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Abstract: The aim of this paper is to provide a robust framework to assist researchers in deciding
which methods to use, depending on the problem at hand, in order to estimate the probability of
failure of marine structural parts that are subjected to variable loads (both hull-girder and local pres-
sure loads) that exhibit uncertainties in their material properties and that involve fabrication-related
uncertainties. The limitations of analytical approaches both in deterministic mathematical modeling
(strength formulas) and probabilistic estimation will be provided, and respective computational tools
will be demonstrated (FEA and Monte Carlo simulation). The approach is showcased in flat and
bow-defected rectangular plates through analytical and numerical approaches.

Keywords: structural reliability analysis; stiffened panel; marine structures; probabilistic modeling;
probability of failure

1. Introduction

Ship hulls involve complex structural arrangements that are designed with the man-
date to ensure the safety of the system for target reliability levels and for a specified time
period. Their structural design involves different types of uncertainties and variabilities
that are encountered both in terms of capacity (i.e., uncertainties in material properties,
manufacturing processes and geometry) and in terms of the applied loads.

Traditionally, to account for these uncertainties and to meet the safety requirements
at the design stage, designers utilize the so-called global safety factor, which has turned
out to be conservative in many cases, since all the uncertainties are summarized in one
single value. During recent decades, a transition has been taking place toward a more
probability-based design method in order to quantify the uncertainties in a more rational
manner, using probabilistic models as performed, for example, in [1-4]. This design method
allows the use of partial safety factors (PSFs), which are defined in accordance with the
regulatory framework and reflect the uncertainties in each of the variables. For instance,
one may consult the Common Structural Rules (CSRs) [5] that are designated for bulk
carriers and tankers. The most common format is the use of load-amplification factors
and resistance-reduction factors. PSFs are determined by a target safety level, which is
defined following reliability analysis of the structure or its components, and the design
method is the so-called Load and Resistance Factor Design (LRFD) format. This approach
has been applied for tankers [6], stiffened panels and grillages of ship structures [7,8] and
unstiffened panels [9,10].

The structural reliability assessment of a ship structure as a whole or its individual
assemblies (unstiffened or stiffened plates, double-bottom structure, etc.) performed
utilizing reliability-based methods (e.g., Monte Carlo statistical simulation method, First-
Order Reliability Method) has been attracting growing attention as it provides a rational
framework for uncertainty quantification. This is, first of all, because of the need to know
the reliability level of a system in order to avoid the risks brought by severe sea conditions
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and emergencies and, secondly, because reliability analysis methods can be used as tools
for safer and more robust engineering designs. Many studies [11-13] have proven the
latter statement, with Mansour [14] being the first to conduct a reliability analysis of a
hull structure. Additionally, the risk of failure in the design is comprehensively quantified
and, as such, structural optimization may be performed in order to achieve weight savings.
Structural reliability analysis (SRA) is concerned, apart from the calculation of PSFs, with
the estimation and prediction of the probability of limit-state violation for an engineered
system at any stage during its life. The violation of predefined limit states or of the so-called
limit-state function (LSF) is considered to be a structural failure and lies at the heart of any
reliability problem. Some possible forms of failure include collapse of the entire structure
or its subcomponents, major cracking or excessive deflection.

In fact, SRA is an effective tool not only for safer engineering design but also for
risk-based design, which is becoming an accepted design process for most ship types,
providing a rational basis for making decisions on their design, operation and regulation.
Risk in general can be defined as the potential of losses as a result of system failure and
depends on the probability of failure and the degree of consequences arising from it. In [15],
the relationship between risk evaluation and structural reliability was introduced, and
then the evolution of structural reliability applied to ship structures was reviewed. The
authors presented the limit-state function of a damaged ship with consideration of the
special situations after collision and grounding, and they obtained the failure probabilities
of the damaged ship based on the Monte Carlo simulation technique. In the context of
risk-based design, the authors in [16] performed an SRA of an Aframax double-hull oil
tanker using a proposed approach that captured, in a rational way, the complex interaction
of different pertinent values influencing the safety of a damaged ship structure. The safety
levels of the intact and the damaged ships indicated by the so-called reliability index was
determined by employing the First-Order Reliability Method (FORM). The importance of
conducting a structural reliability analysis was outlined, since its result, i.e., the probability
of failure, is a vital part of the process of risk assessment and defines a target safety level.

Reliability-based methods have been demonstrated to be appropriate tools for assess-
ing the level of safety or the probability of failure of ship structures and their components.
This approach can lead to improvements in design. In paper [17], a hull-girder reliability
assessment was performed using a Monte Carlo-based simulation method. Hull-girder reli-
ability in an intact condition with several load combinations in the case of an oil tanker and
a bulk carrier was investigated in [18]. The MC simulation method was performed; hence,
the failure probability of still-water and wave-induced bending moments was obtained and
discussed. The authors in [19] described reliability analysis carried out for two oil-tanker
ships, demonstrating the feasibility and usefulness of reliability-based approaches in the
development of ship longitudinal-strength requirements. FORM was utilized to solve
the reliability problem and obtain the probabilities of failure in different load conditions.
Paper [18] focuses on hull-girder reliability analysis via MC simulation and sensitivity
analysis of an oil tanker and a bulk carrier in intact condition.

The classical SRA of intact ship hulls is also extended to the case of ships with damage
or completely collapsed ships in order to determine the options for recovery or to result in
a possible review of design rules correspondingly. The MOL Comfort accident in 2007 was
investigated using a reliability-based method, which estimated the possibility of occurrence
of the fracture, i.e., probability of failure, suggesting a review of the relevant classification
rules [20]. In addition, the Prestige accident in 2002 showed the importance of a reliable
assessment of damaged vessels’ longitudinal strength in real emergency situations and time
pressure. The authors in [21] studied the residual strength and the reliability of tankers
following damage using a reliability-based method. In [22], the probabilistic characteristics
of the hull-girder safety level of a Suezmax tanker were assessed. The hull-girder probability
of failure was estimated using the FORM, considering the ultimate collapse of the mid-ship
section. A time-variant reliability analysis of a bulk carrier in damage conditions after a
collision event was performed by MC simulation in [23].
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Concerning the problem of assessing the structural reliability of a structure or one of
its components, a methodological approach needs to be adopted. This approach should
focus on formulating the limit-state equations, which are essential for conducting reliability
analysis. The quantification of the uncertainties involved in the description of the load
and the structural capacity in a rational manner through probabilistic models, i.e., random
variables, is also a vital part of the procedure. The complexity of the problem and the
number of input variables that are considered to be random determine whether the limit-
state equations can have an explicit or an implicit expression.

Having studied the literature body that concerns structural reliability problems, it
can be concluded that a comprehensive guideline for solving the reliability problem has
not yet been proposed. This paper fits in this gap of the literature since it presents a
methodological framework that applies to the estimation of the probability of violating a
certain limit-state equation. It is considered that the problem involves variability in the
uncertain loads, including both hull-girder and local pressure loads and uncertainties in
the material properties and geometrical parameters, e.g., fabrication-related uncertainties
and geometrical tolerances. In simple words, the aim of this paper is to provide a robust
framework that assists the analyst to decide upon which methods to use, depending on the
problem at hand, so as to estimate the probability of failure of marine structural parts. The
presented framework is showcased in a rather simple but important case that is encountered
during the design of ship structures: that is, an unstiffened plate which is subjected to local
and global loads. The approach will be demonstrated in both a flat and a bow-defected
rectangular plate through analytical and numerical approaches. The unstiffened plate is a
good and typical benchmark case. That is because there are analytical methods to solve
the problem when dealing with a flat plate, but once an initial imperfection is added to it,
utilizing numerical methods for the solution is inescapable.

This paper is structured as follows: In Section 2, the fundamentals of structural
reliability are briefly outlined. The proposed SRA framework and its ingredients, i.e., the
proposed methods for solving the reliability problem, are also detailed. Section 3 deals
with the definition of the problem that the framework is going to be showcased in. One
part of the presented framework is demonstrated in a flat plate in Section 4, and the other
part of the framework is demonstrated in a curved plate in Section 5.

2. Reliability Analysis Framework
2.1. Fundamentals of Structural Reliability

The main goal of an SRA of a ship’s structural component is to evaluate its correspond-
ing probability of failure, py, or its reliability, R, [24,25]. These two probabilities sum up
to unity,

pf+Ro=1= pr=1-R, ¢y

since they are connected with two mutually exclusive complementary events. Defining
the acting loads or the load effects as S and the corresponding resistance as R, the safety
margin or the LSE, G, may be defined as

G=g(r,s)=R-S 2)

The LSF can mathematically articulate the definition of failure. Since SRA is a
probability-based analysis, R and S are considered to be random variables, and as such,
they are associated with a statistical structure that may be denoted by fr(r) and fs(s),
respectively. These correspond to separate probability density functions (PDFs). Con-
sequently, G is also a random variable with a corresponding PDF, which is denoted as
fc(g). Structural failure can be defined as an event where the load effect is larger than
the resistance

G=R-5<00orG<0 (©)]
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And thus, the probability of failure for a fundamental reliability problem takes
the form:

pr=PR<S)=P(R-S<0)=PG<0)= [ fols)dg @

A rather convenient form of the limit-state function that describes a common family of
structural reliability problems may be written as:

G(R,X) = R — S(X) (5)

Magnitude X corresponds to the random vector that contains the basic random vari-
ables that control the load effect and may be either deterministically or probabilistically
quantified. For example, variability in local or global wave-induced loads (pressure of
hull-girder resultants) influences the stress state at any point of the hull. Variability in the
geometric tolerances and material properties has also an immediate effect on the stress
field. All these quantities may well be considered as basic random variables that influence
the load effect of interest, which in turn may be statistically correlated or uncorrelated.
Function S(-) can be considered to be either an analytical or a numerical predictive model
that provides a mapping between a realized random vector and the load effect. Modeling
the resistance of the structural component as a random variable accounts for the uncertainty
in the geometric and material properties of the structural element. In many practical appli-
cations, the resistance of the structure may be significantly affected by the variability of the
input values, and that correlation is expressed by the correlation coefficient. However, in
the present study, it was considered that the random variables which affect the load effect
(e.g., the load, structure’s dimensions) are statistically independent of the resistance of the
structure (i.e., steel’s yield stress). The objective following the formulation of the LSF is to
estimate the probability of failure of the structural part, using the proper reliability method
in terms of accuracy and time efficiency.

The focus of the present demonstrative study is on the linear elastic structural behavior
of a representative marine geometry; hence, the resistance (R) of the demonstrated structure
was considered to be the yield stress (oy) of the material, and the load effect (S) was
considered to be the maximum equivalent stress (i.e., Von Mises stress) occurring (oym).
In other applications, a different limit-state design can be studied, such as buckling or
the ultimate limit state of ship structures, as seen in [26-29]. Concerning the former,
the yield stress of the material is supposed to be the resistance (R), while the ultimate
compressive strength (oy) of the structure is supposed to be the load effect (S). However,
when studying an ultimate limit state, R is considered to be a hull girder’s ultimate bending
capacity (My), and S is considered to be the applied vertical bending moment (M). In all the
aforementioned limit-state design studies, the limit-state function is formulated according
to Equation (2).

2.2. Proposed SRA Framework and Its Ingredients

The specifications and the nature of the problem determine the method that is going to
be employed in order to estimate the failure probability. The entire framework, illustrated
in Figure 1, is designed in order to help the researcher decide which reliability method to
use depending on the problem in order to estimate the probability of failure of a structural
component. One central question that drives the SRA framework is whether there is
an analytical mathematical expression for the mapping function S(-). If the answer is
positive, then a separate path between a linear S function with respect to the RVs and a
non-linear one is defined. If S is a linear function, there are three ways to solve the problem.
Generally, it should be noted that the random variables can correspond to different types of
probability distributions. In addition to other types of parametric probability distributions
often published in the literature, random variables can be expressed in the case of a large
amount of measured data (e.g., using monitoring) utilizing histograms (empirical non-
parametric probability distribution). In the present study, if the random variables follow a
normal (X ~ N) or a lognormal (X ~ LN) distribution and the distribution of the random
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variable R is normal (R ~ N) or lognormal (R ~ LN), respectively, then this is the only
case where an analytical method can be applied to estimate p;. Another approach is to
estimate the statistical behavior of S, using realizations from a Monte Carlo simulation
(MCS). If S is shown to follow a normal distribution, then an approximate method can be
employed if and only if R is normally distributed or assumed to be. A numerical method,
that is the Monte Carlo (MC) method for estimating the probability of failure, can also
be employed irrespective of the statistical behavior of the input random variables. The
approximate and the numerical method mentioned above can also be used in the case
where the function of S is non-linear. Another approach for this case is to linearize the
function S and then apply an approximate method, which is applicable only if the variable
R is considered to follow a normal distribution.

RVs ~N/~LN

* R~N & S~N (or ~LN) ‘gr‘lalﬁica}
. RN olution
** R~N & S~N Linear
MCS Approx.
Solution ***
YES
| ]
I . MC Pr Numerical
| Non-linear Solution
I
I
Is there an _5 | Linear appr. Approx.
LSF: analytical " Solution **
G=R-5(X) description = l
for §? = :
| MCS .| Approx.
| Solution ***
NO I_LI
‘I FEM |
MC 5y Numerical
7l Solution

Figure 1. Framework of deciding which reliability method to use depending on the problem.

In the case where S cannot be analytically expressed, then a numerical procedure, such
as the Finite Element Method (FEM), needs to be applied in order to obtain realizations of
the response of the structure on the applied loads. An MC simulation may be employed
directly for the estimation of the probability of failure or may be employed for estimating
the distribution of S and then solving the reliability problem analytically if the conditions
allow (normality or lognormality in both S and R hold). The aforementioned procedure is
of course applicable for the case where mathematical expression for S does exist, but it is
usually used for benchmarking and validation purposes.

2.2.1. Cornell’s Reliability Index

In case the mapping function, S, is a linear function of the basic variables (X) and if
the basic variables are normally distributed, S is also normally distributed. The mean and
the variance of the load effect, S, may be obtained from operations between the moments of
the basic random vector with information provided in the Appendix A. The mathematical
definition of failure is taken in accordance with Equation (3). Taking into account that R is
also normal, then the reliability index can be defined according to Cornell as follows:

HG HR — Hs
—_ —— 6
'B oG 2 2 2 ( )
Og + 05 +20pR s OROS
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where p;—rg r s is the mean value of the denoted RV, 0;,—¢ r s the standard deviation of it
and pg s is the correlation coefficient between R and S. More information is provided in
Appendix A.

That is, B is the reciprocal of the coefficient of variation of G. The concept of B is
illustrated in Figure 2 which shows the PDF of G for the fundamental case of a two-variable
problem. The safety is defined by the event G > 0, and consequently, failure is defined by
G < 0. The reliability index may be thought of as the distance from the origin (G = 0) to the
mean y; measured in standard deviation units. As such, § is a measure of the probability
that G will be less than zero.

WS

G=<0|G=0
- |

Failure |Safety

[
-

0 u, G
Figure 2. Concept of reliability index, G = R — S, R and S normal and independent.

In case the basic variables are lognormal and independent, then the logarithm of S,
ie., InS, is normally distributed, since the sum of the logarithms of the random variables is
normal distributed. The mean and the standard deviation of the variable /nS are provided
in Appendix A. Taking into account that R is also considered to be lognormal distributed,
the alternative formulation for failure is taken. That is, for failure

(1;) <lor 1n<§) <0 )

The reliability index can be defined, using the small variance approximations, as

_ R\| . (KR
e-fi§)] - (2)

R
(Té = Var |:11‘1<S)] =~ Ulan + (7[2”5 + 2plnR,lnS 011RO1nS (9)

In (Vl)
p= £ (10)
\/Ulan + ‘712715 + 2PlnR,lnS OnR%ns

where pj,r 145 is the correlation coefficient between the RVs InR and InS.
The probability of failure, for both cases, is related to the reliability index as follows:

pr=P(—B) (11)

where ®(.) is the cumulative distribution function for the standard normal distribution.
It should be noted that the mapping function, S, has been assumed to be a linear
combination of the basic variables so far. However, this may not be true most of the time
in practice. If the function for S is non-linear, then the Mean Value First-Order Second-
Moment method (MVFOSM) can be applied. The MVFOSM method does not consider
the distributions of the random variables and directly carries out the first-order Taylor
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expansion of S at the mean. The approximate values of s and g are obtained by Equations
(A6) and (A7), respectively. More information is provided in Appendix A. Following the
linearization of the function S, an approximate solution can be implemented if and only if R
is also considered to be normal distributed. That is, the reliability index and the probability
of failure can be estimated using Equations (6) and (11), respectively.

2.2.2. Monte Carlo Simulation (MCS) Method

It should be noted that the accuracy and the feasibility of the methods described in
Section 2.2.1 decrease with increasing non-linearity for the response of the structure (S) and
the number of non-normal random variables. In such cases, the failure probability may be
estimated by simulation methods, such as the Monte Carlo simulation method. The MC
method can be used either for a direct estimation of the probability of failure irrespective
of the distribution of the random variables or for the estimation of the statistical behavior
of the variable S, which may lead afterwards to an approximate solution of the problem
under certain conditions.

Concerning the MC probability of failure estimator (p¢), the technique involves “sam-
pling” at “random” to simulate artificially a large number of experiments and to observe
the result. In this case of analysis for structural reliability, this means, in the simplest
approach, generating (or simulating) a large number of realizations of the basic random
variables X (i.e, x;,j = 1,2,...,N) and of the variable R (i.e., rj,j =1,2,...,N). The
realizations are then fed forward to Equation (5), and for each of the outcomes g;, it is
checked repetitively whether or not the limit-state function taken in (x;, r;) is positive. All
the simulations, for which this is not the case, are considered as failure and are counted (n )
After n simulations, an unbiased estimation of the failure probability ps may be estimated
through the following;:

N ny

Pf=7r (12)
which then may be considered a sample expected value of the probability of failure. Obvi-
ously, the number of N trials required is related to the desired accuracy of py. In fact, for
N — oo, the estimate of the probability of failure becomes exact. However, simulations are
often costly in computation time, and the uncertainty of the estimate is thus of interest.

The MC method is also used for Uncertainty Quantification (UQ), aiming to provide
quantifiable estimations on the variability (uncertainty) associated with the Quantities
of Interest (Qols). As already mentioned in Section 2.2, a mapping between X and Y
can be assigned to the computational model, S, which receives a specific realization of X
and returns the corresponding output y = S(x). Sampling a sufficiently large amount of
realizations from the random variables {szl,ijZ, R j=12,... n}, which will be
then fed forward to the computational model S(x), outcome instances are produced, i.e.,
{yjzl, Yi=2,-- Yj=n, ]=1,2,..., n}. The latter are collected and statistically analyzed.
It has been shown that the method can achieve a complete description of the statistical
behavior of the output Y if a large number of random samples are simulated. The Qols are
considered to be f,, u and 0% with the goal of providing statistical inferences for them.

Sample statistics may be used as point estimates, since the MC estimators are unbiased
in the sense that they converge to the true, yet unknown, value of the Qol: that is, the
sample mean value of Y and the variance, which along with the underlying PDF fy may
fully characterize the statistical behavior of the variable S. The sample mean (average), v/,
is a point estimator for the expected value of Y:

S|~

o n
w=Yy=-) yi (13)
i=1

And the sample variance is the point estimator for the variance of Y:

1 & _
or =52 = Y (i —7,)° (14)
n—14
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Following the procedure above, if S is concluded to be normal distributed, as the
variable R is considered to be, an approximate solution can be implemented. That is, the
reliability index and the probability of failure can be estimated using Equations (6) and (11)
correspondingly, where yg is taken from Equation (13) and o5 is taken from Equation (14).

3. Problem Definition
3.1. Problem Description

The plate considered as a case study in the present reliability assessment is an external
bottom plate (unstiffened area between two successive floors and two successive stiffeners)
from a typical tanker geometry. The plate has a length « of 3780 mm, a width b of 800 mm
and a thickness t of 13 mm. The considered vessel has a mid-ship section modulus Z of
29.02 m3. The material of the plate was considered to be high tensile strength steel with a
characteristic yield stress magnitude of 315 MPa. Figure 3a shows the mid-ship section of
the fictional tanker, and Figure 3b shows a top view of the plate under consideration.

1 3 4 5 6| 7 8 9 10 (11 12 4
w0 2
@orooa®) FTICTT T 1 T 1T 1 1.1 i 3w pPER DECK
E F FF T 20200 AB)
o s a3
g :
d — q e — a2
1 sk 2
: ER S -
g r ——
E ol i
qd sr
£ sl s
. g oopn E
I s e B PO NO.1STR
1.k ORDINARY SECTION E A4 —rrsso we—
8 = ki e 37
o et ot
1 ouwe
. s s
- sl o 3
= i sl ES
L vo.zsm b
32 T T 32 (10800 A/B)
r EREEN s
~ {1 »F o
4 T owp 2z
[ Y
§ g Az a
ERE
g 21 NO. 3 STR.
19| o T (6800 A7B)
v 26
=i, s
| » s
E
H vy 24
ool b
fl 2 -
INNER BOTTOM, ooy
T T T T T T T T T T T T T 1T 17T [
B T
eseune, 1 {11 I aAsE LN
l 2 3 4 "oz o1 f PR EREEER]

Figure 3. (a) Mid-ship section of the fictional tanker vessel, (b) 2D view of the plate under consideration.

Concerning the load effects acting on the plate, it was considered to be either the
tertiary stresses resulting from a uniformly applied pressure on the surface of the plate
or the combination of the primary stresses resulting from the hull girder bending and the
tertiary stresses together. The pressure involves the hydrostatic pressure due to still waves,
Psy, with a design value of 0.133 MPa and the pressure due to waves, P, with a design
value of 0.076 MPa. The bending moment involves the still water bending moment, My,
with a design value of 1873 MNm and the wave-induced bending moment, M,,, with a
design value of 3827 MNm.

3.2. Stochastic Models of the Parameters of the Problem

The basic parameters of the problem under consideration concern the strength of
the plate and the loads acting on it. As described in Section 2.2, the actual values of the
variables related to the strength of the plate, such as the yield stress of the material, the
plate thickness, etc., and to the loads acting on it, such as the hydrostatic pressure, primary
stresses, etc., tend to behave in a random manner. Variations in strength, load and load
effects greatly impact the reliability of a structural system. Therefore, in order to account for
this variability in the variables, the latter need to be approached in a probabilistic manner,
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i.e., asrandom variables. The research team in [30] compiled statistical information and data
based on a literature review on both strength and load random variables for quantifying
the probabilistic characteristics of these variables. The recommended distribution for the
yield stress, R, of a high tensile steel with a design value of 315 MPa was the lognormal one
with a mean equal to 342 and a COV of 0.089. The probabilistic characteristics of all the
random variables considered in the problem are calculated in line with [30] and are shown
in Table 1. The random variables were considered to be uncorrelated. Poisson’s ratio v was
assumed to be deterministic, and thus, a value of 0.3 was considered.

Table 1. Stochastic models of the parameters of the problem.

Variable Distribution Mean cov
Mgy (MNmM) Normal 936.7 0.6
My (MNm) Largest Extreme Value (Type I) 3827.10 0.15

Py (MPa) Normal 0.067 0.15

Py (MPa) Largest Extreme Value (Type I) 0.076 0.15

b (m) Normal 0.7936 0.028
t (m) Lognormal 0.0137 0.044
Z (m?) Normal 30.18 0.05

It should be noticed that although R is lognormal distributed, it can be assumed to
be normal distributed without introducing error to the estimation of the probability of
failure, as Figure 4 depicts. Figure 4 shows the PDF of the lognormal distributed R and the
PDF of a normal distributed random variable with a mean equal to 342 MPa and standard
deviation equal to 30.4 MPa.

0.014
Lognormal Distr.
0.012 Normal Distr.
0.01F
0.008 -
43
a)
~
0.006 -

0.004 -

0.002 1

0 . . .
200 250 300 350 400 450 500
Resistance Values [MPa]

Figure 4. Probability density functions of the lognormal distributed R and of a normal distributed
random variable with mean equal to 342 MPa and standard deviation equal to 30.4 MPa.

Concerning the bow deflected plate, the geometry and magnitude of the imperfection
are stochastic per se, and as such, there are considered to be uncertain quantities, as
proposed by the authors in [31]. More specifically, the initial geometric imperfection shape
(W,) of the plates can be represented by only one component of the Fourier series as follows:

. [(TIXY .

Wo (X, ¥; Wmax) = Wmaxsm(?)sm(%> (15)
where « and b are the plate’s dimensions and W,y is the amplitude of the shape of
the initial imperfection. The mean value of W, was equal to 2.015 and the coefficient
of variation (COV) was equal to 1.57, according to [31]. A visual representation of the
underlying statistical structure of Wpay is shown in Figure 5.
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Figure 5. Probability density function plot of the maximum magnitude of the initial deflection W,

It should be noted that the uncertainty of the geometric imperfection could be mod-
eled in various ways. In paper [32], where the ultimate strength of stiffened panels of
ships considering uncertainties in geometrical aspects was assessed, the initial geometric
imperfection was imposed in the form of a column imperfection mode on the entire stiff-
ened panel, a torsional imperfection mode on the stiffener and a local imperfection mode
on the plate and flange. The authors in [4] introduced a newly proposed probabilistic-
based imperfection model via the spectral representation method, while in paper [33], a
comparison of the prevailing geometric imperfection models (e.g., hungry-horse mode,
admiralty research establishment mode and critical buckling mode) and their influence on
the ultimate compressive strength of ship grillages is completed.

4. Reliability Analysis of Flat Plates

Considering the framework proposed in Figure 1, Section 4 demonstrates the cases for
which there is an analytical mathematical expression for the mapping function S(-). Case
study 1 refers to the path where S is a linear function with respect to the RVs, whereas case
study 2 refers to the path where S a non-linear one.

4.1. Case Study 1: Flat Plate Subjected to Tertiary Stresses

In case study 1, the plate is subjected only to hydrostatic pressure due to still water
(Psw), which is considered random along with the resistance of the plate R. The values of
the thickness and width of the plate were the design ones. Concerning the constraints at
the edges of the plate, a clamped plate, which is shown in Figure 6, was examined. The
point where the maximum equivalent stress (or Von Mises stress) occurs is denoted as 1 in
Figure 6.

Psw
BENENNNENEN |
7/ -
] L
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/ /
/ /
] [
e -
Z Z
ot

Figure 6. Clamped plate under pg.
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The equivalent stress is a function of the random variable Ps;, as can be seen by
Equation (16), which refers to point 1.

1 N2 (1. /2] i N2 1. /b2
S51= lzvpszu<t> 2P5w<t> ‘| - ZVPsw(t) ] [2P5w<t> ] = 1.683 Py (16)

Therefore, the LSF is formulated as follows:

+

ke ¢ o (3] [ (8] - [poma(e)][1(®)]

= R — 1.683P

Equation (16) indicates that S is a linear function of the RVs, i.e., Ps. Therefore, the
probability of failure can be estimated three different ways, if the conditions allow, as
Figure 1 proposes: with the analytical method, with the approximate method that utilizes
the MCS and with the numerical method that applies MC to estimate the probability
of failure.

The analytical method, i.e., Cornell’s reliability index method (Equation (16)), resulted
in a probability of failure of 2.13 x 10~!!, which was estimated according to Equation (11).
Concerning the approximate method, it includes the utilization of the MC method in order
to estimate the distribution of S and then solve the problem using Cornell’s reliability index
if the conditions allow. In simple words, a sample of size 10° was generated from the
normal distributed Ps;. Each sample was then fed forward to the load effect S, according to
Equation (16). The sample statistics of S were estimated, and the histogram indicated that
S follows a normal distribution. Therefore, Cornell’s reliability index could be calculated
according to Equation (6), resulting in a py equal to 2.04 x 10~M, which was estimated
according to Equation (11). For the sake of applying the MCS directly for estimating the py,
a sample of size at least 1.4 x 10! was needed to be generated from R and S in order for
the method to result in an indicative probability of failure, according to [34]. The size of
these simulations was neither cost efficient nor achievable timewise.

4.2. Case Study 2: Flat Plate Subjected to Primary & Tertiary Stresses

In case study 2, the plate was subjected to both primary and tertiary stresses. More
specifically, the tertiary stresses were a result of the combination of the hydrostatic pressure
due to waves and the one due to still water, and the primary stresses were a result of
the combination of the bending moment due to waves and the one due to still water.
Concerning the constraints at the edges of the plate, a clamped plate, which is shown in
Figure 7, was examined. The points where the maximum equivalent stress may occur are
denoted as 1 and 2 in Figure 7.

ﬂTmmmﬁ’g
g Z /1 ? g
— Z ~

a

Figure 7. Clamped plate under primary and tertiary stresses.
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Since it is not known a priori where the maximum equivalent stress is going to occur,
the function of S was formulated for both point 1 and point 2 as follows:

5 1szM2 1Pb22 1Pb2M1Pb2 8
1= |2 (t) 7 Tz <t> ~ 12 <t> 71|z <t> (18)
ik 0\21° N2 M b\2
Sy, = [0.34P<t> —I—? 0.341/P(t) — l0.34p(t> +f [0.341/P<t>] (19)

All the variables that appear in Equations (18) and (19), apart from Poisson’s ratio,
v, are considered to be random. Concerning the limit-state function, it can be expressed
according to Equation (5); Equation (20) refers to point 1 and Equation (21) refers to point 2:

+

+

Gl(t/ br PSZU/ Pwr MSW/ er Zr R) =R - Sl (20)

GZ(t/ b/ PSW/ PW/ MSZU/ MYU/ Z/ R) =R-— SZ (21)

Equations (18) and (19) indicate that S is not a linear function of the basic random
variables. Therefore, the probability of failure can be estimated three different ways, if
the conditions allow, as Figure 1 proposes: with the approximate method that includes
the linearization of S, with the approximate method that utilizes the MCS and with the
numerical method that applies MC to estimate the probability of failure.

Following the linearization of S; and S,, the mean value and the standard deviation of
these RVs were estimated according to Equations (A9) and (A11), respectively. In order to
evaluate the linearization that was made by Taylor’s series expansion, the function of the
maximum Von Mises stress was plotted seven times for both points, and each time, one of
the independent variables was taking values inside the interval (—40 + p, 40 + ) (where o
is the standard deviation and p is the mean of the variable), and the other variables were
held constant using their mean values.

It can be concluded from Figure 8 that the linear approximation of the load, S, seems to
be a good fit around the mean value for each of the curves. It should be noted that the mean
value of the maximum equivalent stress that occurred at point 2 (=281.18 MPa) was higher
than that which occurred at point 1 (=227.87 MPa), so the former was used to proceed
with the estimation of the probability of failure. An approximate solution that utilizes
Cornell’s reliability index, calculated by Equation (6), could be implemented, resulting in a
probability of failure of 8.51 x 1072, according to Equation (11).

According to the Central Limit Theorem, it was expected that the distribution of S
would be normal, following its linearization. However, the approximate method used in
this case is a simplified method for linearizing a function, and it could introduce significant
errors in the final result. More specifically, Figure 8 shows that for values around the mean
value of each random variable, the linear approximation seems to be a good fit to the real
function. However, when the values of the random variables come from the outliers of
their distribution, the linear approximation deviates a lot from the real function. Therefore,
significant errors may be introduced at increasing distances from the linearizing point by
neglecting higher-order terms in Taylor’s series expansion. On top of that, the linearization
point was chosen to be the mean value of the maximum Von Mises stress, which of course
might not be the optimal choice.

The problem could also be solved utilizing the MC ¢ estimation method. In order
to do so, a sample of size 10° was generated from each of the RVs. Each sample was then
fed forward to Equations (20) and (21) while examining which value that resulted from
them was higher. The probability of failure was estimated according to Equation (12) and
was equal to 2.9 x 1073. Figure 9 shows that the MC mean estimator of the probability of
failure converges to the true yet unknown probability of failure. The lower and the upper
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bounds correspond to confidence intervals of 95% confidence level. It should be noted that
a simulation with an increasing sample size up to 10° or 107 was not achievable timewise.
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Figure 8. (a) Equivalent stress function plots with respect to each variable and the function’s linear

approximation (point 1); (b) equivalent stress function plots with respect to each variable and the

function’s linear approximation (point 2).
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Figure 9. MC convergence graph—sample size up to 10°.

Concerning the approximate method, which includes the utilization of the MC method
in order to estimate the distribution of S and then solve the problem using Cornell’s reliabil-
ity index, it could not be applied because the conditions did not allow it. More specifically,
a sample of size 4 x 10* was drawn from each of the RVs from Equations (18) and (19),
and the realizations were then fed forward to Equations (18) and (19), respectively. The in-
stances of 51 and S, were then collected and statistically analyzed. Since the number of the
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samples that were simulated was large, the method could achieve a complete description
of the statistical behavior of the output S; and S;. The moments of S; and S, that were
estimated indicated that the mean value of the maximum equivalent stress is higher at
point 2 (267 MPa) than that at point 1 (220 MPa). A convergence plot of the MC estimator
of the maximum equivalent stress at point 2 was also constructed, as shown in Figure 10,
for illustrative purposes. A histogram and a QQ plot were created out of the realizations of
Sy in order to examine whether the distribution of S, is normal, as shown in Figure 11.

272
= O VM stress estimate
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= 270 ——upper bound
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% 268
()
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75)
g 4 o OB ZaNiia s 7r
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=
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Figure 10. MC convergence plot of the equivalent stress at point 2 estimate.
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Figure 11. (a) Maximum equivalent stress (Von Mises stress) normalized histogram; (b) QQ plot out
of the instances of Sj.

Although the histogram in Figure 11a seems to be normal distributed, the point
estimates of the maximum equivalent stress in the QQ plot in Figure 11b seem to deviate
from the straight diagonal line. This is an indication that the set of data is not normally
distributed. Therefore, Cornell’s reliability index cannot be utilized for the purpose of
estimating the probability of failure.

5. Reliability Analysis of Curved Plates

This section lies within the proposed framework depicted in Figure 1, demonstrating
the case for which there is not an analytical mathematical expression for the mapping
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function S(-), that is, case study 3: a bow-defected plate subjected to hull-girder loads. In
this case, a numerical procedure, such as the FEM, needs to be applied in order to obtain
realizations of the response of the structure on the applied loads.

An FE model of the plate geometry with length a and width b, as shown in Figure 6,
was generated. The problem has been cast in a linear static setting with the material being
regarded as linear elastic and isotropic, since the applied loads were not expected to result
in plastic deformation. In this context, a Young’s modulus of 200 GPa and a Poisson’s
ration of 0.3 were used as representative values of the shipbuilding steels. A clamped
plate was considered for the study, and it was modeled using eight-node rectangular shell
elements (SHELL281). Element size was determined by checking whether the maximum
equivalent stress and the maximum deflection of the plate converged to a specific value.
The mesh convergence study was made for alternative reasonably sized mesh options, and
it was considered safe to assume that solution accuracy with respect to the mesh size has
adequately converged by the 50 mm element edge case. The meshed plate is presented in
Figure 12.

C
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0.615212 24.3873 48.1595 71.9316 95.7037
12.5013 36.2734 60.0455 83.8177 107.59
Figure 12. Clamped meshed plate—deformed and contour plot of the Von Mises stress component
for an indicative pressure load realization and an indicative maximum initial deflection realization
(aspect ratio /b = 4.725).

It should be noted that for an indicative pressure load and indicative maximum initial
deflection realizations, the structural displacement of the nodes of the clamped plate in the
z direction seems to have the shape of camel humps in the longitudinal direction, as shown
in Figure 13. This happened when the aspect ratio, a/b, was 4.725. However, when the
plate was square, with an aspect ratio a /b = 1, the same structural displacement had the
shape of one half-wave in the longitudinal direction and one half-wave in the transverse
direction, as shown in Figures 13 and 14.

™~ T

51 40.9326 54.4142
34.1918 47.6734 61.155

0.487898 13.9695
7.22868

Figure 13. Clamped meshed plate—deformed and contour plot of the Von Mises stress component
for an indicative pressure load realization and an indicative maximum initial deflection realization
(aspect ratio a/b = 1).
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Figure 14. Shape of the structural displacement of the nodes of the plate in the z direction for various
aspect ratios.

More specifically, it was noticed that when the aspect ratio took values higher than
2.3, the structural displacement of the nodes of the plate in the z direction was starting to
take the shape of camel humps, which is obvious in the longitudinal direction. The above
observation is also noticeable in Figure 14, where the shape of the structural displacement
of the nodes of the plate in the z direction was plotted for various aspect ratios. The x axis
corresponds to the x coordinate of the nodes over the total length, «, of the plate, and the
y axis corresponds to the structural displacement of the nodes in the z direction over the
maximum structural displacement of the plate with aspect ratio a /b = 1.

However, as for the plates with an aspect ratio higher than 2.3, the irregular shape of
the displacement of the nodes in the z direction (Figure 14) does not seem to contribute
significantly to the final shape of the plate, as can be seen in Figure 15. Figure 15 depicts
the final shape of the plate in the longitudinal direction for various aspect ratios.

T T

0.6 0.8 1

Figure 15. Final shape of the plate in the longitudinal direction for various aspect ratios.

The above observation is more obvious in Figure 16, where the initial shape, the
structural displacement of the nodes of the plate in the z direction and the final shape of
the plate were plotted along the length of a plate with an aspect ratio equal to 4.725.
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Figure 16. Shape of the initial imperfection, the structural displacement and the final shape of
the plate.
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Concerning the method that was utilized in order to estimate the probability of failure,
there were two options, as indicated in Figure 1: the first option is to employ the MC
simulation for the direct estimation of the probability of failure. In this case, a sample of
size at least 1.4 x 10! was needed to be generated from Py, and the FE model needed
to be solved the same amount of times in order for the method to result in an indicative
probability of failure, according to [34]. The size of these simulations was neither cost
efficient nor achievable timewise. The second option is to employ the MC simulation for
estimating the distribution of S and then solving the reliability problem analytically if
the conditions allow. Following the latter path, the finite element model was repeatedly
solved for 500 randomly sampled realizations of the load, Ps,, and of the maximum initial
deflection, Wnax, using the MC method.

After the FEA, the results of the maximum Von Mises stress (or S) were collected and
statistically analyzed. As far as the distribution of the maximum Von Mises stress resulted
from the FEA is concerned, a histogram and a Q-Q plot were constructed, as shown in
Figure 17.
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Figure 17. Clamped and initially deformed plate: (a) normalized histogram of the instances of S;
(b) QQ plot of the instances of S.

The plots shown in Figure 17 indicate that the values of the maximum Von Mises
stress could come from a population which is normal distributed. Following the complete
description of the statistical behavior of S, Cornell’s reliability index could be estimated
according to Equation (6), resulting in a py equal to 6.30 X 10~ 1, which was estimated
according to Equation (11).

6. Discussion on Limitations of the Proposed Methods and Conclusions

In this work, a methodological framework for structural reliability assessment of
marine structural elements is proposed. The fundamentals of structural reliability are
briefly outlined, and the proposed SRA framework and its ingredients, i.e., the proposed
methods for solving the reliability problem, are also detailed. The presented framework is
demonstrated in a flat plate and a bow-defected one.

Having studied the literature body, it could be concluded that the MCS method for
solving reliability problems is one of the most utilized methods when dealing with reliability
problems. However, the large amount of sample data needed in order for the MC method to
result in a more accurate solution, i.e., an indicative probability of failure, is usually neither
cost efficient, concerning the computing resources, nor achievable timewise. That can be
concluded after examining case study 1. One way to alleviate this computational burden
and to improve the efficiency and accuracy of Monte Carlo estimation is to employ variance
reduction techniques such as importance sampling [35-37]. In importance sampling, an
alternate sampling density, i.e., importance sampling density (ISD) is chosen in order to
sample realizations of the input random variables that greatly affect the estimate more
frequently. This technique reduces the number of realizations required for an estimate while
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introducing a bias on it, which is corrected by weighting the sample realizations. Therefore,
a good choice of an ISD is of primary importance. Melchers [38] addressed the accuracy
and efficiency of importance sampling and its application to series and parallel systems in
structures. Generally, though, whenever computationally feasible, MCS is a robust method
when sampling-based reliability methods are concerned, because its performance does not
depend on the particular formulation of the limit-state function underlying the problem
nor on the number of the input random variables.

Generally, another way to address the issues of accuracy and efficiency of the structural
reliability assessment is to utilize surrogate models which replace the computationally
expensive model with one that is much less expensive to evaluate, as seen in [39]. Various
surrogate modeling approaches, such as polynomial response surface (PRS) [40,41], radial
basis function (RBF), support vector machine (SVM) and Kriging [42], among others, have
been adopted for reliability estimation [43]. In paper [44], the probability of failure was
estimated utilizing a limit-state function that was approximated by a SVM-based radial
basis function. The authors in [45] used the combination of response surface, FORM and
importance sampling to perform reliability estimation.

The limitations of the analytical approach arose when examining more complicated
problems, such as those in case study 2 and case study 3. Since most of the reliability
problems deal with complex load effect functions and the random variable’s distributions
tend to be different, the analytical approach seems to be rarely applicable to the reliability
problems. Additionally, MVFOSM methods have two basic shortcomings. Firstly, the limit-
state function is linearized at the mean value of basic variables, and when it is nonlinear,
significant errors may be introduced at increasing distances from the linearizing point
by neglecting higher-order terms in Taylor’s series expansion. Secondly, since the linear
expansions are taken about the mean value point, the method fails to be invariant to
different mechanically equivalent formulations of the same problem.

Finally, the present study showed that when dealing with a more practical and realistic
problem, such as the one in case study 3, then a numerical procedure, such as FEM, needs
to be applied in order to proceed to the solution. In fact, if no explicit expression exists
for the load effect function, then the analytical method and the MVFOSM method are no
longer applicable. Following the FEA, the utilization of the MC method, either for a direct
estimation of the probability of failure or for the estimation of the distribution of the load
effect, is unavoidable. The latter method, though, is not always applicable, since certain
conditions must be met.
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Appendix A

As far as the mapping function S, that is considered to be a linear function of the basic
variables (X), is concerned, its formulation is as follows:

S=wo+ Y X (A1)
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Taking into account that the basic random variables are taken to be normal distributed,
the mean and the standard deviation of the variable S can be defined as

n

s =ap+ Y aifh (A2)
=1
o5 =) ajox, +2) Y pijainjoio (A3)
=1 i=1j=i+1

where &g and «; are constants and p;; is the correlation coefficient between X; and X; and
Ui = px, and 0; = 0x;. According to Equation (5), the mean value and the standard
deviation of G are:

HG = HUR — Hs (A4)

e = \/UI% + 0% 4 20R 50RO (A5)

where pr s is the correlation coefficient between R and S.

Concerning the case in which the basic variables are lognormal and independent,
then the logarithm of S, i.e., InS, is normal distributed, since the sum of the logarithms of
the random variables is normal distributed. The mean and the standard deviation of the
variable [nS can be defined as

n
Mins = bo+ Y _ bipjt (A6)
=1
5 n 2 2 n n
=1 i=1j=it+1

where by and b; are constants and p;;/ is the correlation coefficient between [nX; and InX;
and i/ = py,x, and 0/ = 0.

If S is a non-linear function of the basic random variables X;, the approximate mean
and variance of S are obtained by using Taylor’s series expansion and truncating the series
to the required approximation. If

S = f(X1,Xa,...Xn) (A8)

the first-order approximations of the mean and the variance S are given by

s ~ f(p1, 4o, - pn) (A9)
2
i:ZU; OXily, | | 9Xil, !

[ % ] means that the derivative is evaluated at the mean values of the variables. If
tlp
X; is uncorrelated, then

2
0
I o (A1)

2 n
0%~ 2
i—1

Figure 9 illustrates the transformation of the density function fs(s) according to the rela-
tion s = f(x) and the linear approximation of the relation between the two random variables.
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Figure A1l. The transformation of the density function fs(s) according to the relation s = f(x) and
the linear approximation of the relation between the two random variables.
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