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Abstract: The oxidative stability index (OSI) and fatty acid (FA) composition of extra virgin olive
oils (EVOOs) are key parameters in the characterization of new varieties in breeding programs.
Their determination through traditional methods (Rancimat and gas chromatography, respectively)
is expensive and time-consuming. Therefore, there is a need to develop rapid and cost-effective
analytical procedures. This study aimed to evaluate the potential use of near-infrared spectroscopy
(NIRS) for analyzing OSI and FA composition in EVOOs. A total of 318 samples sourced from
different origins were evaluated using both FT-NIR MPA and MicroNIR instruments in transmittance
mode, with wavelengths ranging from 1100 to 2500 nm and 908 to 1676 nm, respectively. Different
accuracies were obtained in the models developed for the different evaluated traits, with simpler
models (using a lower number of latent variables) for the MPA analyzer in all cases. Additionally,
consistent results between instruments for the partitioning of the variance and heritability estimation,
and the reliable ranking of genotypes were obtained from one of the sample sets tested. In summary,
models derived from PLS regression using spectroscopic data of both instruments demonstrated
promising results in determining these EVOO traits, facilitating their evaluation and selection of
genotypes, particularly in breeding programs.

Keywords: olive breeding; EVOO; fatty acid composition; oxidative stability; comparative trials; near
infrared; Olea europaea

1. Introduction

Extra virgin olive oil (EVOO), a key component of the Mediterranean diet, is renowned
for its various advantageous effects on human health, nutritional value, and remarkable
sensory profile. These properties are attributed to its chemical composition, which presents
distinctive characteristics compared with other vegetable oils. The saponifiable fraction,
constituting a significant portion of the chemical composition of virgin olive oil (98%), is
composed of triglycerides, glycerol esters, and fatty acids (FA), while the unsaponifiable
fraction contains a small proportion of various essential compounds such as polyphenols,
tocopherols (vitamin E), and chlorophyl [1,2]. The FA profile of EVOO is predominantly
composed of monounsaturated fats, with oleic acid (C181) being the most common one,
which are widely recognized as one of the healthiest dietary fat due to their capacity to im-
prove cholesterol and promote cardiovascular health [2–4]. Furthermore, FA composition
significantly influences the oxidative stability index (OSI) of olive oil, particularly the ratio
of oleic to linoleic acid (C181/182), which is widely considered an EVOO quality indica-
tor [5–7]. Therefore, OSI and FA composition are interrelated and are indirect indicators
of the commercial, nutritional, and sensory properties of EVOO. Therefore, these quality
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parameters are crucial in the characterization of new varieties in breeding programs. Their
determination by traditional methods, Rancimat and gas chromatography, respectively, are
time-consuming and produce waste. For instance, the Rancimat method allows only eight
samples per day to be analyzed with a single instrument, and the cleaning of instrument
accessories used in the analysis can be challenging. Therefore, with those traditional meth-
ods, it is not possible to analyze large numbers of genotypes in a breeding population and
early-stage select for the OSI or FA content.

The use of near-infrared spectroscopy (NIRS) could represent an easier and faster
non-destructive alternative for these analyses, enabling the rapid evaluation of numerous
samples. NIRS is an analytical measurement technique that utilizes the near-infrared region
of the electromagnetic spectrum with applications in many different products, including
agri-food products [8].

From past to present, various spectroscopic techniques together with chemometric
algorithms have been used for different purposes in analyzing olive samples such as
leaves, fruits, and oils. Studies with visible and near-infrared reflectance spectroscopy
have indicated that this method can be used to distinguish between young and adult olive
leaves to facilitate breeding programs [9]. The FT-MIR technique was used with powders
from leaves of five different Tunisian varieties and was reported to be 100% successful in
differentiating cultivars [10]. In studies using the NIR method on intact olives, coefficients
of determination higher than 80% were obtained for models regarding fruit moisture, oil
content, C181, and C182 content [11,12]. In [13], the authors also concluded that FT-NIR
methods are useful for estimating oil and moisture content in olive and olive pomace.
NIRS, Vis/NIRS, and FT-NIR, in combination with an artificial neutral network for the
characterization of olives, estimating moisture content and controlling the oil elaboration
process, gave promising results [14–17]. In [18], the authors highlighted the performance
of the NIR method in detecting the quantification of adulteration of olive oil with almost
100% precision. Bellincontro et al. demonstrated that portable NIR-AOTF spectroscopy is
an innovative, fast, and dependable approach for monitoring the oil accumulation [19] and
prediction of phenolic compounds during the ripening process [20] in intact olive fruits
in the field. Many studies with spectroscopic methods have been utilized to construct
predictive models of various quality parameters of EVOO and other edible oils, such as
OSI, FA compositions, peroxide index, squalene, conjugated dienes, alkyl and ethyl ester
content, polyphenol content, color pigments, and chlorophyll [21–25]. However, NIRS has
not been tested so far for its ability to accurately evaluate the quality parameters in a large
number of oil samples needed in olive breeding programs.

For this reason, this study aims to evaluate the potential use of NIRS for the analysis
of OSI and FA composition in EVOO and develop predictive models for estimating them
with two cost-effective and rapid non-destructive NIR instruments. Full cross-validation
models were analyzed to test whether the predicted results for those important quality
components could be used as selection criteria in olive breeding programs, provided that
the estimation of genetic parameters is consistent with reference methodologies.

2. Materials and Methods
2.1. Plant Materials

In this study, a total of 318 samples from different plant materials were used, including
the core collection of the World Olive Germplasm Bank (WOGM) at IFAPA ‘Alameda
del Obispo’ in Cordoba [26] and advanced selections from the IFAPA breeding program
and cultivar comparative trials. Two kilograms of olive fruit samples were randomly
handpicked from each elementary plot in different periods from mid-October to mid-
November 2022. Following the harvest, the olive fruit samples were promptly transferred
to the laboratory and refrigerated at 4 ◦C until olive oil extraction, which took place within
24 h.
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2.2. Olive Oil Extraction

The extraction process was conducted with healthy and undamaged fruits. Olive
oils were obtained using the Abencor system (Comercial Abengoa, S.A., Seville, Spain),
a laboratory-scale version of an industrial olive oil mill consisting of a stainless hammer
mill, thermo-mixer, and centrifuge. Initially, olive fruits were ground using a 5 mm sieve.
Subsequently, 1.7 g of talc per 100 g of olive paste was added, followed by malaxation at
28 ◦C for 30 min. Finally, it was centrifuged at 3500 rpm for 2 min and left for approximately
2–3 h for decantation. The olive oils, filtered using qualitative filter paper, were stored in
dark bottles at +4 ◦C until analysis.

2.3. Oxidative Stability Index

The OSI of the oils was evaluated using the Rancimat system (892 Professional Ranci-
mat, Metrohm AG, Herisau, Switzerland). Each sample (2.5 g) was heated at 120 ◦C in the
Rancimat apparatus with a continuous airflow of 20 L/h until a sudden increase in water
conductivity occurred due to the adsorption of volatiles derived from oil oxidation. This
period, known as induction time, was measured in hours.

2.4. Fatty Acid Composition

FA composition was analyzed by gas chromatography (GC) on a PerkinElmer Clarus
600 GC (PerkinElmer Inc., Waltham, MA, USA) equipped with a BPX70 30 m × 0.25 mm
internal diameter × 0.25 µm film thickness capillary column (SGE Analytical Science
Pty Ltd., Ringwood, Australia). Hydrogen was used as carrier gas at a constant flow of
0.8 mL/min. A split injector and flame ionization detector were maintained at 300 ◦C. The
initial oven temperature was 140 ◦C, maintained for 2 min, followed by a rate increase of
20 ◦C/min up to 250 ◦C, maintained for 2 min. FA composition was calculated as % for
each component. The main FAs, palmitic acid (C160), palmitoleic (C161), stearic acid (C180),
oleic acid (C181), linoleic acid (C182), and linolenic acid (C183), and the ratio of oleic to
linoleic acid (C181/182) were monitored in this work.

2.5. FT-NIR MPA and MicroNIR Measurements

FT-NIR MPA (Opus Bruker, Germany) and a portable MicroNIR™ Pro 1700 miniature
spectrometer fitted with a liquid cell holder were used for this study. For FT-NIR MPA,
spectral data were collected using Opus v. 7.5 software (Bruker Optik GmbH, Ettlingen,
Germany). Olive oil spectra were collected in transmittance mode, and spectral data
between 1100 and 2500 nm, every 2 nm, were used for chemometric analyses. For MicroNIR
software, version 2.1 of Viavi Solutions Inc. (Santa Rosa, CA, USA) was used. Spectra were
collected in the range of 908 to 1676 nm, with a resolution of 6.20 nm between points.

The acquisition of spectra was carried out by transmittance using disposable vial
accessories for each instrument.

2.6. Data Analysis and Chemometrics

Unscrambler® X 10.4 software (CAMO A/S, Trondheim, Norway) was employed
for the analysis of spectra from 318 olive oil samples. The baseline spectral correction of
data was conducted initially and applied in all subsequent analyses. A wavelength range
of 1100 to 2200 nm was utilized for FT-NIR MPA due to detector saturation beyond this
range. For the MicroNIR, the wavelength range was 908 to 1676 nm. Various mathematical
pretreatments, including multiplicative scatter correction and derivatives, were examined
to enhance the predictive accuracy of the models.

Principal component analysis (PCA) was used to identify spectral outliers. Partial least
squares (PLS) regression analysis was conducted using near-infrared spectral variables,
with OSI and FA reference data as dependent variables, to develop predictive models.

The models’ performance was assessed through full cross-validation, employing the
leave-one-out method, and separate models were developed to estimate both OSI and FA
for FT-NIR MPA and MicroNIR instruments. The correlations between actual and predicted
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values, bias, and root mean square error of cross-validation were utilized to evaluate the
performance of calibrations and cross-validation outcomes. The ratio of prediction to
deviation (RPD), defined as the ratio of the standard deviation for any given constituent to
the standard error of cross-validation or prediction for the same constituent, and the range
error ratio (RER), defined as the ratio between the range of data for a specific constituent
and the standard error of cross-validation or prediction for the same constituent, were also
calculated to assess the relative effectiveness of each model [27].

Results from the core collection and comparative field trials were used to estimate
genetic parameters and compare results of reference vs. NIR predicted from both instru-
ments. In the core collection, 36 cultivars and 2–3 trees per cultivar were evaluated. The
comparative field trials involved 4 cultivars (‘Arbequina’, ‘Arbosana’, ‘Koroneiki’, and
‘Sikitita’) in four environments in the provinces of Cordoba (with and without irrigation),
Granada, and Jaen and three replicates of 30 plants per elementary plot. ANOVA of the
reference and predicted data of OSI and FA was applied for variance component estimation
from expected mean squares as similarly reported previously for fruit traits [28], according
to the following statistical models:

For comparative field trials, Pijk = µ + Gi + Lj + (G × L)ij + εijk, where Pijk is the
phenotypic value of k replication of the i genotype in the j location, µ is the overall mean,
Gi is a random effect contributed by the i genotype, Lj is a random effect of the j location,
(G × L)ij is the interaction between the i genotype and the j location, and εijk is the random
residual error effect for the k measured replication. ANOVA provided the variance among
genotypes (σ2G) and among locations (σ2L), associated with the genotype x location
interaction (σ2GL), and the residual error effect for the measured samples (σ2ε).

For the core collection, Pij = µ + Gi + εij, where Pij is the phenotypic value of j replication
of the i genotype, µ is the overall mean, Gi is a random effect contributed by the i genotype,
and εij is the random residual error effect for the j measured replication. ANOVA provided
the variance among genotypes (σ2G) and the residual error effect for the measured samples
(σ2ε).

In both sets of data, the environmental variance for a genotype (σ2E) was estimated,
respectively, as σ2E = σ2L/l + σ2GL/l + σ2ε/ls, where l is the number of locations and s is
the number of samples for comparative field trials, and σ2E = σ2ε/s, where s is the number
of samples for the core collection. The broad-sense heritability of all studied traits was
estimated as the ratio between the genotypic and the phenotypic variances: H2 = σ2G/σ2P
= σ2G/(σ2G + σ2E).

For genotypes of the core collection, Spearman correlation was also performed to com-
pare the rankings of genotypes obtained from the reference and both MPA and MicroNIR
instruments.

3. Results
3.1. Reference Data

Descriptive statistics and variability histograms were constructed for FA, including
C181/182, C160, C161, C180, C181, C182, and C183, and for OSI (Table 1, Figure 1). The
values of OSI and FA components exhibited distinct variability. The highest ranges of
variations for the reference data were obtained from C181 and OSI values, with ranges of
41.04–84.57% and 0.40–38.73%, respectively. All reference data exhibited positive skewness,
with the highest skewness observed in calculated C181/182 values, except for C181 (−1.31).
Except for C181, C182, and the ratio of these two, the remaining reference values exhibited
a normal distribution in terms of skewness. Likewise, positive kurtosis was observed for
all reference data. Only OSI and C160 showed normal distribution in terms of kurtosis.
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Table 1. Descriptive statistics for the oxidative stability index (OSI, h) and fatty acids (FA): ratio of
oleic to linoleic acid (C181/182, %), palmitic acid (C160, %), palmitoleic (C161, %), stearic acid (C180,
%), oleic acid (C181, %), linoleic acid (C182, %), and linolenic acid (C183, %).

Mean SD 1 Minimum Maximum Skewness Kurtosis

OSI 14.68 6.46 0.40 38.73 0.73 0.80
C160 15.46 2.82 8.73 23.65 0.16 0.08
C161 1.50 0.62 0.03 4.20 0.98 1.56
C180 2.54 0.56 0.00 4.70 0.35 1.27
C181 68.34 6.65 41.04 84.57 −1.31 2.62
C182 10.31 4.72 2.52 28.94 1.36 2.31
C183 0.81 0.23 0.00 1.86 0.31 2.21

C181/182 8.27 4.35 1.42 33.56 1.58 4.88
1 SD: Standard deviation.
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3.2. Olive Oil Spectrum

The olive oil spectra obtained from the samples analyzed in this study are consistent
with findings from prior studies [21,24,29–32]. The most prominent absorption peaks were
detected at wavelengths of 1208 and 1390 nm for MicroNIR and, in addition to these, at
wavelengths of 1726, 1762, and 2146 nm for the MPA instrument (Figure 2a,b). The spectral
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region between 1090 and 1650 nm, where the spectra from the two instruments intersect,
exhibits high similarity.
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3.3. Principal Component Analysis (PCA)

As an exploratory data analysis, PCA was performed on the full dataset for both
instruments. The first two principal components of PCA explained 78% and 14%, and
65% and 30% of the total variance in MPA and MicroNIR, respectively. The score and
influence plots from PCA allowed the identification of four samples with high leverage and
a high residual in one or both instruments, and therefore, they were removed for further
analysis as potential outliers’ samples, i.e., samples poorly described and highly distant
to model (Figures S1 and S2: Score and influence plot of the first two PCs obtained by
PCA for 318 EVOO samples in MPA and MicroNIR). These four outlier samples showed
distinctive higher absorbance across the entire wavelength region that could be attributed
to differences in light scattering for these samples due to the decantation and filtration
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processes. The rest of the analyses were conducted after removing these four outliers,
resulting in a dataset comprising 314 samples.

3.4. Partial Least Squares (PLS) Regression Models

PLS regression models were constructed using absorbance data ranging from 1100
to 2192 nm for the MPA instrument and from 1100 to 1650 nm for MicroNIR, which were
identified as the optimal ranges. The models were built using full cross-validation after
excluding four outliers and realizing baseline correction. None of the other mathematical
pretreatments tested significantly improved the prediction accuracy of the models.

The results are shown in Table 2 for both instruments. The best results in terms
of R2, slope, RPD, and RER for both instruments were observed for C182, followed by
C181. In addition, the number of PLS factors used in modeling these two components was
considerably lower for MPA than for MicroNIR. In general, a lower number of factors were
adequate for accurate modeling using the MPA instrument.

Table 2. Statistical parameters of cross-validation for the best models for predicting the oxidative
stability index (OSI) and fatty acids (FA): ratio of oleic to linoleic acid (C181/182), palmitic acid
(C160), palmitoleic (C161), stearic acid (C180), oleic acid (C181), linoleic acid (C182), and linolenic
acid (C183).

NPLS RMSECV R2CV Slope RPD RER

MPA
OSI 9 2.99 0.79 0.80 2.16 12.81

C160 9 1.25 0.80 0.81 2.26 11.92
C161 13 0.30 0.77 0.80 2.07 13.92
C180 14 0.33 0.67 0.69 1.70 14.41
C181 4 1.91 0.92 0.91 3.48 22.82
C182 3 0.83 0.97 0.97 5.69 31.91
C183 14 0.15 0.60 0.63 1.53 12.63

C181/182 3 2.43 0.69 0.70 1.79 13.23

MicroNIR
OSI 14 3.14 0.76 0.79 2.06 12.20

C160 14 1.19 0.82 0.83 2.37 12.49
C161 20 0.35 0.69 0.74 1.77 12.02
C180 18 0.39 0.52 0.62 1.44 11.99
C181 10 1.60 0.94 0.94 4.16 27.28
C182 9 0.74 0.98 0.98 6.38 35.49
C183 16 0.18 0.39 0.50 1.28 10.24

C181/182 9 2.52 0.66 0.71 1.73 12.73

NPLS: number of factors used for PLS; RMSECV: root mean square error of cross-validation; R2CV: coefficient of
determination of calibration and cross-validation, respectively; RPD: ratio of prediction to deviation; RER: range
error ratio.

The regression coefficient plots provide an insight into the variables that contribute
most to the model. Regression coefficients showed similar trends for all the components
analyzed, with the main areas of influence corresponding to the main absorption peaks
of EVOO. Thus, for instance, areas around 1750 and 2150 nm represent the highest values
of regression coefficients for C181 and C182, in opposite directions due to the negative
correlation between these components (Figure 3a). Regression coefficients of models
for OSI also showed a similar pattern to C181, although other important spectral areas
also contribute to this trait. Similar regression coefficients were also obtained for both
instruments tested (Figure 3b), but regression coefficients were more clearly defined for
MPA compared with MicroNIR.
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However, models for the C181/C182 ratio showed less accurate models than expected
according to individual models for its components. As can be inferred from scatter plots,
linear regression does not seem to represent the best relationship between reference and
predicted values for this character (Figure 5a). Indeed, a nonlinear asymptotic regression
provided a much more accurate regression (Figure 5b). Thus, a high accuracy correlation
for the C181/C182 ratio was also obtained when calculated from individual predicted
values of its components (Figure 5c).
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reference vs. MPA and MicroNIR predicted values. 

Trait Instrument Genotype Error H2 r 
OSI Reference 90.39 9.61 0.90  

 MPA 87.67 12.33 0.88 0.87 *** 
 MicroNIR 89.29 10.71 0.89 0.89 *** 

C181 Reference 96.50 3.50 0.97  

Figure 5. Predicted vs. reference plots from PLS models for both instruments MPA and MicroNIR for
the C181/C182 ratio: (a) represented by linear regression, (b) represented by nonlinear asymptotic
regression, and (c) represented by linear regression with data obtained from calculated individual
predicted values.

ANOVA was conducted using reference values and predicted values of NIRS, followed
by the calculation of variance components (genotype, environment, error) and H2 for
OSI and C181 for both instruments in the two sample sets evaluated (Tables 3 and 4).
For comparative field trials, a more similar partitioning of the variance a H2 estimation
was found between reference and MPA predicted values, while different results were
obtained for MicroNIR, which provided lower and higher estimates of H2 for OSI and
C181, respectively. For the core collection, the results for the partitioning of the variance a
H2 estimation were quite similar for all instruments and traits tested. Additionally, high
and significant Spearman rank correlations were obtained in all cases.

Table 3. Variance components (%) and heritability (H2) estimates from comparative field trials
(Genotype x Environment, GxE) comparing reference vs. MPA and MicroNIR predicted values.

Trait Instrument Genotype Environment GxE Error H2

OSI Reference 61.00 26.19 2.66 10.14 0.78
MPA 71.20 22.94 0.23 5.63 0.86

MicroNIR 23.67 53.72 5.81 16.80 0.43

C181 Reference 54.90 38.31 1.83 4.96 0.79
MPA 35.73 58.81 0.00 5.45 0.64

MicroNIR 77.38 16.22 3.31 3.08 0.91
OSI: oxidative stability index; C181: oleic acid.
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Table 4. Variance components (%) and heritability (H2) estimates from core collection comparing
reference vs. MPA and MicroNIR predicted values.

Trait Instrument Genotype Error H2 r

OSI Reference 90.39 9.61 0.90
MPA 87.67 12.33 0.88 0.87 ***

MicroNIR 89.29 10.71 0.89 0.89 ***

C181 Reference 96.50 3.50 0.97
MPA 95.88 4.12 0.96 0.98 ***

MicroNIR 94.37 5.63 0.94 0.98 ***
OSI: oxidative stability index; C181: oleic acid; r: Spearman rank correlation with reference data. *** significant at
p < 0.001.

4. Discussion

In the present study, the potential use of NIRS to analyze OSI and FA composition
in EVOO was tested by developing predictive models for estimating them with two cost-
effective and rapid non-destructive NIR instruments. The comprehensive set of EVOO used
in this study provided a wide variability for the traits of interest, wider than previously
reported in other works. In [33], the author used a total of 172 reference data for modeling
FA components, with C181 levels ranging from 56.54% to 79.50% (SD = 4.20) and C182
levels ranging from 3.86% to 21.92% (SD = 3.54). For OSI, a total of 192 reference data
were used with a range of 1.33–18.55 h. In their study on FA conducted with 70 sam-
ples, the authors in [34] used a dataset of 70 olive oil values with a range of 58.90–77.90%
(SD = 2.75) for C181 and 0–15.68% (SD = 2.95) for C182. In [21], the authors used a dataset
of 147 samples for calibration with a range of 15.2−90.6 for OSI. In [35], the authors con-
ducted a similar study on FA with 64 samples, obtaining reference values as follows: C181,
65.66–76.59%; C182, 4.90–15.12% (SD = 2.95); and OSI, 0.10–4.41 h. In [6], the authors
obtained reference values from 82 samples for FA in their study as follows: C181, 56–80%
(SD = 5); C182, 3–22% (SD = 4); and C181/C182, 3–25% (SD = 6). When comparing the
reference data used in previous studies with that of this study, it is observed that the num-
ber of samples, the variations obtained, and the ranges of the reference values are lower.
Although models have been developed to predict OSI and FA composition, comparing
them is difficult due to differences in the reference methods and spectrometers used.

A prominent absorbance band centered at 1208 nm is indicative of the second overtone
vibrations of C–H and CH = CH– bonds within the oil. Additionally, a significant shift in
peak intensity at 1726 nm, associated with the stretching vibrations of the carbonyl C = O
group found in the ester linkages between FA and the glycerol backbone present in oils
and fats, aligns with findings from previous studies [25,31,32,36]. Spectral regions between
1300 and 1700 nm and 1800 and 2250 nm have been previously identified as most crucial
for OSI models developed using NIRS [21]. In this study, the regression coefficients of the
models for OSI also showed a similar pattern to C181. Still, other important spectral areas,
such as 1300−1700 nm, also contribute to this feature, as noted in previous studies.

Several parameters were used to evaluate the performance of the calibrations devel-
oped. RMSECV aids in evaluating calibration model complexity by offering an average
expected uncertainty for new samples and assisting in determining the optimal number of
latent variables to minimize errors, while metrics such as correlation (R2) and systematic
deviation (bias) between predicted and actual values are also utilized to assess the quality
of calibration models [31]. Previous research indicates that R2CV values ranging from 0.70
to 0.89 may be deemed indicative of good precision [24]. RPD values between 2 and 2.5
indicate that coarse quantitative predictions are possible, and values between 2.5 and 3 or
above correspond to good and excellent prediction accuracy, respectively [37]. Finally, RER
exceeding 4 is deemed acceptable for screening purposes in breeding programs, above 10
for quality control, and beyond 15 for quantification [27,38].

In the current study, excellent results were obtained for C181 and C182 with both MPA
and MicroNIR instruments, and good results for all the other traits. In general, more simple



Agriculture 2024, 14, 721 11 of 13

models were obtained for an MPA instrument compared with MicroNIR, with a lower
number of PLS factors and more clearly defined regression coefficient plots. Mailer et al. [33]
developed NIRS models for OSI with an R2CV value of 0.83 and an SECV value of 0.973.
Manley et al. [34] compared Büchi and PE spectra instruments and obtained R2 values of
0.56 and 0.53; RPD values of 1.50 and 1.44, respectively, for C181; R2 values of 0.88 and
0.90; and an RPD value of 2.81 for both instruments for C182. Cayuela-Sánchez et al. [21]
reported an R2CV value of 0.93 and an SEC value of 6.07 for OSI. Uncu et al. [35] obtained
an R2 value of 0.81 and an RMSECV value of 0.68 for OSI, an R2 value of 0.81 and an
RMSECV value of 0.97 for C181, and an R2 value of 0.91 and an RMSECV value of 0.76
for C182. Milinovic et al. [6] reported R2 values of 0.95, 0.99, and 0.86; RMSE values
of 1.09, 0.43, and 2.09; and residual predictive deviations (RPD) of 4.5, 9.3, and 2.7 for
C181, C182, and their ratio, respectively. As is well established, calibration studies benefit
from a substantial sample size, yet merely increasing the sample count may not enhance
calibration accuracy, particularly when values are closely clustered. Instead, the focus
should be on ensuring a wide sample range and a uniform distribution [32,39]. While
direct comparisons between studies are challenging due to methodological and equipment
differences, it is noteworthy that our study incorporated the largest dataset of reference
values. Additionally, it should be noted that none of the parameters used for testing the
performance of the models and comparison with previous works should be considered as
a universal, one-index-for-all-cases statistic allowing untroubled comparison across and
between models [40].

In order to test a practical application of the model developed in olive breeding
programs, an estimation of heritability was compared from the results obtained from each
methodology. The ANOVA of the reference data for OSI and C181 indicates a predominant
contribution of genotype, consistent with findings from prior research by using similar
sample sets [41,42]. Different results were derived from NIRS-predicted values of both
instruments according to the two sample sets tested. Thus, for comparative field trials,
contrasting results were obtained for the partitioning of the variance a H2 estimation for
the evaluated traits. These results could be attributable to the limited number of genotypes
and location tested compared with similar previous works for fruit traits [28]. Further
analysis should be tested in future works in this direction with larger sample sets. However,
for the core collection sample set, the results for the partitioning of the variance a H2

estimation were highly consistent for all instruments and traits tested. Additionally, the
high and significant Spearman rank correlations obtained in all cases indicates that a similar
ranking of cultivars could be obtained from reference and the NIRS-predicted data from
both instruments, and therefore, a confident selection of genotypes could be achieved from
NIRS-predicted data. This is a crucial result for recommending the application of NIRS in
olive breeding programs.

5. Conclusions

The objective of this study was to evaluate the potential use of near-infrared spec-
troscopy to analyze the OSI and FA composition in EVOO. In this study, high robustness
was obtained in general for models developed with two instruments, with different accura-
cies for the different evaluated traits. These results allow the use of NIRS as an alternative to
conventional reference methodologies, providing an easier and faster alternative for these
analyses, in a non-destructive way and without using chemical reagents. A novel approach
not previously explored in NIRS studies, to the best of the authors’ knowledge, was tested
from the comparison of heritability estimates from different instruments. Even though
some contrasting results were obtained for the partitioning of the variance a H2 estimation
from one of the sample sets tested, the consistency of results and the reliable ranking of
genotypes in the other sample set underscore the high usefulness of NIRS equipment for
selection purposes, which could be particularly useful for the comparison of numerous
genotypes in olive breeding programs.
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