optimally for dense prediction tasks
(e.g., segmentation, detection, etc.). And inspired by their observation, the hybrid strategy
adopted by our proposed feature extraction network involves utilizing both convolutional
and Tranformer blocks at each stage of the network, which is a (N + 1)*L hybrid paradigm,
and it can be seen in detail in Figure 4. We will describe the LFEB and GFEB in detail below.

2.3.1. Local Feature Extraction Block (LFEB)

For fine-grained cocoon recognition, multi-scale features are crucial to correctly distin-
guish subtle differences between cocoons. Traditional feature extraction networks typically
employ a hierarchical structure design to effectively process and recognize multi-scale fea-
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tures within images. In the shallower layers of the network, feature maps maintain a higher
resolution, enabling the network to capture local features such as edges and textures in the
image. As the network deepens, the resolution of the feature maps gradually decreases,
while the network becomes capable of extracting more advanced semantic information.
Although these networks possess the capability of extracting multi-scale features, their
multi-scale nature is reflected across different levels from shallow to deep areas within the
network, and they do not have the capability of extracting multi-scale features within the
same level. To overcome the above limitation, we propose an efficient multi-scale local
feature extraction block (LFEB), as shown in Figure 5, which utilizes convolutional kernels
with sizes of 1, 3, 5, and 7 to achieve feature extraction at four scales, thus enhancing the
multi-scale feature extraction capability of the network and facilitating the model to extract
features at a fine-grained level. Additionally, for computational reduction, we use stacked
3 × 3 convolutions of different numbers to achieve the equivalent performance of 5 × 5
and 7 × 7 convolutions. And the proposed LFEB can be formulated as follows:

{Xi}4
i=1 = Split( f1×1(X)) (1)

Y1 = ReLU(BN( f1×1(X1))) (2)

Y2 = ReLU(BN(DWConv(X2))) (3)

Y3 = ReLU(BN(DWConv(X3 + Y2))) (4)

Y4 = ReLU(BN(DWConv(X4 + Y3))) (5)

Y = IFFN( f 1×1(Concat(Y1, Y2, Y3, Y4)) + X
)

(6)

where X ∈ RH×W×d, H, and W are the input image resolutions of the current stage,
respectively, and d represents the channel dimension of the features. f1×1 represents point
convolution, Split denotes the operation of splitting the feature map X along the channel
dimension, and DWConv represents the depth–width convolution. Yi denotes the feature
map produced by nonlinear activation function (ReLU [26]), batch normalization, and
the convolution of different receptive field sizes. And we will introduce IFFN in detail in
Section 2.3.2. The output feature map of the final fused multi-scale features is obtained by
Concat operation, 1 × 1 convolution, and shortcut connection. Therefore, the main purpose
of Equation (1) is to split the input feature map X into four sub-feature maps along the
channel dimension. Equations (2)–(5) correspond to the extraction of features at different
scales for each sub-feature map, respectively. Equation (6) indicates the fusion of features
at four different scales and the utilization of the proposed IFFN to further enhance the
expression capability of the features.
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2.3.2. Global Feature Extraction Block (GFEB)

For fine-grained cocoon recognition, there are some defective features that are not
apparent, making it hard to accurately recognize the category corresponding to the cocoon.
Based on the above observation, we constructed the global feature extraction block (GFEB)
based on a vision Transformer. The GFEB utilizes the attention mechanism to help the
network propagate and utilize the information more efficiently and to prevent the loss of
key information from occurring during the deep propagation of the network, thus improv-
ing the network’s representational performance. Additionally, since the computational
complexity of attention increases quadratically with the number of tokens, we apply an
average pooling operation before performing the multi-head self-attention calculation to
reduce the spatial dimensionality, thus reducing the number of key value pairs, which, in
turn, reduces the computational cost and improves the efficiency. A schematic structural
diagram of a GFEB is shown in Figure 6, and its calculation formula can be expressed
as follows:

Y = IFFN(LayerNorm(X)) + X (7)

X = Attention(Q, K, V) = Concat(h1, h2 . . . , hH) (8)

hi = Attention(Qi, Ki, Vi) (9)

Attention(Qi, Ki, Vi) = softmax

Qi(Ki)
T√

C
H

Vi (10)
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The main purpose of Equation (7) is to apply layer normalization to the input feature
map X and then pass it into the IFFN module for further feature extraction, where Y
represents the output feature map, and IFFN represents the improved feed forward network
proposed in this paper. Equations (8)–(10) represent the calculation operation of the
attention mechanism, where hi denotes the i-th head of the self-attention computation, H
denotes the number of multi-head self-attention heads, and Qi, Ki, and Vi of the i-th head
are obtained by the following linear projection:

Qi = XiW
Q
i (11)

Ki = AvgPool(X i)W
K
i (12)

Vi = AvgPool(X i)W
V
i (13)

Equations (11)–(13) describe that Q, K, and V are obtained by multiplying the input
feature map with three different weight matrices. AvgPool denotes the application of pool-
ing operations on the input feature map to reduce spatial dimensions, thereby decreasing
the computational load and complexity while preserving important feature information.

The feed forward network (FFN) is crucial in each attention block of the Transformer
and is responsible for the nonlinear mapping and transformation of the features of the
image patch, thereby improving the representation ability and performance of the model.
In the original vision Transformer [16], the FFN consists of two fully connected layers, and
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a GELU activation function is included between the two layers, which can be expressed
as follows:

FFN(X) = GELU(XW1 + b1)W2 + b2 (14)

where W1 and W2 denote the weights of the two linear layers, and b1 and b2 indicate the
bias terms, respectively.

In this work, we proposed an improved feed forward network (IFFN), as shown in
Figure 7, which can further improve the representation capability of the network. The
IFFN mainly consists of a point-wise convolution, a depth-wise convolution, channel atten-
tion [27], a projection layer, and the necessary residual connections. The IFFN incorporates
depth-wise convolution and channel attention, where depth-wise convolution is used
to extract local information at a negligible computational cost, while channel attention
adaptively learns the weights of each channel of the feature map, thus enhancing important
feature channels and suppressing unimportant ones. Compared with a typical FFN, the
IFFN can better capture the local and long-range dependencies of the feature map, thereby
improving the performance of the model. And the IFFN can be formulated as follows:

IFFN(X) = f1×1(F ( f1×1(X))) + X (15)

F (X) = CA(ReLU(DWConv(X))) + X (16)

where CA denotes channel attention [27], DWConv denotes 3 × 3 depth-wise convolution,
f1×1 denotes pointwise convolution, and GELU is a nonlinear activation function.
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The GFEB utilizes the multi-head self-attention mechanism to capture global semantic
information and uses the constructed IFFN to better capture the local and remote depen-
dencies of the feature map, providing a richer and more accurate feature representation for
the model, which greatly improves the model’s performance.

With the aforementioned parts, we propose an innovative hybrid network, HFE-Net,
based on a CNN and vision Transformer, which utilizes Transformer to capture long-range
dependencies, while a CNN is used to extract local information, thus enhancing the feature
representation capability of the model. And the detailed structures of each module of the
HFE-Net are shown in Table 1.
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Table 1. Detailed structures of each component of the proposed HFE-Net.

Operator Input Size Number Stride

Conv2D 224 × 224 × 3 1 2
Conv2D 112 × 112 × 36 1 1
Conv2D 112 × 112 × 24 2 2, 1

PatchEmbed 56 × 56 × 36 1 -
LFEB 56 × 56 × 48 3 1
GFEB 56 × 56 × 48 1 1

PatchEmbed 56 × 56 × 48 1 -
LFEB 28 × 28 × 96 4 1
GFEB 28 × 28 × 96 1 1

PatchEmbed 28 × 28 × 96 1 -
LFEB 14 × 14 × 192 8 1
GFEB 14 × 14 × 240 1 1

PatchEmbed 14 × 14 × 240 1 -
LFEB 7 × 7 × 384 3 1
GFEB 7 × 7 × 384 1 1

Avg Pool 7 × 7 × 384 1 -
FC 1 × 1 × 384 1 -

2.4. Efficient Multi-Scale Feature Fusion Module (EMFF)

For object detection tasks, multi-scale feature fusion is crucial for locating and identi-
fying objects at different scales. Although a typical FPN [28] and PANet [29] have achieved
remarkable results in processing multi-scale features, they still face some challenges when
facing some complex scenes and small-scale objects. For example, for the fine-grained
cocoon recognition task of this work, due to the similar appearance between cocoon cat-
egories and the unapparent defects in the inferior cocoons, which results in insufficient
feature information to differentiate the cocoon categories, it is difficult to accurately and
efficiently accomplish the fine-grained cocoon detection task.

To address the above problems, we propose a novel and efficient multi-scale feature
fusion module (EMFF), which adopts the same design paradigm as the PANet [29], except
we construct a novel downsampling (by halving the feature map spatial resolution and
doubling the channels) module when dealing with downsampling, as shown in Figure 8.
In contrast to the conventional 3 × 3 convolution with a stride of 2, which is commonly
employed for downsampling, the optimized downsampling module we propose incorpo-
rates a combination of diverse downsampling techniques. This approach is designed to
mitigate the loss of fine-grained information, ensuring that the model retains the necessary
details for accurate feature representation. Specifically, for the feature map input to the
downsampling module, we initially apply a 1 × 1 convolution to generate three separate
copies. Subsequently, we employ a slicing-based downsampling technique on the first copy,
which is designed to preserve the original spatial details of the feature map. The second one
uses the max-pooling downsampling method to retain the key information of the feature
map and avoid the loss of fine-grained features. The third one uses a 3 × 3 convolution
with a stride of 2 to extract local features while downsampling. Finally, the downsampling
results obtained by these three different downsampling methods are concatenated, and a
point-wise convolution is used to fuse and reduce the dimension.

The optimized downsampling module constructed in this work obtains complemen-
tary feature maps by using three different downsampling methods: max-pooling, convo-
lution with a stride of 2, and cut-slice. The fusion of these complementary downsampled
feature maps enables the network to retain more fine-grained information during down-
sampling and avoid the loss of key features, thus improving the accuracy of fine-grained
cocoon detection.
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2.5. Overall Framework of the Model

An efficient and accurate model design is imperative for real-time object detection. In
this work, we propose AMMF-Net, an object detection model based on attention mech-
anism and multi-scale feature fusion, which aims to address the limitations of typical
object detectors in multi-scale fine-grained feature extraction and fusion to improve the
recognition accuracy of cocoon detection. Building on the classical single-stage object
detector, RetinaNet [30], we modify it in two aspects: firstly, we propose a more efficient
feature extraction network, which combines the advantages of both CNN and Transformer
paradigms of feature extraction networks; secondly, we design an efficient multi-scale
feature fusion module to replace the original neck part of RetinaNet so as to better perform
multi-scale feature fusion and avoid the loss of fine-grained information in the fusion
process. These two parts correspond to HFE-Net, introduced in Section 2.3, and EMFF,
introduced in Section 2.4, respectively.

Based on the constructed HFE-Net and EMFF, combined with the detection head of
RetinaNet, we propose a novel object detection model, AMMF-Net, which is used for
fine-grained cocoon recognition, and its network structure is illustrated in Figure 9.

2.6. Implementation Details

The model is developed based on the Python and Pytorch frameworks. The models
were trained on a NVIDIA (2788 San Tomas Expressway, Santa Clara, CA, USA) RTX 3090
GPU with 24G of memory. For model optimization, we used the Adam [31] optimizer with
a weight decay of 0.0001 and the number of iterations of the model was 100 epochs. The
batch sizes for the feature extraction network HFE-Net and the object detection network
AMMF-Net are 64 and 12, respectively. The feature extraction network HFE-Net selected
the cross-entropy loss as the loss function, which is expressed as follows:

Loss = − 1
N

N

∑
i=1

M

∑
c=1

li,clog(pi,c) (17)

where N denotes the amount of data in the dataset and M denotes the number of categories.
li,c represents the true label for the i-th sample regarding the c-th class, and pi,c signifies the
probability assigned by the model to the i-th sample belonging to the c-th class.

The experiment takes the prediction accuracy (acc) as the evaluation metric of the
feature extraction network HFE-Net, which can be calculated using the following formula:

acc =
TP + TN

TP + FP + TN + FN
(18)

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative, respectively, i.e., “predicted as a positive sample and correctly predicted”, “pre-
dicted as a negative sample and correctly predicted”, “predicted as a positive sample but
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incorrectly predicted”, and “predicted as a negative sample but incorrectly predicted”,
respectively.
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For the object detection network AMMF-Net, we use mAP as the evaluation metric,
which can be calculated using the following formula:

mAP =
1
k

k

∑
i=1

APi (19)

AP =
∫ 1

0
P(R) dR (20)

P =
TP

TP + FP
(21)

R =
TP

TP + FN
(22)

where P denotes precision, which measures the proportion of samples predicted by the
model to be positive instances that are actually positive instances, and R denotes recall,
which measures the model’s ability to successfully predict all positive instances. Here, we
use the IoU threshold of 0.5 to divide TP and FP. AP denotes average precision, which
measures the object detection accuracy of the model on each category, and it can be de-
rived by calculating the area under the precision–recall curve. k denotes the number of
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predicted object categories, and mAP synthesizes the object detection accuracy for these k
different categories.

3. Results and Discussion
3.1. Performance of Designed AMMF-Net

Considering that the latest object detectors have extensively applied complex opti-
mization techniques, we chose the classical one-stage object detector RetinaNet, whose
backbone is ResNet-50, as the benchmark model. To improve the performance of the
model, we refined RetinaNet by replacing its backbone with our own proposed novel and
efficient feature extraction network, HFE-Net, and meanwhile, we replaced the FPN of
RetinaNet with our optimized efficient multi-scale feature fusion module, EMFF, to form an
object detection model suitable for the fine-grained identification of silkworm cocoons, i.e.,
AMMF-Net. Additionally, to comprehensively evaluate the performance of AMMF-Net,
several other advanced object detectors were used for comparison experiments to clearly
demonstrate the effectiveness of the proposed model.

Table 2 shows the performance of the proposed AMMF-Net on the constructed cocoon
dataset. Compared to other advanced object detectors, the proposed model achieves
superior prediction accuracies for the identification of both normal cocoons (normal) and
defective cocoons (inferior), which are 69.75% and 62.48%, respectively. This indicates that
AMMF-Net is able to effectively distinguish different types of cocoons. In particular, the
mAP value of 66.12% achieved by AMMF-Net is not only the highest among all models
participating in the comparison, but also 2.13% higher than the baseline RetinaNet. This
improvement highlights the effectiveness of the efficient feature extraction network and
multi-scale fusion module constructed in this article, allowing the model to more accurately
locate and identify objects.

Table 2. Comparison of cocoon detection results between AMMF-Net constructed in this work and
other models.

Method
Normal Inferior

mAP
P R AP P R AP

YOLOv3 [32] 83.51 66.20 68.13 90.92 52.86 59.62 63.87
YOLOv5-l [33] 82.37 66.17 68.13 91.57 50.50 58.48 63.30
YOLOX-l [34] 84.44 66.24 68.51 89.59 54.05 60.38 64.44
YOLOv7-l [35] 85.68 66.08 68.65 84.92 55.98 60.70 64.68

Faster RCNN [36] 87.56 65.73 68.70 91.13 51.74 59.54 64.12
Cascade RCNN [37] 84.74 65.30 68.20 85.77 54.70 60.18 64.19

RetinaNet (baseline) [30] 81.95 66.26 68.13 90.90 52.91 59.85 63.99
AMMF-Net (ours) 89.86 66.67 69.75 90.44 57.39 62.48 66.12

To more comprehensively evaluate the performance of the models, this paper also
provides an experimental comparison of the computational complexity of these methods.
In the field of object detection, the computational complexity is usually measured by
the number of parameters (Params) and the number of floating-point operations per
second (GFLOPs) of the model, which directly affect the inference speed and hardware
requirements of the model. In Table 3, we compare the mAP, number of parameters, and
GFLOPs of AMMF-Net with several other advanced object detection models. It can be seen
that the proposed AMMF-Net not only achieves the best detection of mulberry cocoons,
but also realizes the least number of parameters. Regarding the computational complexity
of the model, although AMMF-Net is more computationally intensive than YOLOv7, its
detection accuracy is 1.44% higher than that of YOLOv7. This indicates that AMMF-Net
has achieved the optimal speed–accuracy tradeoff by taking into account the computational
efficiency of the model while pursuing high accuracy.
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Table 3. Comparison of computational complexity between AMMF-Net and other object detectors.

Model mAP Params GFLOPs

YOLOv3 63.87 61.95 156.62
YOLOv5-l 63.30 46.73 144.89
YOLOX-l 64.44 54.21 156.01
YOLOv7-l 64.68 37.62 106.47

Faster RCNN 64.12 41.22 182.23
Cascade RCNN 64.19 69.17 238.10

RetinaNet (baseline) 63.99 37.74 170.21
AMMF-Net (ours) 66.12 21.33 135.40

To more intuitively demonstrate the effectiveness of the proposed method, we visu-
alize the detection results of the baseline (RetinaNet) and AMMF-Net on the constructed
mulberry cocoon dataset, as shown in Figure 10. Specifically, Figure 10a–d show the detec-
tion results of the baseline, and the corresponding (a’), (b’), (c’), and (d’) are the detection
results of the proposed AMMF-Net. As shown in Figure 10a–c, the baseline method suffers
from an incorrect prediction of the categories of some cocoons (marked by yellow arrows).
The main reasons for this are that cocoon detection is a fine-grained recognition issue, the
difference between cocoon categories is small, and there are some inferior cocoons in which
the defects occupy little pixels, resulting in it being difficult for the general object detection
algorithms to extract adequate fine-grained feature information. In addition, as shown in
Figure 10d, for some dense and occluded scenes, the baseline cannot accurately detect all
objects. Comparatively, the proposed AMMF-Net model can accurately detect all objects,
as shown in Figure 10a’–d’. The comparative analysis of the visual results underscores
the strengths of AMMF-Net in handling the unique challenges posed by cocoon detection.
The model’s performance is particularly noteworthy given the small differences between
cocoon categories and the presence of occlusions.
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Figure 10. The visual results of the proposed AMMF-Net for cocoon detection. (a–d) are the detection
results of the baseline, while the corresponding (a’–d’) are the detection results of the proposed
AMMF-Net. The arrows indicate cocoons that were incorrectly predicted or not detected by the
RetinaNet model.

Furthermore, the variation in loss values during the training of AMMF-Net is shown
in Figure 11. It can be observed that as the network is trained, both the training loss and
validation loss gradually decrease and then converge to a small range of values. This
phenomenon indicates that the model has not only learned effective feature representations
on the training set but also possesses good generalization capabilities, achieving low error
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rates on the unseen validation set. The convergence characteristic of the model suggests
that it has avoided overfitting, meaning it has not merely memorized specific samples from
the training set but has learned general patterns that can be applied to new data.
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To more comprehensively evaluate the performance of the model, apart from using
evaluation metrics such as mAP, GFLOPs, and Params, we also depicted the precision–recall
curves for AMMF-Net and the benchmark model on the testing set, as shown in Figure 12.
Figure 12a,b depict the detection performance of the proposed method, AMMF-Net, for
inferior and normal silkworm cocoons, respectively. In contrast, Figure 12a’,b’ illustrate
the detection performance of the baseline method, RetinaNet, on the same categories
of cocoons.
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The precision–recall (PR) curves within these figures reflect the relationship between
precision and recall at various confidence threshold levels, providing a comprehensive eval-
uation of the models’ performance across the spectrum of classification certainty. The area
under the PR curve (AP) serves as a measure of a model’s ability to balance precision and
recall, and it is a critical indicator of performance across different classes of data. A higher
AP value signifies superior model performance on a particular category. It is noteworthy
that AMMF-Net achieves an improvement of 1.62% in AP for normal cocoons and a more
substantial enhancement of 2.63% in AP for defective cocoons compared to the baseline
RetinaNet method. This increase in the AP value demonstrates the superior performance
of AMMF-Net in terms of its ability to accurately detect both normal and defective cocoons,
thereby offering a more effective solution for fine-grained cocoon recognition tasks.

To more comprehensively evaluate the performance of AMMF-Net and demonstrate
its generalization performance, we conducted further experiments on the publicly available
dataset VOC07 + 12. Table 4 summarizes the detection results of AMMF-Net with other
advanced object detectors on this dataset. From Table 4, it is evident that among all
the methods compared, AMMF-Net exhibits the most compact model size in terms of
parameter count. Moreover, despite having a slightly higher computational load compared
to YOLOv7, AMMF-Net achieves a 1.6% higher mAP score. Additionally, when evaluating
detection performance on this dataset, although AMMF-Net is marginally lower by 0.6%
compared to Faster R-CNN, it is important to note that Faster R-CNN is a two-stage
object detection algorithm with significantly higher computational and parameter demands
than the method presented in this paper. Therefore, in a comprehensive assessment that
takes into account both accuracy and efficiency, AMMF-Net delivers superior performance.
Thus, in a comprehensive view, the experimental results strongly favor the superiority of
the proposed model. The proposed model not only has excellent performance in the fine-
grained cocoon detection task, but also shows significant competitive advantages in dealing
with the generalized object detection issue. This provides a solid foundation for the wide
applicability of AMMF-Net in practical applications, which also has positive significance in
advancing the research and applications in the field of general object detection.

Table 4. Comparison of detection results of proposed AMMF-Net and other advanced object detectors
on VOC07 + 12.

Model Params (MB) GFLOPs mAP (%)

Faster RCNN 41.22 182.23 78.2
Cascade RCNN 69.17 238.10 77.2

RetinaNet 37.74 170.21 75.8
YOLOv3 61.95 156.62 73.3

YOLOv5-l 46.73 144.89 76.5
YOLOX-l 54.21 156.01 75.1
YOLOv7-l 37.62 106.47 76.0

AMMF-Net (ours) 21.33 135.40 77.6

3.2. Ablation Study

For a deeper understanding of the proposed AMMF-Net and to validate the effective-
ness of its key designs, we conducted a series of ablation experiments. Specifically, we
designed two ablation experiments, including one concerned with the proposed efficient
feature extraction network, HFE-Net, which is performed on the ImageNet-100 dataset.
The other ablation experiment focuses on the designed efficient multi-scale feature fusion
module, EMFF, which is performed on the constructed mulberry cocoon dataset as well
as the publicly available dataset VOC07 + 12. These experiments aim to provide insights
into the independent contributions of the components of our proposed approach and their
generalization performance on different tasks and datasets.

Ablation study of proposed HFE-Net. In order to verify the superiority of the pro-
posed HFE-Net, a feature extraction network that combines the advantages of a CNN and
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Transformer, we compare the experimental results with those of other advanced feature
extraction networks [12,16,18,25,38–41] such as ResNet, Swin Tranformer, and PVT on the
publicly available dataset ImageNet-100. The experimental results are shown in Figure 13,
where HFE-Net achieves comparable prediction results with other state-of-the-art feature
extraction networks, with a prediction accuracy of 77.3%. However, its parameters and
computational cost are only 11.79 MB and 2.18 GMACs, respectively, which shows that it
significantly outperforms other networks and achieves the best accuracy–speed trade-off.
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Ablation study of the proposed EMFF. Furthermore, we provide an insight into the impact
of the proposed multi-scale feature fusion module (EMFF) on the object detection results.
The experiments are conducted on our optimized RetinaNet architecture in which the
backbone adopts our proposed highly efficient feature extraction network, HFE-Net. The
experimental results are shown in Table 5, which demonstrates that EMFF achieves 1.93%
and 0.8% improvements in detection performance on the silkworm cocoon dataset and the
VOC07 + 12 public dataset, respectively, without significantly increasing the computational
cost and parameters, compared to the classical multi-scale feature fusion module, FPN.
Therefore, it not only verifies the significant performance improvement of the proposed
EMFF for multi-scale feature fusion for fine-grained cocoon recognition, but also shows its
wide applicability in different scenarios.

Table 5. Ablation experimental results of proposed efficient multi-scale feature fusion module (EMFF).

Dataset Method Params (MB) GFLOPs mAP (%)

Cocoon RetinaNet 37.74 170.21 63.99
RetinaNet + HFE-Net 20.03 129.12 64.19

RetinaNet + HFE-Net +
EMFF(AMMF-Net) 21.33 135.40 66.12

VOC07 + 12 RetinaNet 37.74 170.21 75.8
RetinaNet + HFE-Net 20.03 129.12 76.8

RetinaNet + HFE-Net + EMFF 21.33 135.40 77.6

4. Conclusions

To address the problems of small differences between cocoon categories, the small
number of pixels occupied by defects in inferior cocoons, and an insufficient amount of
feature information that can distinguish cocoon categories, we designed AMMF-Net, a
model for fine-grained cocoon detection based on the attention mechanism and multi-scale
feature fusion. Firstly, we proposed a novel hybrid model HFE-Net based on vision Trans-
former and CNN networks for the efficient extraction of fine-grained cocoon image features.
Secondly, we designed a novel multi-scale feature fusion module, EMFF, for improving the
information loss problem of existing multi-scale feature fusion methods, which effectively
improved the detection accuracy of fine-grained silkworm cocoon recognition. Finally,
based on the constructed efficient fine-grained feature extraction network, HFE-Net, and
the optimized multi-scale feature fusion module, EMFF, the object detection algorithm,
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AMMF-Net, for cocoon sorting was constructed. Extensive experiments demonstrated that
the constructed object detection algorithm achieves the best experimental results.

Although the detection results of the proposed AMMF-Net are better than other
existing object detection networks, and some progress has been made in the fine-grained
cocoon recognition method, the proposed method still suffers from the problem of leakage
detection. Therefore, we will further explore the following aspects in our future work:
(1) We will expand the dataset to make it more comprehensive, covering as many real-
world sorting scenarios as possible to enhance the model’s generalization capability. (2) We
will further optimize and improve the rotation object detection algorithm to reduce false
negatives and false positives, thereby enhancing the performance and efficiency of the
algorithm. Additionally, we plan to integrate more modalities of data, such as sensor data,
to build a multimodal data fusion model, aiming to improve the detection and classification
accuracy of silk cocoon sorting, refine cocoon categories, and provide greater value to the
silk industry.

Author Contributions: All authors contributed to this study’s conception and design. Material
preparation, data collection, and analysis were performed by H.Z., Y.M. and X.Z. The algorithm
design and implementation of the model was mainly carried out by X.G. and J.C. The first draft of the
manuscript was written by T.Z. and all authors commented on previous versions of the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This paper is sponsored by the National Study Abroad Fund of China and Key Laboratory
of AI and Information Processing (Hechi University), the Education Department of Guangxi Zhuang
Autonomous Region (2022GXZDSY001), and the 2023 Basic Research Ability Enhancement Project
for Young and Middle age Teachers in Universities of Guangxi (2023KY0632).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The mulberry cocoon dataset generated and analyzed during the
current study are available from the corresponding author upon reasonable request. And the other
data relevant to this research are available in [22,23].

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Wen, C.; Wen, J.; Li, J.; Luo, Y.; Chen, M.; Xiao, Z.; Xu, Q.; Liang, X.; An, H. Lightweight Silkworm Recognition Based on

Multi-Scale Feature Fusion. Comput. Electron. Agric. 2022, 200, 107234. [CrossRef]
2. Nahiduzzaman, M.; Chowdhury, M.E.H.; Salam, A.; Nahid, E.; Ahmed, F.; Al-Emadi, N.; Ayari, M.A.; Khandakar, A.; Haider,

J. Explainable Deep Learning Model for Automatic Mulberry Leaf Disease Classification. Front. Plant. Sci. 2023, 14, 1175515.
[CrossRef]

3. Xiong, H.; Cai, J.; Zhang, W.; Hu, J.; Deng, Y.; Miao, J.; Tan, Z.; Li, H.; Cao, J.; Wu, X. Deep Learning Enhanced Terahertz Imaging
of Silkworm Eggs Development. iScience 2021, 24, 103316. [CrossRef] [PubMed]

4. Wang, Q.; Li, Z.; Gu, T.; Ye, F.; Wang, X. Cocoons Counting and Classification Based on Image Processing. In Proceedings of
the 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI),
Chengdu, China, 17–19 October 2020; pp. 148–152.

5. Guo, F.; He, F.; Tao, D.; Li, G. Automatic Exposure Correction Algorithm for Online Silkworm Pupae (Bombyx Mori) Sex
Classification. Comput. Electron. Agric. 2022, 198, 107108. [CrossRef]

6. Sumriddetchkajorn, S.; Kamtongdee, C.; Chanhorm, S. Fault-Tolerant Optical-Penetration-Based Silkworm Gender Identification.
Comput. Electron. Agric. 2015, 119, 201–208. [CrossRef]

7. Tao, D.; Wang, Z.; Li, G.; Qiu, G. Radon Transform-Based Motion Blurred Silkworm Pupa Image Restoration. Int. J. Agric. Biol.
Eng. 2019, 12, 152–159. [CrossRef]

8. Cai, J.; Yuan, L.; Liu, B.; Sun, L. Nondestructive Gender Identification of Silkworm Cocoons Using X-Ray Imaging with
Multivariate Data Analysis. Anal. Methods 2014, 6, 7224–7233. [CrossRef]

9. Vasta, S.; Figorilli, S.; Ortenzi, L.; Violino, S.; Costa, C.; Moscovini, L.; Tocci, F.; Pallottino, F.; Assirelli, A.; Saviane, A.; et al.
Automated Prototype for Bombyx Mori Cocoon Sorting Attempts to Improve Silk Quality and Production Efficiency through
Multi-Step Approach and Machine Learning Algorithms. Sensors 2023, 23, 868. [CrossRef] [PubMed]

10. Yang, C.; Peng, J.; Cai, J.; Tang, Y.; Zhou, L.; Yan, Y. Research and Design of a Machine Vision-Based Silk Cocoon Quality
Inspection System. In Proceedings of the 2023 IEEE 10th International Conference on Cyber Security and Cloud Computing

https://doi.org/10.1016/j.compag.2022.107234
https://doi.org/10.3389/fpls.2023.1175515
https://doi.org/10.1016/j.isci.2021.103316
https://www.ncbi.nlm.nih.gov/pubmed/34778731
https://doi.org/10.1016/j.compag.2022.107108
https://doi.org/10.1016/j.compag.2015.10.004
https://doi.org/10.25165/j.ijabe.20191202.3681
https://doi.org/10.1039/C4AY00940A
https://doi.org/10.3390/s23020868
https://www.ncbi.nlm.nih.gov/pubmed/36679667


Agriculture 2024, 14, 700 19 of 20

(CSCloud)/2023 IEEE 9th International Conference on Edge Computing and Scalable Cloud (EdgeCom), Xiangtan, China, 1–3
July 2023; pp. 369–374.

11. Li, S.; Sun, W.; Liang, M.; Shao, T. Research on the Identification Method of Silkworm Cocoon Species Based on Improved
YOLOv3. In Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE),
Harbin, China, 25–27 December 2020; pp. 1119–1123.

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

13. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

14. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 24 May 2019; pp. 6105–6114.

15. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In
Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30.

16. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929.

17. Jiang, Z.-H.; Hou, Q.; Yuan, L.; Zhou, D.; Shi, Y.; Jin, X.; Wang, A.; Feng, J. All Tokens Matter: Token Labeling for Training Better
Vision Transformers. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: New
York, NY, USA, 2021; Volume 34, pp. 18590–18602.

18. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using
Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada,
10–17 October 2021; pp. 10012–10022.

19. Dong, X.; Bao, J.; Chen, D.; Zhang, W.; Yu, N.; Yuan, L.; Chen, D.; Guo, B. CSWin Transformer: A General Vision Transformer
Backbone with Cross-Shaped Windows. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 12124–12134.

20. Li, G.; Xu, D.; Cheng, X.; Si, L.; Zheng, C. SimViT: Exploring a Simple Vision Transformer with Sliding Windows. In Proceedings
of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022; pp. 1–6.

21. Maaz, M.; Shaker, A.; Cholakkal, H.; Khan, S.; Zamir, S.W.; Anwer, R.M.; Shahbaz Khan, F. EdgeNeXt: Efficiently Amalgamated
CNN-Transformer Architecture for Mobile Vision Applications. In Proceedings of the Computer Vision—ECCV 2022 Workshops;
Karlinsky, L., Michaeli, T., Nishino, K., Eds.; Springer: Cham, Switzerland, 2023; pp. 3–20.

22. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Kai, L.; Li, F.-F. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 22–24 June 2009; pp. 248–255.

23. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

24. Xiao, T.; Singh, M.; Mintun, E.; Darrell, T.; Dollar, P.; Girshick, R. Early Convolutions Help Transformers See Better. In Proceedings
of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2021; Volume 34,
pp. 30392–30400.

25. Li, J.; Xia, X.; Li, W.; Li, H.; Wang, X.; Xiao, X.; Wang, R.; Zheng, M.; Pan, X. Next-ViT: Next Generation Vision Transformer for
Efficient Deployment in Realistic Industrial Scenarios. arXiv 2022, arXiv:2207.05501.

26. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in Convolutional Network. arXiv 2015,
arXiv:1505.00853.

27. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

28. Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 2117–2125.

29. Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October 2019–2
November 2019; pp. 9197–9206.

30. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

31. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
32. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
33. Jocher, G.; Stoken, A.; Borovec, J.; NanoCode012; ChristopherSTAN; Changyu, L.; Laughing; Hogan, A.; Lorenzomammana;

Tkianai; et al. Zenodo, Ultralytics/Yolov5: V3.0; Zenodo: Geneva, Switzerland, 2020. [CrossRef]
34. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430.
35. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object

Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023; pp. 7464–7475.

https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.5281/zenodo.3983579


Agriculture 2024, 14, 700 20 of 20

36. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

37. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

38. Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. PVT v2: Improved Baselines with Pyramid Vision
Transformer. Comp. Visual Media 2022, 8, 415–424. [CrossRef]

39. Li, Y.; Yuan, G.; Wen, Y.; Hu, J.; Evangelidis, G.; Tulyakov, S.; Wang, Y.; Ren, J. EfficientFormer: Vision Transformers at MobileNet
Speed. Adv. Neural Inf. Process. Syst. 2022, 35, 12934–12949.

40. Mehta, S.; Rastegari, M. Mobilevit: Light-Weight, General-Purpose, And Mobile-Friendly Vision Transformer. arXiv 2022,
arXiv:2110.02178.

41. Yu, W.; Luo, M.; Zhou, P.; Si, C.; Zhou, Y.; Wang, X.; Feng, J.; Yan, S. MetaFormer Is Actually What You Need for Vision. In
Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022; pp. 10809–10819.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1007/s41095-022-0274-8

	Introduction 
	Materials and Methods 
	Dataset 
	Overview Architecture 
	Hybrid Feature Extraction Network (HFE-Net) 
	Local Feature Extraction Block (LFEB) 
	Global Feature Extraction Block (GFEB) 

	Efficient Multi-Scale Feature Fusion Module (EMFF) 
	Overall Framework of the Model 
	Implementation Details 

	Results and Discussion 
	Performance of Designed AMMF-Net 
	Ablation Study 

	Conclusions 
	References

