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Abstract: To solve the problems of underwater image color deviation, low contrast, and blurred
details, an algorithm based on color correction and detail enhancement is proposed. First, the
improved nonlocal means denoising algorithm is used to denoise the underwater image. The
combination of Gaussian weighted spatial distance and Gaussian weighted Euclidean distance is
used as the index of nonlocal means denoising algorithm to measure the similarity of structural blocks.
The improved algorithm can retain more edge features and texture information while maintaining
noise reduction ability. Then, the improved U-Net is used for color correction. Introducing residual
structure and attention mechanism into U-Net can effectively enhance feature extraction ability and
prevent network degradation. Finally, a sharpening algorithm based on maximum a posteriori is
proposed to enhance the image after color correction, which can increase the detailed information of
the image without expanding the noise. The experimental results show that the proposed algorithm
has a remarkable effect on underwater image enhancement.

Keywords: underwater image enhancement; U-Net; nonlocal means denoising; image sharpening

1. Introduction

Projects such as underwater biometrics [1], garbage collection [2], and resource explo-
ration [3] all require clear images, but capturing a clear scene in the underwater world is
not a simple task. There are a large number of media that can absorb light underwater; light
will experience different degrees of attenuation when propagating underwater. Underwater
images usually have problems such as color deviation, low contrast, and blurred details,
which affect the subsequent research work on images. Therefore, it is necessary to study
underwater image enhancement technology.

The current popular underwater image enhancement algorithms are divided into
physical model algorithms and non-physical model algorithms. The algorithm based on
the physical model mathematically models the degradation process of the underwater
image and obtains a clear image by estimating the model parameters. Common physical
model algorithms include the following. In 2010, Chao et al. [4] used the dark channel prior
(DCP) to derive the background light and transmittance of the image and then restored
the underwater image based on a physical model. In 2012, Chiang et al. [5] proposed a
restoration method by compensating for the light absorbed by the underwater medium.
Because there are a large number of media that can absorb light underwater according to
the loss process of light underwater, a clear image is inverted by compensating light to
achieve the effect of the restoration. In 2015, Galdran et al. [6] proposed an automatic red
channel underwater image restoration method, which is an algorithm that combines the
image defogging model with the attenuation rate of light in water.

The non-physical model algorithm does not consider the imaging process and model
and improves the quality of the underwater image by image processing. Common al-
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gorithms based on non-physical models are: In 2007, Iqbal et al. [7] proposed a sliding
stretch method based on color space. The color correction is performed by histogram
equalization [8] of the underwater image in RGB color space, and the contrast is adjusted
by a stretching operation in the HIS color space. In 2012, Ancuti et al. [9] combined algo-
rithms such as contrast enhancement, white balance, and extraction of regions of interest.
These algorithms are used to enhance the underwater images, respectively, and then the
processed images are fused according to a certain proportion. In 2013, Drews et al. [10]
proposed the dark channel prior (UDCP) algorithm. The algorithm restores the underwater
image by adjusting the blue and green channels of the image. In 2018, Peng et al. [11] used
depth-dependent color change, scene light differentiation, and adaptive color correction to
restore underwater images.

In recent years, deep learning [12] has been widely used in various fields and achieved
great success. In 2018, Li et al. [13] applied the generative adversarial network [14] (GAN)
to the problem of underwater image enhancement and generated a large number of datasets
of underwater images and atmospheric images. In 2019, Li et al. [15] designed Water-Net, a
neural network that enhances underwater images. In 2019, Wang et al. [16] proposed the
UWGAN algorithm. GAN is used to generate a large number of datasets of underwater
images and atmospheric images, and the medical image segmentation network U-Net [17]
is used to train the model of mapping from underwater images to atmospheric images.

Many algorithms nowadays often lose the detailed information of the image in the
process of color correction, and it is difficult to solve the problems of color deviation, low
contrast, and detail loss of underwater images at the same time. To solve this problem, an
algorithm based on color correction and detail enhancement is proposed. The algorithm
transforms the underwater image enhancement problem into three problems: underwater
image denoising, color correction, and detail enhancement, and designs algorithms for
each problem. Experimental results show that the algorithm has a good effect on color
correction and detail enhancement.

The innovations of this study are as follows:
(1) According to the underwater image noise problem, some improvements have

been made to the nonlocal means denoising [17] (NL-means). The Gaussian weighted
spatial distance and the Gaussian weighted Euclidean distance are combined as the index
of NL-means to measure the similarity of structural blocks. The improved NL-means can
preserve the texture features and edge information of underwater targets while maintaining
the denoising function of the original algorithm.

(2) We use U-Net [18] to correct the color deviation of underwater images. Some
improvements have been made to U-Net for underwater image problems. Introducing
residual structure [19] and attention mechanism [20] into U-Net can effectively enhance
feature extraction ability and prevent network degradation.

(3) According to the underwater image degradation model, an underwater image
sharpening algorithm based on maximum a posteriori (MAP) is proposed. The algorithm
can increase the detailed information of the image without expanding the noise.

2. Materials and Methods

This section studies the basic principle of light propagation in water and image
enhancement from three aspects: image denoising, color correction, and image sharpening.

2.1. Underwater Image Imaging Model

The imaging of underwater images in the camera can be divided into direct component,
backscattering component, and forward-scattering component [21].

(1) The direct component is the part where the light reaches the camera after being
reflected by the target object in the process of underwater propagation. Its expression is:

Ec
d(x, y) = Ec(x, y) exp[−a(c)d(x, y)] (1)
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where (x, y) are the coordinates of image pixels, c is the image of red, green, and blue three
color channels, Ec(x, y) is the reflected light of the target, a(c) is the attenuation coefficient,
and d(x, y) is the distance between camera and target.

(2) The backscattering component is the part of light reaching the camera after scatter-
ing by the medium in water. Its expression is:

Ec
f (x, y) = gc(x, y)⊗ Ec

d(x, y) (2)

where gc(x, y) is the point-spread function, and ⊗ is the convolution operations.
(3) The forward-scattering component is the part where the light encounters the target

object, is reflected by the target object, and then is scattered by the medium to reach the
camera. The expression is:

Ec
b(x, y) = B∞(c){1− exp[−a(c)d(x, y)]} (3)

where B∞(c) is the backlight.

2.2. Underwater Image Denoising

Due to the particularity of underwater impurities and illumination conditions, un-
derwater images usually contain noise. NL-means can remove the noise of underwater
images, but also reduce the texture features and edge information of images. The proposed
algorithm makes some improvements to NL-means and combines Gaussian weighted
spatial distance with Gaussian weighted Euclidean distance as a new index to measure the
similarity of structural blocks. The improved NL-means can retain the texture features and
edge information of underwater targets while maintaining the denoising function of the
original algorithm.

2.2.1. NL-Means

NL-means is a good denoising algorithm. First, the entire image is divided into several
regions. Then, it finds a region similar to it for each region. Finally, the average of these
similar regions is used to replace the pixel values of these regions. The expression of
NL-means is:

xi,j =
∑k,g∈Ωi,j

ωk,g,i,jyk,g

∑k,g∈Ωi,j
ωk,g,i,j

(4)

where Ωi,j is the local region centered on (i, j), and the weight value ωk,g,i,j is the distance
between the image structure blocks at the exponential function mapping (k, g) and (i, j),
which is expressed as:

ωk,g,i,j = exp

−d
(

yk,g, yi,j

)
h2r2

 (5)

where yi,j is a vector centered on (i, j), h2 is the filter intensity coefficient, and d
(

yk,g, yi,j

)
is the similarity measure of structural blocks, which is represented by Euclidean distance:

d
(

yk,g, yi,j

)
=
∥∥∥yk,g − yi,j

∥∥∥2

2
(6)

2.2.2. Improved NL-Means

The weighted kernel function of the NL-means algorithm can make the regions with
high similarity obtain larger weights and the regions with low similarity obtain smaller
weights. The ideal kernel function can output larger weights when the similar neighbor-
hood distance is small, and the output decreases rapidly as the distance increases. Since the
Gaussian kernel function increases less weight when the Euclidean distance is small, the
image noise reduction performance will be reduced due to the frequent change of signal
strength when it is used alone, which will affect the subsequent U-Net to extract the feature
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information in the image. Inspired by the related noise reduction algorithm (Qiuyu Song,
2022) [22], the Gaussian weighted spatial distance and the Gaussian weighted Euclidean
distance are combined as a new index to measure the similarity of structural blocks in the
image, which effectively solves the problem of decreasing noise reduction ability.

The Gaussian weighted spatial distance can be expressed as:

ds

(
yk,g, yi,j

)
=
∥∥∥yk,g − yi,j

∥∥∥2
(7)

The Gaussian weighted Euclidean distance can be expressed as:

d
(

yk,g, yi,j

)
=
∥∥∥yk,g − yi,j

∥∥∥2

2
(8)

Gaussian weighted spatial distance is combined with Gaussian weighted Euclidean
distance as a new index to measure the similarity of structural blocks:

ωk,g,i,j = exp

−
∥∥∥yk,g − yi,j

∥∥∥2

2
×
∥∥∥yk,g − yi,j

∥∥∥2

h2r2

 (9)

2.3. Underwater Image Color Correction

To solve the problem of color deviation of underwater images, an improved U-Net
is proposed to fully extract the features of underwater images and adaptively learn the
mapping relationship between underwater images and atmospheric images. The improved
U-Net can increase the feature extraction ability and improve the network accuracy.

2.3.1. U-Net

U-Net is an end-to-end network proposed by OlafRonneberger et al. [17] in 2015,
which is mainly used for the semantic segmentation of medical images. U-Net is based on
FCN [23] and only contains the convolution layer and pooling layer. The network has a
fully symmetrical U-shaped structure with the same number of encoders and decoders on
both sides. The model undergoes four down-samplings, and each coding layer contains
two convolution operations to extract information from the image. Then down-sampling is
performed by maximum pooling. The model also undergoes four up-sampling processes.
First, concat the feature maps of the same depth using a jump connection. Then, the features
in the image are extracted after two convolution operations. Finally, the features are passed
up through up-sampling. Through the U-shaped structure, the down-sampling process
extracts features, and the up-sampling process transmits features upwards so that the
network extracts features with higher accuracy and better effect.

2.3.2. Improved U-Net

As shown in Figure 1, the proposed underwater image color correction algorithm is
based on U-Net and makes the following improvements to the network:

(1) Generally, deeper features can be extracted as the network deepens. However, due
to the problem of network degradation, the effect of a deep network on feature extraction
may not be as good as that of the shallow network. Changing the two convolution structures
of each layer in the U-Net network to a residual structure can effectively prevent network
degradation during color correction and ensure the ability of the network to extract features.

(2) Since U-Net has invalid semantic information when jumping connections, CBAM
is added to the feature map of each layer in the encoder after passing through the convolu-
tional layer. The feature map recovers the features of the image during up-sampling by
CBAM. CBAM has a good resource allocation function, which can allocate more resources
to more important features under the condition of limited resources, suppress other invalid
features, and improve network accuracy.
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Figure 1. The structure of improved U-Net.

2.3.3. CBAM

CBAM is a very efficient attention mechanism including a channel attention module
(CAM) and spatial attention module (SAM). As shown in Figure 2, the feature map goes
through CAM and then SAM. CAM improves attention to the target category, and SAM
improves attention to the target location.
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Figure 2. The structure of CBAM.

As shown in Figure 3, in CAM, the input features are first processed by maximum
pooling and average pooling. In the backpropagation process, the maximum pooling is
used to obtain the maximum value of each neighborhood, ignoring the influence of the
non-maximum value. Average pooling calculates the average value of each neighborhood
so that each pixel is involved in the calculation. Then the results are input into the shared
fully connected layer to compress the spatial dimension of the features, and the obtained
results are added at the pixel level. Then, the channel attention weight is obtained by the
Sigmoid activation function. Finally, the channel attention weight is a matrix multiplied by
the original image to improve the attention to the target category.

Figure 3. The structure of CAM.

As shown in Figure 4, in SAM, the input features are first processed by maximum
pooling and average pooling. In the backpropagation process, the maximum pooling is
used to obtain the maximum value of each neighborhood, ignoring the influence of the
non-maximum value. Average pooling calculates the average value of each neighborhood
so that each pixel is involved in the calculation. Then, concat the results of these two
outputs at the channel level. Then, the result is subjected to a convolution operation to
reduce the number of channels of the feature map. Next, the spatial attention weight is
obtained by the Sigmoid activation function. Finally, the channel attention weight is a
matrix multiplied by the original image to improve the attention to the target position.

Figure 4. The structure of SAM.

2.4. Underwater Image Detail Enhancement

To solve the problem of lack of details in underwater images, this paper transforms the
image detail enhancement process into the maximum likelihood problem of underwater
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image deblurring probability model. The blurred kernel and the clear image are alternately
updated by the MAP method to make the clear image closer to the real image.

2.4.1. Image Degradation Model

The image degradation model [24] is a model of the blurring process of the image
underwater. The formula is as follows:

g(x, y) = k(x, y)⊗ f (x, y) + n(x, y) (10)

where f (x, y) is the input image, k(x, y) is a degradation function, n(x, y) is the random
noise, and g(x, y) is the blurred image.

If the noise interference is ignored, the model can be simplified as:

g(x, y) = k(x, y)⊗ f (x, y) (11)

The usual solution to the image deblurring problem is: First, build a probabilistic
model of image deblurring. Then, according to this model, the conditional probability
density of the blurred image concerning the clear image and the degradation function is
obtained. Finally, by maximizing this conditional probability, the most suitable clear image
and degradation function are found. However, due to the particularity of underwater
impurities and illumination conditions, underwater images usually contain a large amount
of noise. While maximizing this conditional probability, the noise will also be amplified.
This paper uses the MAP method to solve this problem. According to MAP, the image blur
model can be expressed as:

min
f ,k

F(g; k, f ) + αρ f ( f ) + βρk(k) (12)

where F(•) is the negative logarithm of the conditional probability density, representing the
data item, ρ f and ρk are priors for clear images and blur kernels, representing the regular
term, and α and β are the weight values of the regular term.

2.4.2. The Process of Sharpening Algorithm

As shown in Figure 5, the proposed underwater image sharpening algorithm flow
mainly includes the blur kernel estimation part and the clear image estimation part. The
update of the blur kernel and the clear image is an alternating process.

Figure 5. Flowchart of sharpening algorithm.

When updating the blur kernel, the current clear image is first blurred. Then, the
adaptive threshold method is used to increase the salient region information of the image.
Finally, the blur kernel is estimated according to our previously designed deblurring model.

When updating the clear image, the regularization term optimization model is first
added to the deblurring model to increase the generalization ability of the model. Then, the
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bilinear interpolation method is used to up-sample the clear image we estimate. Finally, the
obtained clear image is used as the input to update the blur kernel, and the clear image and
the blur kernel are continuously updated to make the clear image closer to the real image.

2.4.3. Saliency Region Extraction

The salient region refers to the contour information in the image. According to [25],
effective extraction of salient regions of clear images can improve the accuracy of estimating
blur kernels. It is a difficult task to extract the salient region of the image. This paper extracts
the salient region from four aspects: brightness, color, direction, and edge [26].

Assuming that the three color channels of the input image are r, g, and b, the brightness
feature can be expressed as:

I = (r + g + b)/3 (13)

For color features, the saliency method of frequency domain harmonic [27] is used to
obtain the color feature map of the image. First, we change the color to a uniform CIELab
color space. Then, the transformed image is processed by Gaussian filtering. Finally, the
square of the difference between the original image and the filtered image is used as the
saliency map of the color. The formula is as follows:

C(x, y) = (Iu − Iwhc)
2 (14)

where Iu is the transformed image, and Iwhc is the filtered image.
For the directional features, Gabor filters [28] in four directions of 0°, 45°, 90°, and

135°are used to filter the grayscale images, respectively, and the feature maps in four
directions are obtained. The expression is:

sample(x0, y0; θ, ϕ) =
∫∫

I(x, y)Gabor(x− x0, y− y0; θ, ϕ)dxdy (15)

where X0 and y0 are the center coordinates of the receptive field, and I(x, y) is the input
image.

For the edge features of the image, Canny edge detection [29] is used. First, Gaussian
filtering is used to smooth the image and eliminate the noise in the image. Then, the
gradient of the image is calculated to find possible edges. Then, non-maximum suppression
is used to eliminate the edge of false detection. Finally, the double threshold method is
used to filter out the edge information in the image.

2.4.4. The Estimation of Fuzzy Kernel

In the estimation process of fuzzy kernel to prevent nonconvex optimization problems
and improve the estimation speed of the fuzzy kernel, this paper uses regularization terms
to optimize the deblurring model. The expression is as follows:

min
k
‖∇S⊗ k−∇g‖2

2 + ρ‖k‖2
2 (16)

where ρ is used to balance the relative strength between data items and regular items.
By using the least square method, we can obtain:

k = F−1

(
F̄(∂xS)F(∂xg) + F̄

(
∂yS
)

F
(
∂yg
)

F(∂xS)2 + F
(
∂yS
)2

+ ρ

)
(17)

where F(•) is the fast Fourier, F−1(•) is the inverse transform, and F̄(•) is the conjugate
operation.
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2.4.5. The Estimation of Clear Images

When estimating the clear image, we use the normalized prior term as the regulariza-
tion term to optimize the equation. The formula is as follows:

min
f

µ

2
‖ f ⊗ k− g‖2

2 +
‖∇ f ‖1

‖∇ f ‖2
(18)

where∇ f is the gradient value of the clear image, and µ is the weight value of the data item.

3. Results and Discussion

The experiment was completed in the Python3.6 environment. The CPU is Intel (R)
Core (TM) i5-6300 HQ CPU 8.00 GB RAM, using GPU acceleration, GPU is GTX1080,
and the deep learning framework is PyTorch. A total of 2000 pairs of underwater image
training networks were selected from the EUVP dataset. It covers images under different
underwater scenes and lighting conditions. Adam [30] was used as the optimization
algorithm during the training process, the batch size was set to 4, the initial learning rate
was set to 0.001, and the learning rate was divided by 10 for every 30 epochs, eventually
training 200 epochs.

To verify the effectiveness of the proposed algorithm, some representative images in
the EUVP dataset were selected to compare the proposed algorithm with some classical
algorithms in terms of color correction, detail enhancement, and image quality. These algo-
rithms included IBLA [31], UDCP [10], ULAP [32], RGHS [33], Sea-thru [34], UWGAN [18],
and FunieGAN [35].

3.1. Color Correction Experiment

To verify the effectiveness of the proposed algorithm for color correction, some images
of blue and green scenes on the EUVP dataset were selected for color correction using the
proposed algorithm and the classical algorithm.

As shown in Figure 6, (a), (b), (e), (f), (g) and (i) show the comparison results of images
in the blues scene, and (c), (d), (h) and (j) show the comparison results of images in the
green scene. It can be seen from the comparison results that the IBLA algorithm had a
better enhancement effect for the image in the blue scene, and had a certain defogging
effect for the image in the green scene, which can increase the contrast of the image, but
at the same time cause the loss of image details. The UDCP algorithm can solve the fog
blur problem of underwater images to a certain extent, but the processed images were
darker overall, the contrast was low, and the effect was not ideal. The ULAP algorithm
had a good enhancement effect on the image in the blue scene. The image processing in
the green scene was reddish, and there was a certain color deviation from the real image.
The RGHS algorithm had a certain solution to the problem of underwater image fog blur,
but the overall effect was not obvious. The Sea-thru algorithm had a good effect on image
enhancement in green scenes. For images in blue scenes, the details of the image can be
increased, but the overall image color was blue, and there was a certain color deviation
from the real image. The UWGAN algorithm had a good defogging effect for low contrast
images while improving image contrast and increasing image details, but for high contrast
images, the effect was not good. The FunieGAN algorithm had a certain effect of defogging
and increasing image details, but the effect was not obvious. The algorithm of this study
can effectively solve the fog blur problem of underwater images for images in blue and
green scenes, and the image color was closer to the true value image. The results show
that the proposed algorithm has a good ability to correct image color deviation for most
underwater scene images.
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Figure 6. The comparison results of color correction effects between this research algorithm and other
algorithms: (a,b,e–g,i) are blue scene images, (c,d,h,j) are green scene images.

3.2. Detail Enhancement Experiment

To verify that the proposed algorithm has the effect of enhancing image details, three
images in the EUVP dataset were selected to compare the number of visible edges between
the original image and the enhanced image. As shown in Figure 7, (a) is the edge detection
of the original image and (b) is the edge detection of the enhanced image. The edges of the
image contain a lot of information, and the number of edges in (b) is much higher than that
in (a), which means that the proposed algorithm enhances more image details. Therefore,
the proposed algorithm has the effect of increasing image details.
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Figure 7. Visibility edge of gray: (a) original image; and (b) enhanced image by the proposed
algorithm.

To verify the advantages of the proposed algorithm in detail enhancement, the visible
edge growth rate of the image was used as the evaluation index to compare the proposed
algorithm with the classical algorithm. Five underwater images were selected in the EUVP
dataset, and the value of the visible edge growth rate e was calculated and compared. The
visible edges contain a lot of detail information. The more the number of visible edge
restoration means, the better the image enhancement effect. As shown in Table 1, the e
values of IBLA and RGHS are lower, and the increase in the number of edges is not obvious.
The e value of the proposed algorithm is the highest, which means that it is superior to
other algorithms in detail enhancement. Therefore, the proposed algorithm can better
restore the details of underwater images.

Table 1. Visible edge growth rate of different enhancement algorithms.

Image IBLA UDCP ULAP RGHS Sea-thru UWGAN FunieGAN Ours

1 1.452 1.477 1.343 1.242 1.502 1.607 1.622 1.375
2 1.405 1.331 1.272 0.992 1.422 1.507 1.423 1.221
3 0.792 2.220 1.721 1.523 2.204 2.332 2.215 2.274
4 0.541 0.605 1.023 1.005 1.652 1.552 1.476 1.775
5 1.305 1.427 1.275 1.121 1.445 1.307 1.502 2.513

Average 1.099 1.412 1.327 1.177 1.645 1.661 1.648 1.832

3.3. Image Quality Assessment

To verify the quality of the enhanced image, the peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), underwater image quality assessment metrics (UCIQE), and
underwater image quality metrics (UIQM) [36] were used to quantitatively evaluate the
measurement of the above ten images. PSNR is used to judge the degree of distortion
between the enhanced image and the true value image. The greater the PSNR, the better
the enhancement effect of the algorithm on the image. SSIM is an index of comprehensive
contrast, brightness, and structural similarity. The larger the SSIM value, the more similar
the enhanced image is to the true value image, which indicates that the effect of the
algorithm is better. UCIQE is an index to judge the overall quality of the image. The
larger the value, the better the effect of the algorithm. UIQM is an indicator of the color,
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clarity, and contrast of the integrated image. The larger the value, the better the effect of
the algorithm.

Table 2 shows the scores of SSIM, PSNR, UIQM, and UCIQE of various algorithms
on the EUVP dataset. The UWGAN algorithm has the highest SSIM value and the best
enhancement effect on the structural similarity of the image, but the UIQM value is very
low, and the color and clarity are poor. The UCIQE value of the UDCP algorithm is the
highest, and the overall image quality is high. However, the PSNR value is very low, and
the image distortion is large. The PSNR and UIQM values of the proposed algorithm are
higher than other algorithms, the distortion degree of the image is the smallest, and the
enhanced image is closer to the original image. The algorithm proposed by SSIM and
UCIQE values is not the highest, but it is superior to most algorithms. The results show
that the overall quality of the image processed by the proposed algorithm is good, close to
the real image, and in line with human visual senses.

Table 2. Underwater image quality evaluation of different enhancement algorithms.

Scores Input IBLA UDCP ULAP RGHS Sea-thru UWGAN FunieGAN Ours

SSIM 0.794 0.694 0.579 0.756 0.759 0.804 0.827 0.779 0.745
PSNR 17.216 16.631 13.128 17.532 16.488 15.921 14.743 15.301 17.637
UIQM 1.377 2.772 2.987 2.270 2.208 1.066 1.875 2.240 4.035
UCIQE 0.379 0.459 0.497 0.452 0.447 0.378 0.476 0.431 0.429

3.4. Running Time Experiment

To verify the real-time performance of the algorithm, the running time of the proposed
algorithm was compared with that of the classical algorithm. The experiment used the
above ten images with a pixel size of 256× 256. The running environment of the computer
was Intel (R) Core (TM) i5-6300HQ CPU 8.00 GB RAM. All algorithms were tested on the
same computer. IBLA, UDCP, ULAP, RGHS, and Sea-thru are traditional enhancement
algorithms, and UWGAN and FunieGAN are deep learning algorithms. As shown in
Table 3, the ULAP algorithm ran the fastest. The proposed algorithm is second only to
ULAP and RGHS algorithms and is faster than other algorithms. The results show that the
proposed algorithm has a faster running speed and can meet the real-time requirements of
underwater image enhancement.

Table 3. Running time of different enhancement algorithms.

Methods IBLA UDCP ULAP RGHS Sea-thru UWGAN FunieGAN Ours

Time (s) 7.4774 3.1425 0.6091 1.4407 3.3012 1.5014 1.7256 1.4770

3.5. Validation of Algorithm Effectiveness

To verify the effectiveness of adding an attention mechanism and a residual module
in the U-Net, U-Net and improved U-Net were trained using the EUVP dataset. Color
correction was performed on the above 10 images using the trained results. SSIM, PSNR,
UIQM, and UCIQE were used as evaluation indexes of correction effect.

As shown in Table 4, (a) is the correction effect of U-Net, (b) is the correction effect after
adding the residual structure in U-Net, (c) is the correction effect of adding the attention
mechanism in U-Net, and (d) is the correction effect of increasing both the attention
mechanism and the residual structure. It can be seen that adding residual structure and
attention mechanism in U-Net can effectively improve the SSIM, PSNR, UIQM, and UCIQE
of images. Increasing the attention mechanism in U-Net works better than increasing the
residual structure. Therefore, adding a residual structure and an attention mechanism in
U-Net has a certain effect on the color correction of underwater images.
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Table 4. The effect evaluation of improved U-Net.

Network SSIM PSNR UIQM UCIQE

(a) 0.703 17.521 1.422 0.383
(b) 0.711 17.755 1.451 0.385
(c) 0.723 17.968 1.570 0.390
(d) 0.731 18.201 1.782 0.392

3.6. Ablation Study

To understand the role of each component in the proposed algorithm, an ablation study
was performed using the above ten images. SSIM, PSNR, UIQM, and UCIQE were used
to measure the effect of each experiment. As shown in Table 5, (a) only the improved NL-
means was used to denoise the underwater image, (b) only the improved U-Net was used to
correct the color of the underwater image, (c) only the proposed sharpening algorithm was
used to process the image, (d) the improved NL-means was used to denoise the underwater
image and the improved U-Net was used to correct the color of the underwater image, and
(e) the complete algorithm was used. The following conclusions can be drawn:

(1) Compared with the individual experimental results of each component, the com-
plete model enhances the image best, which means that using these three components
together is effective.

(2) The three components of the proposed algorithm have the effect of improving
image performance. The improved U-Net has the greatest effect on improving SSIM and
PSNR. The proposed sharpening algorithm has the greatest effect on improving UIQM
and UCIQE.

Table 5. The quality evaluation of different components of the proposed algorithm.

Experiment SSIM PSNR UIQM UCIQE

(a) 0.724 17.415 1.427 0.388
(b) 0.731 18.201 1.782 0.392
(c) 0.716 17.338 1.845 0.401
(d) 0.733 18.272 2.329 0.413
(e) 0.745 18.637 4.035 0.429

3.7. Application Test

The proposed underwater image enhancement technology can be applied to underwa-
ter key point detection and image segmentation. To verify the effectiveness of the proposed
algorithm, the underwater key point detection and image segmentation of the original
image and the enhanced image were compared.

Underwater key point detection is an important technology for underwater image
detection and recognition. To verify that the proposed algorithm has an enhanced effect
on key point detection, SIFT key point detection [37] was performed on the original image
and the enhanced image of the proposed algorithm, and the number of key points were
compared. As shown in Figure 8, the number of key points of the enhanced image is much
more than that of the original image. The results show that the proposed algorithm has
a good effect on enhancing the details of underwater images, which is conducive to the
detection and recognition of underwater images.
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Figure 8. SIFT key point detection: (a) original image; (b) enhanced image by the proposed algorithm.

Underwater image segmentation divides the image into different regions according
to the characteristics of the image. The fast FCM clustering algorithm [38] was used to
segment the original image and the enhanced image. As shown in Figure 9, (a) is the
segmentation effect of the original image, and (b) is the segmentation effect of the enhanced
image. Using this algorithm to enhance the image, the segmentation effect is more accurate,
especially for the segmentation of foreground and background. The results show that the
proposed algorithm provides a more accurate segmentation effect for underwater image
segmentation.

Figure 9. Underwater image segmentation: (a) original image; (b) enhanced image by the proposed
algorithm.
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4. Conclusions

In this work, a new enhancement algorithm was proposed. The algorithm enhances
underwater images mainly from three aspects: image denoising, color correction, and
detail enhancement. First, some improvements were made to the NL-means denoising
algorithm. The improved NL-means can preserve edge and texture information while
denoising. Then, the improved U-Net was used to correct the color of underwater images.
Introducing residual structure and attention mechanism into U-Net can effectively enhance
feature extraction ability and prevent network degradation. Finally, aiming at the problem
of the lack of underwater image details, an image sharpening algorithm based on MAP was
designed. The algorithm can increase image detail information without expanding noise.

The proposed algorithm was compared with some classical algorithms. The results
show that the algorithm has a significant effect on the enhancement of underwater images,
which provides help for future research of underwater image enhancement.
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