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Abstract: Sea turtles gracefully navigate their marine environments by flapping their pectoral flippers
in an elegant routine to produce the required hydrodynamic forces required for locomotion. The
propulsion of sea turtles has been shown to occur for approximately 30% of the limb beat, with
the remaining 70% employing a drag-reducing glide. However, it is unknown how the sea turtle
manipulates the flow during the propulsive stage. Answering this research question is a complicated
process, especially when conducting laboratory tests on endangered animals, and the animal may not
even swim with its regular routine while in a captive state. In this work, we take advantage of our
robotic sea turtle, internally known as Cornelia, to offer the first insights into the flow features during
the sea turtle’s propulsion cycle consisting of the downstroke and the sweep stroke. Comparing the
flow features to the animal’s swim speed, flipper angle of attack, power consumption, thrust and lift
production, we hypothesise how each of the flow features influences the animal’s propulsive efforts
and cost of transport (COT). Our findings show that the sea turtle can produce extremely low COT
values that point to the effectiveness of the sea turtle propulsive technique. Based on our findings,
we extract valuable data that can potentially lead to turtle-inspired elements for high-efficiency
underwater drones for long-term underwater missions.

Keywords: sea turtles; underwater robots; underwater flight; soft robotics; biomimicry; animal
biomechanics; CFD; fluid dynamics

1. Introduction

Sea turtles navigate their marine environments by gracefully flapping their pectoral
wings/flippers to produce a visually enchanting locomotive pattern. This flapping motion
allows the sea turtle migration of thousands of kilometres to reach favourable breeding or
feeding grounds [1–5]. The flapping motion has typically been described as asymmetric,
with the downstroke approximately twice as fast as the upstroke [6–8]. In recent work by
van der Geest et al. [6], the flapping motion was described three-dimensionally for the Green
sea turtle (Chelonia mydas), including the soft twisting of the flipper. The authors described
the flipper motion by breaking it up into five segments consisting of the Downstroke (DS),
Sweep stroke (SS), Recovery stroke one (RS1), Upstroke (US) and, finally, Recovery stroke
two (RS2) (Figure 1). It is understood that during the Green turtle’s general flapping routine,
the upstroke does not generate any thrust [6,8–10]; however, during this time, the animal’s
drag coefficient is lowered to help reduce swim speed losses [10]. To quantify how the
drag is reduced during the upstroke, van der Geest et al. [10] conducted dedicated work
to uncover the flow features generated by the flipper during this period. Through dye
visualisation of a scale turtle model in a towing tank, they found the flipper enters a near-
equilibrium state that produces near-constant pressure across the entire flipper surface [10]
(Movie S1). The constant pressure across the surface of the flipper then cancels out any
flow mixing due to pressure differences, including the wing tip vortex. However, though
this work is insightful, it does not cover what flow features occur during the sea turtles
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(Chelonia mydas) propulsive cycle consisting of the downstroke and sweep stroke. The
propulsion cycle in sea turtles has been previously described as only occurring during the
downstroke period, with peak thrust occurring at the end of the downstroke [8,9], with the
most recent works taking very different approaches to uncover the propulsive cycle. David
T. Booth [9] found the propulsive cycle by studying green turtle hatchlings in a flume, while
van der Geest et al. [8] developed a full-scale robotic sea turtle based on the green turtle that
could reproduce the natural animals swimming patterns. Though both these works offered
comparable insights into thrust production and/or energy consumption, they did not detail
the flow features and fluid mechanical mechanisms responsible for the propulsion. David
T. Booth [9] hypothesised the downstroke likely produces both lift-based and drag-based
propulsion depending on the flipper angle of attack; however, what does lift-based or
drag-based propulsion in sea turtles look like? And is this hypothesis accurate? To the best
of our knowledge, no research details the flow features and fluid mechanical interactions
sea turtles utilise during their downstroke using genuine sea turtle kinematics. However,
work has been produced that analysed simplified two-dimensional turtle-inspired flow
features [11,12]. Though these two-dimensional examples may offer insight, they fail to
reproduce three-dimensional effects such as spanwise flow and Coriolis effects that have
been shown as essential factors in biological flapping wings [13].
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Figure 1. The wild sea turtle (Chelonia mydas) flipper pattern during the animal’s regular swimming
routine obtained from van der Geest et al. [6].

For the last 20 years, it has been well understood that the flow feature responsible
for high-performance force production in biological flapping wings is the leading-edge
vortex (LEV) [14–16]. The LEV has been shown to occur across all categories of animal
species [14,15,17,18], with insect flight first believed to be a paradox before its discovery [14].
However, although the LEV has been heavily studied in flapping wings, to the best of our
knowledge, no research exists for LEV generation during the downstroke in sea turtles that
applies genuine and accurate sea turtle kinematics.

Recent studies into the propulsion methods of sea lions demonstrated that the sea
lion’s flippers create additional thrust by applying a clapping motion [19,20]. The clapping
motion entrains fluid momentum on the low-pressure side of the flipper (dorsal side) that
later develops into complex vortex shedding to increase thrust [19]. It is now understood
that sea turtles also create a clapping motion referred to as the sweep stroke (Figure 1).
However, the fluid interaction during the sea turtle’s sweep stroke is entirely unknown.

Obtaining the flow features of sea turtles requires solving two significant complications.
First, it is necessary to obtain animal ethical approval to conduct the test on endangered
species; second, the animal may not even swim with its regular swim pattern while in a
captive state [6,8,10]. To overcome such hurdles, we take advantage of our robotic sea turtle
(Cornelia). Cornelia is the world’s first and only robotic sea turtle that accurately produces
the sea turtle’s natural form and function, as detailed in our previous work [8]. This makes
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Cornelia an invaluable tool for studying the fluid-structure interactions of turtles without
the need to trouble the actual animal.

In this work, with the help of Cornelia, we break down each of the observed flow
features of the turtle’s flippers during the propulsive cycle (Figure 2). To the best of our
knowledge, this is the first study to show insight into the flow features of the sea turtle
during the animal’s propulsive cycle. We compare the observed flow features against
the turtle’s thrust and lift forces flipper angle of attack (AoA), flipper velocity and power
consumption, to offer insight into the ways in which each feature influences the animal’s
propulsion effort and cost of transport (COT). We compare the COT obtained by Cornelia
against the current state-of-the-art swimming robotics [21–29], and we find Cornelia to
produce extremely low values for the COT, pointing to the effectiveness of the sea turtle
propulsive strategy.
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Figure 2. The robotic sea turtle (Cornelia) illustrating the propulsive cycle consisting of the downstroke
and sweep stroke [8]. Also, see Movie S2.

Based on our findings, we hypothesise what practical aspects of the turtle’s locomotion
pattern could be developed and optimised to enhance the next generation of underwater
drones and robotic technologies.

2. Methods
2.1. Method Overview

All tests were performed using our ad hoc testing rig, internally known as the “turtle
dyno”, as shown in Figure 3. Testing involved towing the robot quickly up to speed
before the robot taking over to propel itself. The turtle dyno recorded lift, drag, thrust,
swim velocity and power consumption simultaneously during each test. The design and
specification for the turtle dyno, along with a detailed analysis of the force production
during the regular swimming routine, can be found in our previous work [8], so we do not
cover this in detail here.

Due to its cost effectiveness and ease of application, individual flow features were ob-
served using dye visualisation with our in-house developed dye application tools. CFD was
additionally used to help complement the field tests and provide a deeper comprehension
of the flow field characteristics.
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Figure 3. Turtle dyno. (a) Complete dyno assembly showing camera lighting arrangement. (b) Close-
up of robot attached to load cell and linear rail assembly.

2.2. CFD Calculations

In parallel with laboratory experiments, commercial CFD tools were used to help
better comprehend the flow features observed during physical testing with ANSYS Fluent
(ANSYS 2021 R2, Canonsburg, PA, USA). Simulations only involved studying the flow
around the rear flippers and during the sea turtle downstroke. The sweep stroke was not
simulated due to its complex motion coupled with the complex wing morphing during
this part of the locomotion pattern, thus creating high computational expense that was not
available for this study. Additionally, it must be noted that the CFD simulations from this
study were conducted not to produce highly accurate results, but to help complement the
results from our laboratory experiments.

Two separate simulations were set up with the kω SST model used to study the ways
in which the flow from the turtle’s carapace travels downstream to meet the rear flippers,
and the realisable kε model was used for simulating the downstroke due to its lower
computational expense. The kω model had the mesh refined down to a y+ of 0.75, with the
kε model using a y+ of 13.15 with the addition of scalable wall functions. As the turtle’s
downstroke applies a relatively constant wing twist [10] and a simple rotation motion, the
simulation was simplified into two separate domains: a rotating domain with the flipper
using a rigid body and a sliding mesh interface paired with a static domain (Figure S1a).
The rotational domain angular velocity and velocity inlet values were established based
on the values achieved by sea turtles during the downstroke period. The computational
domain that used with the kω model can be seen in Figure S1b, with a body of influence
for mesh refinement added around the turtle body and further downstream to capture
the wake produced by the turtle body. A symmetry boundary condition was used to
substantially lower computational expense with a constant velocity inlet defined based on
the turtle’s average swimming velocity.

2.3. Dye Visualisation

To visualise the individual flow features during the regular swimming routines, we
operated our in-house developed dye visualisation tools (Figure 4). The tools have been
successfully used in our previous studies [10]; however, the streamline tool, as seen in
Figure 4a, was further developed for this study, introducing up to 3 dye streamlines. The
central pylon section of the tool used a NACA 0010 cross-section with each of the three
stacked bodies using a 360◦ revolution of the NACA 0010 cross-section. The tool ran on
a linear rail parallel to the turtle swim path and could have the dye accurately injected
when required. To ensure the tool did not generate a significant disturbance in its wake,
tests were performed to inject a cloud of dye into its path and record the disturbance in the
wake (Figure 4c and Movie S3). Our testing suggested that the tool created insignificant
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disturbance compared to the disturbance an animal in the wild would likely encounter, so
we deemed the tool satisfactory for use. Flow features were recorded using high-speed
underwater photography (Chronos 2.1HD 32GB, Kron Technologies Inc, Burnaby, BC,
Canada) at full HD 1000 FPS and an action camera (GoPro Hero 10, GoPro, San Mateo, CA,
USA) at full HD 240 FPS. The Chronos cameras were installed into waterproof housings
(Salty surf housings, North Wollongong, NSW, Australia) and equipped with a Sigma
18–35 mm lens (Sigma Corporation, Kawasaki, Kanagawa, Japan).
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wake disturbance testing. Also, see Movie S3.

3. Results and Discussion
3.1. Results Overview

As observed in Figure 5, all test results for thrust, lift, AoA, power, swim speed, and
flipper tip velocity are detailed for the sea turtles DS and SS, with the corresponding flow
features observed at each time interval detailed in Figure 5g. All tests were performed
with the flapping frequency remaining constant at 0.23 Hz based on the average flapping
observed in wild green sea turtles [6,8,30].
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Figure 5. Plots of swimming performance of Cornelia for the Green sea turtle’s regular swimming
routine. (a) Thrust production during the downstroke and the sweep stroke obtained from van
der Geest et al. [8]. (b) Lift production during the downstroke and the sweep stroke obtained from
van der Geest et al. [8]. (c) The average Angle of Attack across wingspan. See Figure S3 for exact
AOA values across the flipper span. (d) Power consumption during the downstroke and the sweep
stroke obtained from van der Geest et al. [8]. (e) Turtle swim speed during the downstroke and the
sweep stroke obtained from van der Geest et al. [8]. (f) The flipper tip velocity magnitude during the
downstroke and the sweep stroke. (g) For the timing of the observed flow features, see Movies S4–S7.

Testing was conducted by applying the sea turtle’s regular swimming routine at a
Reynolds number of 367,000, defined as

Re =
uDSCL

v
.

Re was based on the average swim velocity ( u) and straight carapace length ( DSCL).
As the Reynolds number is established simply on steady, time-independent conditions [31],
the Periodic Swimming Number (P) was also considered in this study, defined as

P =
10u√
4π f v

,
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where f is the flapping frequency and v is the kinematics viscosity. The Periodic Swimming
Number ( P) was first introduced by Gurka et al. [31] as an adaptation of the Reynolds
number to eliminate the need to choose a characteristic length scale and incorporate the
animal’s periodic motion. Applying this, we found that the sea turtle swims at a value of
3537. This puts sea turtles approximately in the same range of P as Macaroni and Adelie
penguins (3729–3882), along with Harp and Ringed seals (3330–3569) [31]. Additionally,
the Strouhal number (St) was calculated to be 0.24 and defined as

St =
Dpp f

u
,

where Dpp is the sea turtle’s flipper tip peak-to-peak distance during its regular swimming
routine. This value of the Strouhal number puts sea turtles into a range of 0.2 to 0.4, as
found in other swimming and flying animals tuned for high power efficiency [32–34].

3.2. Flipper Angle of Attack (AoA)

To help understand the flow feature contribution based on the relative flow around
the turtle flippers during the downstroke and the sweep stroke, the AoA of the turtle’s
flipper was defined as

θAoA = θp ± θ f ,

where θp is the spanwise twisting of the turtle’s flipper given as a linear piecewise function
with respect to time as

θp =



ap1t, 0 ≤ t < t1
ap2, t1 ≤ t < t2

ap3t + bp3, t2 ≤ t < t3
ap4t + bp4, t3 ≤ t < t4

ap5, t4 ≤ t < t5
ap6t + bp6, t5 ≤ t < t6

,

where apn and bpn are the function constants. The relative flow direction θ f on the turtle’s
flipper was added or subtracted depending on the stage of motion that the flipper was in
(upstroke or downstroke). This was done to provide a positive AoA for the relative flow
acting on the ventral side of the flipper and a negative AoA when acting at the dorsal side
(Figure S2). θ f was calculated with

θ f = arctan


√

.
y +

.
z

Vs +
.
x

,

where Vs represents the swimming speed of the turtle, while
.
x,

.
y and

.
z signify the velocity

components at any given point on the turtle’s flipper. These velocity components are ob-
tained by taking the time derivative of the flipper position function, which was formulated
using a Fourier series with

.
x = Vf

(
n

∑
i=1

−iwxaixsin(iwxt) + iwxbixcos(iwxt)

)
,

.
y = Vf

(
n

∑
i=1

−iwyaiysin
(
iwyt

)
+ iwybiycos

(
iwyt

))
,

.
z = Vf

(
n

∑
i=1

−iwzaizsin(iwzt) + iwzbizcos(iwzt)

)
,
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where n is set to eight terms, ai and bi are the Fourier coefficients and w is the fundamental
frequency. The velocity modifier (Vf ) to correct the velocity for any point along the span
of the turtle’s flipper was represented with Vf =

xs
s , xs representing any point along the

flipper span (s). As the twisting of the flipper is a linear relationship [10], the exact amount
of wing twist at any point along the flipper span (s) was caluculated with θ(x) =

θpxs
s .

Shown in Figure 5c, the average AOA is plotted by calculating each value at various points
along the flipper span.

3.3. Downstroke

During the initial stages of the DS, there was no reliable evidence of any substantial
vortex formation on the turtle’s flippers with relatively smooth flow conditions during this
phase in time. This is predominately due to the low AoA during the early DS and low flipper
tip velocity, resulting in low thrust, lift and power consumption. At an approximately
2.8 s mark, clear evidence of a LEV forming along the turtle’s wing can be seen along with
substantial spanwise flow from the wing root to the wing tip (Figure 6 and Movie S4). As
the downstroke progresses, the wing tip velocity increases to reach a maximum at the end
of the downstroke, where the LEV is at its most forceful stage, with thrust and lift reaching
their maximum values (Movie S5). This finding differs from past research hypotheses
that depict the large force production at the end of the sea turtle downstroke as being
drag-based due to high AoA [9]. Additionally, in Figure 5c,f, the wing AoA begins to
bleed off before the flipper reaches its maximum velocity and force production, revealing
that high force production is more accurately associated with higher wing velocities and
more aggressive LEV formation. Additionally, as the LEV delays wing stall [15,18,35] by
forcing the flow to reattach to the low-pressure/dorsal side (Figure 6a–d and Movie S4),
this suggests the entire downstroke is completely lift-based propulsion during the sea
turtle’s regular swimming routine.

3.4. Sweep Stroke

The sweep stroke begins at approximately 3.4 to 3.5 s into the turtle flapping routine,
with the LEV remaining attached during the sweep strokes duration. During the entire
sweep stroke, the AoA, flipper velocity, power consumption, thrust and lift begin to lower,
with the turtle reaching a maximum swim speed approximately 50% into the sweep stroke
stage. At a roughly 3.6 to 3.7 s mark, a vortex forms that is almost immediately shed into
the turtle’s wake (Figure 5g and Movie S6). We name this vortex the sweep stroke vortex
(SSV), and in contrast to the LEV, the SSV rotates in the opposite direction and is produced
by the wing’s ventral side (high-pressure side).

Near the end of the sweep stroke, the flippers are brought parallel beneath the carapace
to create a clapping motion similar to the sea lion [19,20]. At this point, the LEV is shed from
the wing’s dorsal side into the wake to follow behind the SSV (Figure 5g and Movie S7).
Just before the LEV is shed into the wake, it entrains fluid momentum on the dorsal side
of the flipper (Movie S7), similar to the sea lion [19]. In sea lions, this helps contribute to
downstream momentum when the vortex structure is shed to add additional thrust [19].
Based on our observed flow features, this downstream momentum can also be assumed
to happen with sea turtles, additionally, as the thrust curve towards the end of the stroke
bleeds off rather than simply dropping off like the lift forces (Figure 5a,b). At this point, the
sea turtle enters a glide that lasts for 70% of the overall limb beat cycle [8,10]. During the
glide, the sea turtle shapes its flippers to generate a passive upstroke to recover its flippers
into a position ready for the downstroke to help with energy expenditure [8,10].
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Figure 6. Downstroke flow features. (a) Velocity plots from various cross-sections along the turtle’s
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lines shown in Figure 6b. (b) Plan view of the turtle wing showing cross-section locations and velocity
streamlines obtained from CFD. (c) Dye visualisation testing shows flow reattachment towards the
wing trailing edge and the spanwise flow demonstrated by dye being transported towards the wing
tip. (d) Vector plot from CFD showing flow reattachment.

3.5. Rear Flippers

During the turtle’s regular swimming routine, van der Geest et al. [6] documented
that the rear flippers are seen to tuck in behind the carapace with the flipper tips pointing
backwards and near motionless as per Figure 7. Our CFD and field test results show that
towards the rear of the carapace, the flow detaches from shell to create a low energy zone
directly where the rear flippers are positioned (Figure 7c,d and Movie S8). This volume of
low energy flow helps lower the form and friction drag on the turtle’s rear flippers, thus
improving the animal’s drag coefficient for the gliding stage. This also helps explain why
the flippers remain almost motionless, as any changes to the flipper’s position within this
low energy zone may not generate any significant directional control for the turtle.

3.6. Turtle Swimming Efficiency and Cost of Transport

As observed in Figure 8, the power consumption, thrust production and swim speed
data are plotted from the experimental swimming tests for the complete swimming cycle.
Additionally, a curve of input power (Figure 8a) divided by output thrust (Figure 8b) is
displayed for the down- and the sweep strokes in Figure 8e with the cost of transport (COT)
for the complete swimming cycle detailed in Table 1 and plotted against time in Figure 8d.
The cost of transport was calculated with

COT =
Pin

mgu
,

where Pin is the input power (Figure 8a), m is the mass of Cornelia, g is the acceleration
due to gravity and u is the swimming velocity (Figure 8c). During the regular swimming
routine, Cornelia produced an average COT for the entire swimming cycle of only 0.072
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to generate one of the lowest COT values in literature for a swimming robot (Table 1).
This is largely due to the propulsion strategy, where the sea turtle produces propulsion
for approximately 30% of the limb beat cycle, with the remaining 70% producing a power-
saving glide that does not reduce swimming velocity substantially due to the animal’s large
mass and low drag coefficient [8]. This points to the effectiveness of this swimming strategy
and helps explain the ability of sea turtles to swim such vast distances with minimal
energy intake.

Cornelia demonstrated that the most energy-efficient point during the propulsion
stage was at the 3.1 s mark, generating a power-to-thrust ratio of approximately 2 W/N
or 7 N of thrust for 14 W electrical input power (Figure 8e). At this point, the AoA was
almost at its maximum value, and the sea turtle had already begun accelerating its velocity
from its power-saving glide. Additionally, the LEV continued to grow, with the lift forces
producing approximately 5 N of upward force.
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Figure 7. Flow over the sea turtle’s rear flippers during its regular swimming routine. (a) A wild sea
turtle producing the 5-stage locomotion cycle, demonstrating the rear flipper position. (b) Cornelia
replicates the wild sea turtle in (a). (c) CFD results showing a velocity contour of the flow around the
rear the flippers. (d) Dye visualisation tests showing flow separation point. Also see Movie S8.

Table 1. Cost of transport of recent state-of-the-art swimming robots from the literature.

COT in Recent State-of-the-Art Swimming Robot COT Data Obtained From

Cornelia 0.072 Results from this
current study

ART 3 Baines et al. [24]
Eel inspired robot 10.72 Nguyen et al. [21]
Flexible swimming robot 2.5 Kwak et al. [22]
FINBOT 8.2 Berlinger et al. [23]
Squid-inspired robot 0.087 Bujard et al. [25]
Flexible robotic fish 0.293 Lu et al. [26]
Tunabot 2.83 Zhu et al. [27]
Tunabot flex 1.876 White et al. [28]
HASEL jellyfish 1.619 Wang et al. [29]
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Figure 8. Turtle swimming efficiency. (a) Power input data for the complete swimming cycle obtained
from van der Geest et al. [8]. (b) Thrust production for the complete swimming cycle obtained from
van der Geest et al. [8]. (c) Turtle swim speed for complete swim cycle obtained from van der Geest
et al. [8]. (d) Cost of transport plotted against time. (e) The power-to-thrust ratio plotted for the
downstroke and the sweep stroke compared to the power-to-thrust ratio of a continuous rotating
turtle wing. (f) Turtle-inspired propulsion applied to a low-drag drag streamlined body. Diagram
illustrating a tandem configuration with both sets of wings/flippers generating propulsion (also see
Movie S9).

Overall, we found the downstroke was more efficient than the sweep stroke; however,
this could be due to the sweep stroke requiring all six servo motors to run simultaneously,
contrary to the downstroke, which only required two servo motors to run heavily. Addi-
tionally, the motors used in Cornelia’s robotic limbs are hobby-grade servo motors that we
believe may have low mechanical efficiency.

Though the COT obtained is impressive, employing a flapping winged machine in a
commercial drone or device for ocean exploration is far from practical, and the multi-degree
of freedom wings produce complex maintenance procedures coupled with highly complex
manufacturing. For the findings produced here to be valuable, practicable and obtainable
for industry-level technology, we combined the essential variables consisting of wing twist,
wingtip velocity and wing shape to generate a CFD simulation of a continuously rotating
turtle wing to continuously harness the most efficient section of the turtle locomotive cycle,
as previously mentioned at the 3.1 s mark. Our results demonstrated that it was possible to
achieve a maximum sustained power-to-thrust ratio of 0.5 W/N or 8 N of thrust for 4 W
mechanical input power (Figure 8e).

When comparing the thrust values of the continuously rotating turtle wing against
the sea turtle locomotive cycle, it can be observed that the thrust values are comparable
with the CFD results producing 8 N and Cornelia producing 7 N during the standard sea
turtle locomotive cycle. However, there are variations when comparing the power values,
as the CFD results do not include the overall electrical efficiency of the servo motors and
electronics. Therefore, the significant difference in power consumption likely originates
from two main factors: first, the efficiency of the electro-mechanical system, and second,
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as the turtle’s flipper is accelerating at this point, it creates additional power consumption
when compared to the constant velocity rotating model.

The continuously rotating turtle wing model could offer significant potential for
enhancing propulsion technologies, especially in multi-functional applications. Beyond the
clear energy-saving merits, incorporating a morphing rotating propulsor reveals an array
of advantages for aquatic navigation and energy harvesting. Illustrated in Figure 8f and
further elucidated in Movie S9, applying a set of morphing sea turtle-inspired propulsors
in a tandem orientation attached to a low-drag streamlined fuselage could facilitate a
multi-purpose underwater drone. While one set of wings concentrates on propulsion,
the other functions as a stabiliser. This configuration promotes consistent and controlled
motion, bolstering the vessel’s stability—a crucial attribute for peak performance across
diverse aquatic conditions.

Furthermore, as the wings morph, they can transition into a counter-rotating setup.
Such an arrangement is paramount for neutralising the rotational forces exerted on the
vessel’s fuselage due to the torque from a singular propellor set. This ensures that the
vessel’s trajectory remains unaffected by undesired rotations. Additionally, the con-
cept of torque vectoring can be explored; by dynamically adjusting the Angle Of Attack
(AOA) of each wing or flipper at precise moments, the vessel may achieve unparalleled
underwater agility.

Taking cues from the biomechanics of sea turtles, the device has the potential to
function as a sea glider. In certain conditions, energy can be harnessed by back-spinning
the propellors. This mechanism is reminiscent of how sea turtles leverage their upstroke
to optimise energy use. Thus, this could evolve beyond its foundational propulsion
capabilities to also serve as a renewable energy harvester, seamlessly integrating navigation
proficiency with sustainable energy solutions.

4. Conclusions and Future Work

In conclusion, this study examines the sea turtle’s propulsive cycle considering the
downstroke and the sweep stroke during the animal’s regular swimming routine. The
findings reveal a critical characteristic that may account for their highly efficient swimming
performance, including their capacity to generate considerable thrust and lift forces during
the downstroke phase, with a continuous LEV formation during both downstroke and
sweep stroke, until it is shed into the wake at the end of the sweep stroke to hypothetically
contribute towards downstream momentum similarly to sea lions [19].

Additionally, the study highlights that the Green sea turtle robot, Cornelia, produces
one of the lowest Cost of Transport (COT) values in the literature for a swimming robot,
indicating the effectiveness of the sea turtle swimming strategy for long-distance swimming
with minimal energy intake. This underscores the potential for the incorporation of these
principles into the design and operation of marine robots and other aquatic devices. Their
low COT values are likely due to their efficient energy usage through a combination of
active propulsion and passive gliding stages. This, coupled with the rear flippers’ tucking
motion into a zone of low energy flow, can reduce the form and friction drag the turtle
experiences, thus improving its drag coefficient for the gliding stage.

Despite the energy-efficient flapping cycle exhibited by sea turtles, applying these
findings to commercial drones or ocean exploration devices remains a challenge due to the
complexity of their locomotion. Yet, by capturing the most efficient section of the turtle’s
locomotion cycle and simulating a continuously rotating turtle wing, our study offers
promising avenues for developing industry-level technology.

Though this work brings new insight into the flow features during the sea turtle’s
propulsive cycle, it is difficult to pinpoint the exact effect of each flow feature and how
these features interact with each other to generate the animal’s propulsion. A deeper
understanding of this can be achieved in future work with the utilisation of a high-level
PIV system. Additionally, as these findings are for regular straight-line swimming, our
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robot Cornelia can be programmed to study the ways in which the animal creates its
manoeuvring techniques by building in the required control systems.

In summary, this research provides novel insights into the flow features and COT of
sea turtle locomotion and offers valuable guidance for the future development of efficient
aquatic propulsion systems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jmse11101944/s1, Supplementary Figures S1 to S3; Supplementary
Movies S1 to S9.
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