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Abstract: Nitro-substituted neonicotinoid insecticides have been widely used until recently to con-
trol a range of important agricultural pests. Growing concerns about thiamethoxam’s toxicity to
pollinators have led to its use being restricted or to it even being banned in some countries. Never-
theless, in Asia, Africa, Southeast Europe, and South America thiamethoxam is still used. Although
thiamethoxam has been intensively studied all over the world, its dissipation dynamics have not been
studied in depth. The subject of the present study was to (1) develop and validate a QuEChERS/LC-
MS/MS protocol for the determination of thiamethoxam and its main metabolite clothianidin in
samples of young oilseed rape plants with high chlorophyll content, and (2) make a comparison of
the degradation behaviors of thiamethoxam and clothianidin in two crops of winter oilseed rape,
cultivated on soils with different pH. For determination of thiamethoxam and clothianidin in plant
material with high chlorophyll content, a QuEChERS/LC–MS/MS protocol enabling the detection of
low levels of compound concentrations was developed. The proposed clean-up protocol provided
recoveries within the range of 92–98% for the compounds under analysis. Precision, calculated as
relative standard deviation, was below 20%. Satisfactory linearity of the method was obtained in
the concentration range under analysis (0.001–1.0 mg kg−1). Differences in degradation of both
insecticides, depending on the physico-chemical properties of the soil, were observed. Thiamethoxam
and clothianidin residues disappeared in plants very quickly, and they were not detected below the
limit of quantitation in oilseed rape at the flowering stage.

Keywords: nitro-substituted neonicotinoids; oilseed rape plants; Brassica napus; dissipation;
clean-up protocol

1. Introduction

Brassica napus (oilseed rape, rapeseed) is an important oil crop worldwide [1], with
production steadily growing over recent years. In total, 70.62 million tons of oilseed rape
were produced worldwide in the season of 2021/2022, which makes this plant the second
most predominant oil crop, closely following soya [2,3]. This results from the versatility of
the application of rape as a raw material for the production of food, spices, pharmaceuticals,
cosmetics, animal feed, and technical fats, including, above all, biofuels. Biofuel from
oilseed rape represents 79% of biofuel production in the EU and 13% in the United States.
Oilseed rape is also the first valuable forage for honeybees and other insect pollinators
during the growing season [4]. Its honey yield, depending on the cultivated variety and
the course of weather during the flowering period, is estimated at 80–140 kg ha−1, and
the pollen output at 100–150 kg ha−1. However, in the vegetation period, this popular oil
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crop is attacked by more than a dozen pest species, which makes insecticide protection
extremely difficult and demanding [5,6].

Neonicotinoid insecticides (NIs) were first developed in the early 1990s, and since then
the application of this insecticide class has quickly covered a wide range of agricultural
products [7,8]. Neonicotinoids may be divided into three groups: N-nitroguanidines
(acetamiprid, thiamethoxam, clothianidin, dinotefuran), nitromethylenes (nitenpyram), and
N-cyanoamidins (imidacloprid, thiacloprid). Nitro-substituted neonicotinoid insecticides,
which include imidacloprid, thiamethoxam (TMX), and clothianidin (CLO), have been
widely used until recently to control a range of important agricultural pests, both through
foliar applications and also as seed dressings and by soil application [9]. Neonicotinoids
can be absorbed by the seeds and roots of plants and translocated to almost all plant organs
for managing a wide spectrum of insect pests, which makes them ideal candidates for seed
coatings [8].

However, neonicotinoids, like many pesticides, can persist for long periods of time in
agricultural soil, resulting in long-term contamination and, in some cases, the accumulation
of harmful substances [10–12]. Pollinating insects can be exposed to pesticides not only
as a result of the contamination of agricultural crops but also from non-target plants, i.e.,
weeds and wildflowers classified as melliferous plants [13,14]. In turn, the accumulation of
chemicals in plants can lead to harmful substances in honey and other bee products [15,16].
A growing problem in modern agriculture is also the contamination of bee forage with
pesticides from spray drift from neighboring fields and the consequent unintentional
contamination with pesticides [17,18].

Growing concerns about thiamethoxam’s toxicity to pollinators have led to its use
being restricted or it even being banned in some countries. Nevertheless, in Asia, Africa,
Southeast Europe, and South America thiamethoxam is still used. Seven neonicotinoids
account for approximately 17% of the value of the global insecticide market. Confirmation
of the use of thiamethoxam is provided by this year’s European Commission issued on
EU Agri-Food Fraud suspicions “ANUARY 2024 REPORT ON EU AGRI-FOOD FRAUD
SUSPICIONS” [19]. It reports that thiamethoxam was detected in rice from India and
Pakistan at 0.044 mg kg−1 and 0.032 mg kg−1, in ginger syrup from China (0.064 mg kg−1),
in passion fruit from Colombia (0.044 mg kg−1), vine leaves from Egypt (0.044 mg kg−1),
guava from India (0.20 mg kg−1), or cumin from India (0.14 mg/kg).

Thiamethoxam, (EZ)-3-(2-chloro-1.3-thiazol-5-ylmethyl)-5-methyl-1.3.5-oxadiazinan-
4-ylidene(nitro) amine, is effective in killing sucking and chewing insects, such as aphids,
whiteflies, lovebugs, thrips, and beetles, attacking rice, oilseed rape, maize, cotton, vegeta-
bles, or mango [20]. Thiamethoxam is a crystalline, scentless compound with a melting
point of 139 ◦C. It shows relatively high solubility in water, amounting to 4.1 g L−1 at 25 ◦C,
and a low log P partition coefficient of −0.13 at pH 6.8. Thiamethoxam is transformed into
clothianidin in plants, soils, and insects [21,22]. Clothianidin was first reported as one of the
most prominent metabolites of thiamethoxam in cotton plants by Nauen et al. [21]. Clothi-
anidin, (E)-1-(2-chloro-1.3-thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine), is structurally
similar to thiamethoxam, differing from the CH2OCH2 grouping. Its solubility in water is
low, amounting to 0.34 g L−1, whereas, in comparison with thiamethoxam, it has a higher
octanol–water partition coefficient (Log Kow: 0.905). These compounds are characterized
by varied persistence in soil, plants, or living organisms.

The persistence of pesticides in soil and plants depends, among other things, on
the physico-chemical properties of soil, the climate conditions, and the physico-chemical
properties of the compound itself. The fate of pesticides is also affected by the plant species
and the stage of cultivation at the moment of application of the agent [23–27]. Many studies
have been devoted to the assessment of the dissipation of neonicotinoids in soil [28–31].
To the best of our knowledge, there are relatively few reports concerning the dissipation
of both thiamethoxam and clothianidin in crops. Several authors have investigated the
dissipation of thiamethoxam in potatoe [32], tomato [33], pomegranate [34], maize [35],
cotton [36], mango [37], and apple [38]; however, as we can see, previously published work
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has focused on the dissipation of thiamethoxam after foliar application. Information on the
presence of pesticide residues in rapeseed plants is very limited, and only a few literature
references concern the content of pesticides in oilseed rape [39].

Different approaches to the identification of neonicotinoids and their metabolites in
environmental samples (water, soil) [40,41], agricultural samples (cucumber, spinach, apple,
pomelo, green pepper, tomato, grain, rice, millet, maize, sugarcane juice, tea, wine) [42–49],
and bees and bee products (honey, honey liqueur, beeswax) [50–55] have been proposed.
These methods, described in the literature, enable the identification of neonicotinoids in a
relatively narrow concentration range not allowing identification of sublethal doses. Since
the application of seed dressings contributes to the reduced use of insecticides in spray
form and enables the reduction of the quantity of plant protection chemicals released to
the environment, there is a need for a thorough risk assessment conducted under real
conditions. Therefore, it is necessary to develop analytical methods enabling the detection
of low levels of compound concentrations (at a concentration limit of 0.001 mg kg−1). The
aim of this study was to (1) develop and validate a QuEChERS/LC–MS/MS protocol
(an effective method) for the determination of thiamethoxam and its main metabolite
clothianidin in samples of young oilseed rape plants with high chlorophyll content, and (2)
make a comparison of the degradation behaviours of thiamethoxam and clothianidin in
two crops of winter oilseed rape, cultivated on soils with different pH.

2. Materials and Methods
2.1. Chemicals and Reagents

Thiamethoxam (CAS 153719-23-4) and clothianidin (CAS 210880-92-5) (>98% purity)
were obtained from Dr. Ehrenstorfer GmbH (Augsburg, Germany). The properties of
thiamethoxam and clothianidin are presented in Table 1. Triphenyl phosphate (TPP) as the
internal standard (IS) was supplied from Sigma-Aldrich (Sant Louis, MO, USA).

Table 1. Physico-chemical parameters of thiamethoxam (THX) and clothianidin (CLO) determining
their translocation capacity within the plant.

Compound Thiamethoxam (TMX) Clothianidin (CLO)

Chemical structure
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Molecular formula C8H10ClN5O3S C6H8ClN5O2S
Molecular weight (g mol−1) 291.71 249.7

Melting point (◦C) 139.1 176.8
Water solubility (mg L−1) 1 4100 340

Octanol–water partition
coefficient (log Kow) −0.13 0.905

Dissociation constant (pKa) at 25 ◦C no dissociation 11.1
1 Solubility in water at 20 ◦C at pH 7.

Standard stock solutions of thiamethoxam (1000 mg L−1) and clothianidin (1000 mg L−1)
were prepared in methanol. The combined working standard solutions were generated
by serial dilution of the stock solution in methanol. The working standard solutions were
used for the preparation of matrix-matched standards within the concentration range of
0.001–1.0 µg mL−1. All stock and working standard solutions were protected from direct
light and stored in dark glass bottles in a freezer at approximately −4 ◦C until analysis.

LC-MS grade acetonitrile (ACN), methanol (MeOH), and formic acid (FA) were pur-
chased from Merck (Darmstadt, Germany). Commercial QuEChERS extraction salt packets
(4 g MgSO4, 1 g NaCl, 1 g sodium citrate, and 0.5 g disodium citrate sesquihydrate) were
purchased from Agilent Technologies (Santa Clara, CA, USA). The QuEChERS sorbent
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kits (i) PSA/GCB/MgSO4, (ii) PSA/MgSO4, and (iii) C18/PSA/MgSO4 were supplied
by Agilent Technologies (USA) and (iv) MgSO4/PSA/Chlorofiltr/C18 was supplied by
Sigma-Aldrich (Steinheim, Germany). Ultrapure water (LC grade 18 MΩ cm) was prepared
using a Milli-Q system (Millipore, Bedford, MA, USA).

2.2. Field Trials and Sampling

Field trials were conducted at two agriculture regions (53◦08′45.6′′ N 22◦45′17.1′′ E—
Location 1 and 53◦01′51.2′′ N 23◦20’20.2′′ E—Location 2) in north-eastern Poland, which
produces annually significant amounts of oilseed rape exported to Europe. On two winter
oilseed rape fields (with an area of 41 ha—Location 1, and 35 ha—Location 2) were treated
with thiamethoxam as a seed dressing, respectively. Winter rape seeds were treated with
a commercial preparation of Cruiser 70 WS (thiamethoxam 700 g kg−1; at a rate of 450 g
a.s./100 kg seed), in the dose recommended by the manufacturer. An amount of 4 kg of
rape seeds were sown per 1 ha to a depth of 2.5–3.5 cm in locations 1 and 2, respectively.
The characteristic properties of soil used in the field, such as pH values, were 4.9, and 6.3
for locations 1 and 2, respectively. In addition, the organic matter contents of the soil were
1.7% and 1.6% for locations 1 and 2, respectively (Table 2).

Table 2. The selected physico-chemical properties of the soils from two locations.

Parameter Location 1 Location 2

pH 4.9 6.3
organic matter parameters 1.7 1.6

granulometric composition

clay < 0.002 mm—4.46%; clay < 0.002 mm—6.05%;
silt 0.002–0.02 mm—17.62%; silt 0.002–0.02 mm—24.6%;
sand 0.02–0.05 mm—5.17%; sand 0.02–0.05 mm—8.24%;
clay 0.05–2.00 mm—72.75% clay 0.05–2.0 mm—61.12%

Representative samples of the plant material (young oilseed rape plants) were collected
when the oilseed rape plants were at the stage of 4–6 leaves unfolded (BBCH 14–16).
Subsequent samples were collected at the following time intervals: 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 days. Each sample was taken from 5 different
points and weighed approximately 500 g. Untreated samples were collected to be used as a
blank. Both dissipation kinetics and residue determination experiments were carried out
by the Guideline on Pesticide Residue Trials established by the Ministry of Agriculture and
Rural Development of Poland.

2.3. Sample Preparation–Sample of High Chlorophyll Content

The plant material samples were transferred frozen (on dry ice) to the Laboratory of
Food and Feed Safety of the Institute of Plant Protection—National Research Institute of
Poland, where the analysis was performed. The analytical sample of the plant material
was ground in a homogenizer and then mixed to ensure representativeness. All collected
samples were stored in a freezer at −20 ◦C until analysis.

For the determination of thiamethoxam and clothianidin in plant material with high
chlorophyll content, a PSA/GCB/MgSO4 clean-up protocol was developed. Ten grams of
analytical sample were weighted into 50 mL polypropylene tubes, and 50 µL TPP (triphenyl
phosphate) at a concentration 5 µg mL−1 (internal standard (IS)) was added. To this, 10 mL
of 1% formic acid in acetonitrile was added and the tubes were shaken for 1 min. After
that, QuEChERS extraction salts were added to the sample tube to separate the phases; it
was then shaken and centrifuged for 5 min at 4500 rpm. Due to high chlorophyll content,
sample purification was necessary. To this end, 8 mL of extract was transferred into a 15 mL
centrifuge tube containing PSA/GCB/MgSO4. The d-SPE tube was shaken vigorously for
1 min and then centrifuged at 4500 rpm for 10 min. The eluent then was filtered through a
0.45 µm membrane and analyzed using LC–MS/MS (Eksigent Technologies, Dublin, CA,
USA). A general scheme of the procedure under consideration is shown in Figure 1.
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2.4. Method Validation

The developed procedure for the determination of thiamethoxam and clothianidin
residues in young oilseed rape plants was subject to a validation process by the guidelines
of the European Commission included in the [56] SANTE/11312/2021 “Analytical Qual-
ity Control and Method Validation Procedures for Pesticide Residues Analysis in Food
and Feed”.

2.5. Instrumentation Conditions

The LC–MS/MS system consisted of an Eksigent Ultra LC–100 series (Eksigent Tech-
nologies, Dublin, CA, USA) equipped with a KINETEX XB 1.7 µm, 2.1 × 50 mm (Phe-
nomenex, Torrance, CA, USA) analytical column. Analyses of compounds were performed
by LC–MS/MS in multiple reaction monitoring (MRM) modes using two specific ion tran-
sitions for each analyte (m/z 292.0→ 211.0 and 292.0→ 181.0 for TMX, 250.0→ 169.0 and
250.0→ 132.1 for CLO). An MS/MS 6500 QTRAP system (AB Sciex Instruments, Foster City,
CA, USA) was equipped with an electrospray ionization source (ESI). The parameters for
thiamethoxam and clothianidin are presented in Table 3. For both methods the following
settings were used: ion spray voltage, 4500 V; temperature, 450 ◦C; curtain gas, 35 psi; ion
source gas 1 (nebulizer gas), 60 psi; and ion source gas 2 (auxiliary gas), 70 psi. The mobile
phase consisted of water with 0.2% formic acid and 5 mM ammonium formate (phase A)
and methanol with 0.2% formic acid and 5 mM ammonium formate (phase B) with a flow
rate of 0.4 mL min−1. The elution gradient was as follows: 0–0.5 min (A: 95%, B: 5%),
5–7.5 min (A: 5%, B: 95%), 8–10 min (A: 95%, B: 5%). The injection volume was 5 µL.

Table 3. SRM transitions of thiamethoxam and clothianidin.

Compound Precursorion
(m/z)

Quantification Confirmation
MRM

Transition (m/z)
DP
(V)

CE
(V)

CXP
(V)

MRM
Transition (m/z)

DP
(V)

CE
(V)

CXP
(V)

Clothianidin 250.0 169.0 6 19 10 132.1 6 21 6
Thiamethoxam 292.0 211.0 61 17 12 181.0 61 31 10

3. Results
3.1. Optimization of d-SPE Clean-Up Protocol

Upon centrifugation and pouring of the extract into a 15 mL tube, the supernatant was
subject to four different purification stages to optimize the co-extractives removal. The fol-
lowing sorbent combinations were selected for the testing: (i) PSA/MgSO4,
(ii) PSA/GCB/MgSO4, (iii) C18/PSA/MgSO4, and (iv) MgSO4/PSA/Chlorofiltr/C18.

All the aforementioned clean-up sorbents were tested in the treatment of spiked
samples to evaluate the co-extractives removal, based on the recoveries of the known-
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spiking levels (Figures 2 and 3). The proposed d-SPE clean-up protocol with PSA/MgSO4
sorbent showed poor recoveries (<70%) for clothianidin and thiamethoxam. Furthermore,
the application of this sorbent caused the obtaining of a matrix effect outside the acceptable
range (−36 for CLO). For MgSO4/PSA/Chlorofiltr/C18, low recoveries were observed for
clothianidin. Samples purified with C18/PSA/MgSO4 showed poor clothianidin recoveries.
According to the results, the application of PSA/GCB/MgSO4 as the sorbent exhibited
the highest extraction efficiency for target analytes. Using this combination provided
recoveries within an acceptable range of 40–70% for both compounds. Furthermore, in
the case of this combination the compounds were characterized by a negligible matrix
effect (−20% < ME < 20%). The purification effects of four sorbents (recoveries and matrix
effects) were compared and PSA/GCB/MgSO4 was finally selected (Figures 2 and 3).
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The sensitivity and specificity of LC-MS/MS makes it possible to analyse samples of
very high complexity and perform analyses of compounds at very low concentration levels.
Matrix-matched calibrations were within acceptable quantitation, satisfactory recoveries,
and limits of quantitation (LOQs) in rapeseed plants. Thiamethoxam and clothianidin had
good linearity in the range of 0.001–1.0 mg kg−1. Average recoveries of thiamethoxam
for plants ranged from 92% to 98%, with RSD values of 3.9%–5.2%. The matrix effect for
thiamethoxam is 10%, while for clothianidin it is −8%. The developed method could pro-
vide reliable residue levels for thiamethoxam. In each series of tests, control samples were
analyzed. Samples were fortified with analyzed substances at the limit of quantification.
The remaining validation parameters are presented in Table 4. Example chromatograms of
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thiamethoxam and clothianidin standards and spiked young oilseed rape plants sample
are presented in Figure 4.

Table 4. Validation parameters of the method for determining thiamethoxam and clothianidin
residues in young oilseed rape plants by liquid chromatography LC–MS/MS.

Analytes Thiamethoxam Clothianidin

R2 0.99989 0.99988
Matrix effects 1 10 8
LOQ (mg kg−1) 0.001 0.001

Linearity range (mg kg−1) 0.001–1.0 0.001–1.0
Recovery (%) 92 98

RSD (%) 5.2 3.9
1 Matrix effects (ME, %) = [(slope of calibration curves in matrix/slope of calibration on solvent) − 1] × 100%.
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3.2. Behavior of Thiamethoxam and Clothianidin in Young Oilseed Rape Plants before
the Flowering

The residues and dissipation rates of thiamethoxam and clothianidin in oilseed rape
plants are summarized in Table 5 and shown in Figure 5. Seeds before sowing were
analyzed and the dosage was checked. The initial concentration of thiamethoxam in
seeds was 0.315 mg kg−1. For thiamethoxam and its metabolite, two stages may be
distinguished in the process of their decay in a plant. The first stage lasted until the 16th
day of the experiment, in which the concentration of compounds in a plant was growing,
and the second stage started from the 16th day, in which the concentration was declining.
Depending on the soil pH, differences in compound concentrations were recorded. Deposits
of thiamethoxam and clothianidin were higher in a plant from an acid soil location (Figure 5).
In the case of this soil, a gradual but marked increase in thiamethoxam and clothiani-din
concentrations was recorded in the plant at 5 initial dates, i.e., day 12, 13, 14, 15, 16. On
the other hand, in the case of soil with pH = 6.3, the concentration of thiamethoxam in the
plant on these days was more even and remained at a similar level within 0.05 mg kg−1.
However, between days 15 and 16, a slight increase in the concentration of clothianidin
was observed in the plant.
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Table 5. The dissipation (in %) of thiamethoxam (TMX) and clothianidin (CLO) in rapeseed plants
cultivated on soils with different pH.

Days after Sawing
TMX CLO TMX CLO

pH = 4.9 pH = 6.3

16 - - - -
17 34.6 66.7 40.3 23.0
18 58.2 77.2 66.4 68.3
19 81.3 98.4 76.2 87.0
20 85.6 99.2 77.7 93.2
21 92.4 99.6 90.4 99.4
22 99.2 99.6 98.7 100.0
23 99.6 99.6 99.8 100.0
24 99.9 99.6 99.8 100.0
25 100.0 100.0 100.0 100.0
26 100.0 100.0 100.0 100.0
27 100.0 100.0 100.0 100.0
28 100.0 100.0 100.0 100.0
29 100.0 100.0 100.0 100.0
30 100.0 100.0 100.0 100.0
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Figure 5. Dissipation pattern of thiamethoxam (TMX) and clothianidin (CLO) in rapeseed plants
cultivated on soils with different pH.

Residual thiamethoxam reached a maximum of 0.0929 mg kg−1 in acid soil (pH = 4.9)
on day 16 and 0.0529 mg kg−1 in neutral soil (pH 6.3) on the same day. The following
kinetic equation is used for the dissipation of thiamethoxam: y = 16e−0.415x, R2 = 0.99
(pH = 4.9); y = 16e−0.422x, R2 = 0.9894 (pH = 6.3). The half-life ranged from 1.6 to 1.7 days.
Regardless of the soil pH, the concentration of metabolite amounted to 10–20% of the value
of thiamethoxam. Residual clothianidin reached a maximum of 0.0246 mg kg−1 in acid
soil on day 16 and 0.0161 mg kg−1 in neutral soil. Clothianidin concentration decreased
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according to the exponential equation, y = 16e−0.46x, R2 = 0.8921 (pH = 4.9); y = 16e−0.455x,
R2 = 0.9649 (pH = 6.3). The half-life was 1.5 days for both sites. Thiamethoxam is a polar
compound with a low octanol/water partition coefficient (Log Kow: −0.13) (Table 1). If wa-
ter solubility is higher, translocation through the plant is faster. Accordingly, thiamethoxam
residues were detected in samples of crops at higher levels compared to clothianidin (Log
Kow: 0.905). Compound residues were monitored until the moment of reaching the limit of
quantitation (concentration 0.001 mg kg−1). Depending on the soil pH, differences in the de-
composition of thiamethoxam and clothianidin in a young oilseed rape plant were observed
(Table 5). For a plant from a site where the soil was acidic on day 17, the percentage of
thiamethoxam decomposition was 35%, 58% on day 18, 81% on day 19, and 86% on day 20.
In the plant from the second location, the percentage of thiamethoxam decomposition was
40%, 66%, 76%, and 78% on days 17, 18, 19, and 20, respectively. On day 21 for plants from
both sites it was above 90%, and on day 24 it reached 99%. The percentages of clothianidin
decomposition on the 17th day in a plant grown on acid and alkaline soil were 66.7 and
23.0%, respectively. However, on the 20th day since the seeding, it reached a similar level
(above 90%) in both locations. Initially, thiamethoxam was decomposing slightly faster
in alkaline soil, whereas quicker decomposition thereof could be observed in acid soil
since the 19th day. On the 25th day of the experiment, the degree of decomposition of thi-
amethoxam and clothianidin was 100%. Alkaline environments accelerate the degradation
of pesticides, while acidic soils interfere with the uptake of minerals by plants and risk
triggering soluble forms of aluminum [57]. This probably explains the positive correlation
between the alkaline pH and the faster rate of thiamethoxam decomposition in the plant
in the first few days. Also, the texture and organic matter content of the soil can affect the
degradation of thiamethoxam [58]. In our study, the soils at the two locations differed not
only in reaction but also in the percentage of each fraction. The acidic soil had the highest
proportion of loam fractions (77.21%), with smaller proportions of sand (5.17%) and clay
(17.62%). In the alkaline soil, the proportion of the loam fraction was lower (67.15%), while
sand (8.24%) and clay (24.6%) were higher.

4. Discussion
4.1. Optimization of d-SPE Clean-Up Protocol

Young oilseed rape plants contain considerable amounts of chlorophyll, which might
act as an instrumental interference. Thus, further purification of extraction solutions
was needed. Extraction of analytes using the “dispersive SPE (d-SPE) clean-up protocol”
facilitates their proper sample clean-up [59]. Therefore, in the present study the d-SPE
clean-up protocol was used for the purification of extracts of young oilseed rape plants.

Co-extraction of chlorophyll from green matrices presents a significant difficulty, as it is
one of the most problematic interferents in pesticide residue analysis due to its non-volatile
properties [60]. In the case of so-called ‘green matrices’, the sorbent mixture of magnesium
sulfate and primary and secondary amine (PSA), commonly used in the purification step,
provides unsatisfactory results. Primary secondary amine (PSA) is a base sorbent used
for the QuEChERS d-SPE clean-up of fruit and vegetable extracts because it removes
many organic acids and sugars [61]. The application of this sorbent to samples containing
chlorophyll may result in the matrix interferents contained in the sample not being reduced
or removed, which may cause false positive or negative results [62]. Chlorophyll is a
problematic component of green matrices and has so far been removed from samples by
many researchers using GCB sorbent [63,64]. Graphitized carbon black (GCB) removes
colored compounds, such as pigments and chlorophylls. However, this sorbent has a
significant drawback, namely, it causes the strong adsorption of polar analytes, resulting
in low recoveries [65]. The effectiveness of sorbents such as GCB, PSA, and C18 on four
different matrices (grain, straw, green plants, soil) was tested in a study by Zhao et al.
(2013) [66]. The single sorbent C18 they used for green plant samples resulted in satisfactory
recoveries within the 70–104% range. In contrast, unacceptable recovery values (below
70%) were obtained for grain, straw, and soil samples. Purification using a single GCB, on
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the other hand, gave good results only for grain samples, while the results for the other
three matrices were poor. This may be because the target pesticide was selectively retained
by the GCB under matrix conditions [67]. The same authors also investigated how the
combination of PSA and GCB would affect the removal of chlorophyll and the recoveries
obtained. The mixture of these two sorbents proved to be the most effective for green
plants. Average recoveries in green plants at the three levels ranged from 76.1 to 100.0%,
with relative standard deviations (RSDs) below 10%. These sorbents, individually and
in a mixture, were also tested by other researchers using them for the determination of
pesticides in green matrices, such as tea leaf samples [68,69]. For example, in a study by Ly
et al. (2020) [69] GCB in combination with PSA/MgSO4 proved to be the most effective
purification method and allowed the quantification of 225 pesticide residues in green tea
leaf samples. Most of the analyzed pesticides were characterized by a non-significant
matrix effect (−20% < ME < 20%).

4.2. Behavior of Thiamethoxam and Clothianidin in Young Oilseed Rape Plants before
the Flowering

Although thiamethoxam, a nitro-substituted neonicotinoid, was one of the world’s
most used insecticides until recently, its dissipation dynamics have not been studied in
depth. The dissipation curves reported in the literature are valid only for a given crop under
specific conditions [70]. Many factors can contribute to the dissipation of pesticide residues,
i.e., the crop (morphology, stage of plant development) or environmental conditions (soil
pH) [71]. Different application methods also resulted in different distribution, transfer,
and degradation dynamics [72]. Pesticides are usually applied by either foliar spray or
soil spray [22]. Hilton et al. (2019) [73] described the dissipation of thiamethoxam in soil
under laboratory and field conditions. They noticed that the concentration of clothianidin
in experiments with dressed seeds amounted to between 2.1 and 4.5% of the thiamethoxam
value. On the other hand, in the case of spraying application, the maximum concentrations
of clothianidin fell between 16.3 and 19.0% of the thiamethoxam value. The study by
Hilton et al. (2019) [73] examined a number of factors related to the degradation rate
of thiamethoxam under field and laboratory conditions. The thiamethoxam spray used
was shown to decompose faster in the field than under laboratory conditions. According
to the authors, higher temperatures in soil exposed to sunlight in the field may have
accelerated the degradation process of thiamethoxam. It was also found that neither the
method of application of the product nor the pH of the soil and its organic matter content
affected the rate of degradation. Another study by these authors [74] examined the rate of
thiamethoxam degradation under field conditions from various locations in Europe. The
research conducted showed that thiamethoxam, regardless of the application method used
and the prevailing environmental conditions in the fields, degraded <10% of its maximum
concentration within a year of application. The levels of clothianidin observed in the study
were at very low concentrations, so the authors did not undertake an assessment of the rate
of disappearance of this substance in the soil.

However, early work [75] suggested that the half-lives of thiamethoxam were related
to factors such as the physico-chemical parameters of soil. Barik et al. (2010) [76] reported
that the degradation of thiamethoxam in paddy soil and the half-lives were from 8.4 to
13.1 days. Gupta et al. (2008) [77] studied the degradation of thiamethoxam in soil in India
under different moisture conditions and found that the half-life of thiamethoxam varied
with moisture content, ranging from 46 to 301 days. In turn, the half-lives of clothianidin
ranged from 65 to 35 days. The results in this study indicate that when the moisture content
is higher than 20% its effect on the half-lives becomes less significant. Mörtl et al. (2016) [78]
studied the mobility of clothianidin and thiamethoxam in three soil types in Hungary.
They showed that both insecticides were more mobile in sand than in loam and clay. They
reported that the high solubility of thiamethoxam in water may affect the retention of this
substance in loam soil. However, they did not conduct research in plants. In another study,
El-Aswad et al. (2024) [79] reported that the half-life of thiamethoxam in silty-loam soil
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was 15.0 days, in sandy-loam soil 20.1 days, and in loam soil 27.2 days. Thiamethoxam
decomposed faster in silty and sandy soil. Ramasubramanian and Paramasivam (2020) [80]
studied the dispersal of thiamethoxam in a tropical sugarcane crop ecosystem. They
observed that thiamethoxam persists in sandy-loam soil for 60 days and only reaches
a level of 0.01 mg kg−1 on day 75. The half-life was 16.5 days. In contrast, at twice the
recommended dose, the insecticide persisted for up to 75 days, with a half-life of 16.91 days.

Yang et al. (2022) [72] investigated the dissipation behavior of thiamethoxam and
its metabolite clothianidin on spinach. Although, like young oilseed rape plants, it is a
chlorophyll-rich plant, the degradation of these substances proceeds differently. In the
case of spinach, thiamethoxam degraded at a faster rate of 1.3 to 1.6 days in the plant.
The results were similar to the half-lives of thiamethoxam in spinach (2.3 days), reported
by previous studies [81]. As in our study, thiamethoxam was rapidly degraded in the
crop, with clothianidin appearing easily as a plant metabolite. This behavior of the active
substances is also confirmed by other researchers [82].

5. Conclusions

The developed QuEChERS protocol with extract clean-up using PSA/GCB/MgSO4,
followed by LC–MS/MS analysis, could be used with satisfactory results for the quantifi-
cation of neonicotinoid insecticide thiamethoxam and its main metabolite clothianidin in
green plants, such as oilseed rape. Recoveries of the tested insecticides were between 92%
and 98%, and RSDs were consistently < 6%.

Based on the established method, the behavior of two nitro-substituted neonicotinoids
thiamethoxam and clothianidin in oilseed rape in two agriculture regions were investigated.
The significant effects of soil pH on the recorded concentrations of thiamethoxam and the
clothianidin metabolite in the oilseed rape plant were observed. Deposits of thiamethoxam
and clothianidin were higher in a plant from an acid soil location (pH = 4.9). Regardless
of the soil pH, the concentration of metabolite amounted to 10–20% of the value of thi-
amethoxam. In both locations, residues of the examined compounds have disappeared in
plants very quickly, and they were not detected below the limit of quantitation in oilseed
rape at the flowering stage.

The results presented in this paper should be limited to this experiment only and
should not be extrapolated to other soil types or climatic conditions. For other types
of soil (with different texture, organic matter content, or pH), different results may be
obtained. Climatic conditions can affect pesticide dispersal to varying degrees due to
changes in plant metabolism, or the bioavailability of pesticides in the soil. Since a similar
experiment has not been conducted previously, the present study should be continued
under different climate and soil conditions. This will provide data for the risk assessment
of the two neonicotinoids.
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