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Abstract: Nowadays, semantic segmentation is used increasingly often in exploration by underwater
robots. For example, it is used in autonomous navigation so that the robot can recognise the elements
of its environment during the mission to avoid collisions. Other applications include the search for
archaeological artefacts, the inspection of underwater structures or in species monitoring. Therefore,
it is necessary to improve the performance in these tasks as much as possible. To this end, we
compare some methods for image quality improvement and data augmentation and test whether
higher performance metrics can be achieved with both strategies. The experiments are performed
with the SegNet implementation and the SUIM dataset with eight common underwater classes to
compare the obtained results with the already known ones. The results obtained with both strategies
show that they are beneficial and lead to better performance results by achieving a mean IoU of 56%
and an increased overall accuracy of 81.8%. The result for the individual classes shows that there are
five classes with an IoU value close to 60% and only one class with an IoU value less than 30%, which
is a more reliable result and is easier to use in real contexts.

Keywords: semantic segmentation; data augmentation; enhancement techniques; underwater; visual
information

1. Introduction

Semantic segmentation is an important task for the various fields of robotics, which
often relies on visual data from cameras. Nowadays, it is often used in robots during
underwater exploration, especially for autonomous navigation when the robot needs to
recognise the elements it encounters during the mission; for example, to avoid collisions.
Likewise, it can be used in object recognition and in the search for archaeological artefacts,
or even in the inspection of underwater structures such as platforms, cables or pipelines.
Further applications can be found in marine biology and ecology in the identification of
species, but also in the search and rescue of missing persons or in military defence, through
the classification of mines. The main objective of this task is to assign each pixel of an
image to a corresponding class of the represented image. This is a dense classification and
it is often difficult to obtain good prediction results. In traditional approaches, there are
some problems with the accuracy of the results because the data obtained in underwater
environments have challenges such as colour distortion, low contrast, noise or uneven
illumination, and for these reasons, some important information is lost. In addition,
traditional methods are generally not very transferable or robust, so the segmentation
result of a single traditional method is poor in most cases [1]. It is therefore necessary
to resort to advanced approaches, often involving Deep Learning [2], to better address
these underwater challenges [3–5]. For these methods to work well for this type of task,
which requires training models, appropriate datasets must be used. However, one of the
main problems with visual methods in this area is often the lack of complete datasets or
multiple images to consider for different contexts or classes [6–9]. When there are suitable
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datasets for the general underwater context, they often do not have masks with the ground
truth [10], which is a challenge when they need to be manually labelled. In a previous study
by the authors, the SUIM dataset [11] was chosen to comparatively test different machine
learning approaches (SegNet [12], Pyramid Scene Parsing Network—PSPNET [13] and
two versions of Fully Convolutional Networks—FCNN [14], which are part of a Pytorch
repository [15]) for semantic segmentation. This dataset was chosen because it contains
seven common classes of the underwater world with different perspectives and visual
conditions. In this research [16], the Segnet implementation, a deep, fully convolutional
neural network architecture for pixel-level semantic segmentation that is efficient in terms
of both memory and computation time, stands out in terms of key performance metrics.
Thus, the overall accuracy, mean accuracy and mean Intersection over Union (IoU) reach
80%, 64% and 52%, respectively, but do not perform as well when we analyse the results
of the individual classes. Only three of the overall classes achieve more than 60% and
two classes less than 30%, with a large training set for 100 evaluations. Although the
results obtained are not bad in real contexts, it could be dangerous to work with them
during a real mission. Thus, the question arises: “Can we achieve higher accuracy in
semantic segmentation? ”. According to the literature, it is possible to improve the results
of semantic segmentation by adjusting the parameters of the model, resorting to some
image enhancement techniques, increasing the number of images for training, using more
balanced datasets, etc. [17,18]. The first goal was to find the right parameters, and this was
achieved in the first iteration. Now, additional strategies need to be tested to see if they are
successful in the underwater environment.

Thus, the main purpose of this work was to find out if there are some approaches to
augmenting the quality and diversity of training data commonly used in outdoor environ-
ments to improve the results of segmentation in the underwater context (see Figure 1).

Figure 1. Diagram of the general framework of the proposal.

The most important contributions of this work are:

• The evaluation of the impact of the enhancement methods on semantic segmentation
results;

• The exploration of data augmentation strategies that allow to increase the number of
training images and thus the diversity of the original datasets;

• The robustness of the semantic segmentation result by using both strategies: Data
augmentation and visual technique enhancement.

This paper is arranged as follows: Section 2 describes the background of this work
with the explanation of the previously obtained results, i.e., the starting point of this study.
Section 3 presents the main methods used to improve the quality of the underwater images
and some approaches to expand the number of samples in a dataset. Next, the Section 4
shows the main findings in terms of accuracy and visual results and some discussion about
them, and finally, Section 5 presents the main conclusions and some ideas for future work.



J. Mar. Sci. Eng. 2023, 11, 2268 3 of 26

2. Background

In semantic segmentation, all objects of the same class are given the same label. When
used with machine learning, the system is trained with already segmented datasets to
accurately identify elements and segment an unknown set of images. As mentioned earlier,
in an earlier work, the authors conducted a detailed comparative study of four different
implementations for semantic segmentation in an underwater context [16]. To achieve
this, after reviewing the available online data, we used the SUIM dataset, which is one of
the most complete and could be useful, although it does not yet contain all the intended
objects. It is not a large dataset, as it is not easy to obtain underwater images for these
scenarios, but it provides different perspectives, as well as colour and size information.
Another important aspect of this dataset is that it contains the ground truth for the different
images, i.e., masks with the pixels labelled according to the classes. There are eight classes:
Waterbody (Class 0), Human Divers (Class 1), Robots or Instruments (Class 2), Reefs and
Invertebrates (Class 3), Plants (Class 4), Wrecks or Ruins (Class 5), Fish and Vertebrates
(Class 6) and Seabed and Rocks (Class 7). However, each class has a different number of
samples, which leads to an unbalanced dataset and could be a problem in the training
phase. Figure 2 shows the representativeness of the classes in the original dataset, i.e., in
how many images a class is present, according to the respective colour that appears on
the masks.

Figure 2. Distribution of the individual classes for the images of the original training set.

Therefore, a series of experiments was conducted under different conditions to find
out whether SegNet, PSPNET or FCNNs is best suited for the intended context. Segnet
stands out in the results obtained. This approach is a deep convolutional encoder–decoder
architecture for image segmentation, which has good performance in terms of memory
and computation time. It also offers a smaller number of trainable parameters than other
approaches. The study carried out using the selected underwater dataset showed a good
trade-off between the accuracy of the results and the time required, even though time is not
the most important factor. In order to test this type of application, it is important to resort
to different techniques to measure the performance obtained after the training. Therefore,
in addition to observing the final results, it is usually possible to use the overall and mean
accuracy, which refers to the number of correctly assigned pixels (the mean takes into
account the predicted classes). It is also possible to calculate the IoU, which calculates the
performance of each class, taking into account the area of overlap between the prediction
and the real observation and the union of the two areas.

An example of the final results obtained is presented using a test with the original
dataset with more than 1500 images for training and 110 for evaluation. It is important
to note that the test dataset is hard, as it contains the main challenges encountered in
underwater visual data collection such as lighting inconsistencies, boundaries of objects
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not perceived as a whole, etc. The test is conducted after every 500 random images,
and 100 evaluations were conducted to obtain the final model and performance metrics.
However, the best model was found after 45,000 images, i.e., after 90 evaluations. Table 1
summarises the results in terms of overall accuracy, mean accuracy, mean IoU and the
values for this metric for each class.

Table 1. Performance measurements [%] for the best result obtained with the original dataset in a
total of 100 evaluations.

Overall
Acc

Mean
Acc

Mean
IoU IoU 0 IoU 1 IoU 2 IoU 3 IoU 4 IoU 5 IoU 6 IoU 7

79.7 64.4 53.1 87.2 62.7 29.5 58.8 16.6 51.6 59.1 69.6

As you can see from the table, although the results are generally not bad and useful,
there are errors in some classes that are dangerous from the point of view of the autonomous
vehicle. For example, the Plant and Robot classes have IoU values of less than 30%, which
can lead to some erroneous actions. In the initial experiments, it was found that this can
occur because these classes have a smaller number of images for training compared to the
other classes. In Figure 3, the results of semantic segmentation for five examples can be
seen. In general, it was found that the boundaries of the elements were correctly selected,
but some of them were assigned to the wrong class; see the diver in the second image or
even the wreck in the fourth image.

Figure 3. The segmented images obtained with the original dataset for a total of 100 evaluations after
every 500 training images are based on the best model, with each different colour representing a
different class.

Although the results obtained are not bad, it is important to investigate whether there
is a way to increase these numbers to avoid possible errors. Since the investigation of the
parameters of the model has already been carried out, the next steps will be to investigate
other strategies that can be applied to the training dataset. As mentioned earlier, visual
data collection in this world is not easy, as it is an expensive task that requires appropriate
materials and communication platforms and is often dangerous for divers. Moreover,
this task presents several problems, such as light absorption, turbidity and limited range,
which reduces the number of good-quality images. The existing datasets for semantic
segmentation training are therefore intended for out-of-water applications. When they are
intended for underwater applications, they are sparse in terms of classes (often, a dataset
contains only one class, e.g., for fish classification) and has a smaller number of samples
(many of them contain 1000/2000 images in total, which is considered a small dataset). In
this particular case, the dataset contains a total of 1525 images for training with 8 different
classes, which may mean fewer images per class. Also, this dataset is unbalanced, as
the class with the highest and lowest representativeness is present in more than 80% and
less than 10% of the images, respectively. Another important aspect of this dataset for
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semantic segmentation is the need for a suitable annotation for the training process. This
task is challenging, as it often has to be completed by the user or with the help of computer
tools, but this is very time consuming. The dataset attempts to represent each class under
different viewing angles, lighting conditions, sizes, etc., as in the case of the fish class, but
in some other cases, this is difficult. Some of the images have poorer visual conditions, with
poor boundaries and without correct information about the colour of the objects. In others,
there are some inconsistencies in the annotation mask, as it is a difficult and repetitive task.
Figure 4 shows some of the problems of the SUIM dataset.

Figure 4. Problems of the dataset: more elements of a class in the original image than in the mask
(a), some labeled errors when referring to the same class (b) and poor quality of the images obtained
underwater (c). The 3 colours that appear in the second row indicate the 3 classes: Fish (yellow),
Reefs (pink) and Waterbody (black).

In this way, two examples can be observed in which there are more fish in the original
images than in the ground truth masks (Figure 4a), which can be explained by the fact
that labelling is a hard task and is often carried out by hand. Another example is the
same class with different labels in the masks (Figure 4b), which can confuse the learning
process. Finally, the third example shows the difficulties often encountered with regard to
perceiving the boundaries of the objects (Figure 4c). Therefore, it is necessary to review the
weak points of the dataset, improve some problems and solve others to improve the final
performance (e.g., the poor segmentation).

3. Auxiliary Techniques for Semantic Segmentation

According to the literature and all that is known about the visual conditions of this
environment, there are high expectations of the improvements that the enhancement of
visual data will bring to the results of all processes that need to manipulate underwater
images, namely semantic segmentations. According to the current state of the art, there are
several techniques that can be used for different enhancements. One of them deals with
the restoration of true colours, another with filtering techniques to de-noise the image, and
others allow the removal of backscatter caused by tiny particles in the water that reflect
light back to the camera [19]. After some research in the literature and existing knowledge,
it was decided to test only a few techniques, most of which enhance contrast and highlight
the boundaries of objects (crucial for a good training process) and which have already per-
formed well in another related task such as feature extraction. Therefore, three techniques
were tested that seemed suitable for the intended application: Contrast Limited Adaptive
Equalisation (CLAHE) [20], White Balance (WB) [21] and a third technique derived from
diving experience that summarises some enhancements suitable for underwater imaging.
Thus, in detail:

1. CLAHE is used to increase the contrast of an image by redistributing light across
the image. It is one of the methods of histogram equalisation, but is not applied
to the whole image, only to small areas to reduce noise and provide a method that
combines the different tiles without their boundaries being visible. This method is
very important in underwater scenarios, as there are different lighting variations and,
in some cases, a lot of darkness, and it promises to improve the visibility of the object
boundaries and some important features. The implementation used is based on the
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OpenCv library and requires some parameterisation. After some experimentation, a
higher image quality was found by dividing the images into tiles of 80 × 80 pixels
and using a clip limit of 1.

2. WB is a process that adjusts all pixel colour information to look natural to humans.
This is not an easy task, as the water absorbs and scatters light differently than in the
air and many colours disappear in the depths, where everything looks blue or green.
In this context, this technique is used for post-processing, but it is not trivial to achieve
the right white balance. There are several variations that occur when implementing
this technique, and the approach used [22] shows that realistic degradation of the
colour can be accurately minimised (without producing unrealistic colours, such
as the purple of the grass, which can affect the results of semantic segmentation).
However, the approach used was not tested in underwater environments, which is
why some images were produced without quality in the experiments. Thus, different
parameter combinations were used and when a pattern of behaviour emerged in the
results, the better combination was chosen.

3. The third method compared in this study, referred to here as dive correction [23], is a
tool that can be used in code, as a desktop tool or in a browser. It consists of an image
editor that adjusts each colour channel to restore the true colours. Basically, it is a
simple process that goes through a few crucial steps: First, the average colour of the
image is calculated, then a hue shift is applied to the red channel (up to an average
red value of at least 60). After the RGB histogram has been created with the new red
colour, it is normalised based on the low and high thresholds, and then the colour
matrix is created based on the new values. In summary, this process makes the image
appear more natural and with greater contrast.

It is also important to mention that since these methods only change the aspect of
the image, it is not necessary to make a change in relation to the ground truth, and for
this reason, the original masks were used. As can be seen in Figure 5, the results of
the enhancement methods vary in comparison to each other and it is necessary to check
whether this preprocessing improves the final result. As shown, the results vary and lead
to more visually appealing images with some enhancements, while the same enhancement
can lead to undesirable images with others.

Figure 5. Comparison of the improvement methods using 6 original images (a) with the CLAHE
method (b), white balance transformation (c) and dive correction (d).

Looking at all images of a dataset that have been enhanced is a difficult and very
subjective task. Therefore, some Image Quality Assessment (IQA) methods have been
developed over time to quantify the perceived image quality [24,25]. They can therefore
be used in an underwater context to automatically recognise which enhancement method
is the best, for example. There are many IQA methods, but many of them require a
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reference image (the ideal image in cases where the goal is to measure the increase in
resolution of low-resolution images) and are therefore based on the comparison of two
images. In this underwater context, there are no reference images, and for this reason,
these methods are discarded to draw conclusions. Therefore, some traditional blind IQA
methods, i.e., methods that do not require a reference image, are used to simulate human
visual perception and provide quality assessments, such as:

• Blind/No-Reference Image Quality Evaluator (BRISQUE) [26], which is a spatial
quality evaluator that finds and evaluates distortions. It deals with local contrast and
luminance.

• Perceptual Image Quality Evaluator (PIQE) [27], which combines a set of statistical,
structural and perceptual features tuned to human perception.

• Natural Image Quality Evaluator (NIQE) [28], which evaluates natural images based
on structural properties of the images such as luminance, contrast and textures.

• Metric presented in [29], which bases its evaluation of image quality on three types of
low-level statistical features in both the spatial and frequency domains. Therefore, it
quantifies the artefacts of an image and proves to be effective and efficient. During
this work, it is referred to as sr_metric.

Human perception is very difficult to mimic, but it is necessary to test these metrics in
order to draw conclusions and better evaluate the results of enhancement methods when
used in an underwater context. Consequently, it is possible to observe whether they are
useful in semantic segmentation because the better the quality of the visual images, the
better the segmentation results are expected to be.

Another reason for the poor results of semantic segmentation could be that the dataset
is often too small to meet the necessary requirements, and obtaining labelled datasets is
expensive and time-consuming. Therefore, it is challenging to train the models with small
datasets, and this dataset contains only about 1500 images. Another approach to improve
the results is data augmentation, which consists of various techniques that change the
appearance of the images, e.g., rotating, zooming, flipping, colour variations etc. In this
way, the dataset can be enlarged. The use of data augmentation offers some advantages
for Deep Learning methods, such as improving generalisation, increasing the robustness
of the model to different variations in the input, using smaller datasets for some of the
necessary applications, and avoiding overfitting because the training data are more diverse.
It is also worth noting that in most cases, this approach is only used for the training dataset,
as is the case in this study. In underwater scenarios, this is particularly important because,
as explained earlier, underwater imagery presents many challenges, and the model has
to cope with all the changes and variations. Therefore, it is crucial in this context to take
into account lighting changes, distortions and perspective changes. In addition, the water
causes movement of the camera or objects during the shot and often additional noise occurs
as the conditions for the shooting equipment are often not the best, etc. Figure 6 shows
some of the possible changes that can be made to an image to use it in the training set.

So, in this case, it is possible to obtain more images with only one image to better train
the class of human divers. However, some of these changes are not useful for all scenarios
as they change the sense of reality, e.g., when the seaweed appears at the bottom of the
image. As can be seen in the Figure 7, vertical flipping is useful in some cases, especially
when the camera captures images in an upper plane with respect to the object, i.e., images
from the bottom of the underwater floor. But it is wrong in cases where the image is taken
in front of the object, as can be seen from the air bubbles that can never come down. In
many cases, extreme transformations (flipping or rotating) must be avoided.
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Figure 6. Five examples of possible changes to increase the size of the dataset using a single image.

Figure 7. Result from two original images (a): in some cases, good variations result, but at the same
time images arise that do not fit into the intended context (b).

For this reason, it is important to ensure that this process does not provide misleading
information. The data augmentation in this application assumes that the images are taken
from a vehicle that does not rotate much along the x-axis. It is critical that the consistency
of the data provided is maintained. The changes must represent reality and the greatest
possible number of variations in the real world. There are already many methods of
data augmentation that can be implemented to increase the size and diversity of datasets.
However, when a segmented dataset is needed, the transformation must be applied to each
image while keeping the ground truth consistent. Sometimes it is non-trivial to maintain
this so as not to add false information or, for example, black pixels during the rotation
transformation. To solve this problem, it is often necessary to add a crop to the result of the
first transformation. But not all transformations require an intervention in the mask, such
as the changes in the colour information of the image, where there are no changes in the
position or size of the objects. The different transformations can be divided into categories,
such as:

• Spatial transformations—these refer to changes in the image coordinate system that
affect the position and orientation of objects and the overall image.
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• Intensity transformations—these change the appearance of objects, but not their shape,
and act at the pixel level.

• Elastic deformations—these can simulate the flexibility of objects, the variability of
their shapes or, in underwater scenarios, some water movements that are often seen in
the image.

• Noise addition—this makes the model more robust to the diversity of data collection,
especially in underwater scenarios where there is noise in the images.

• Random erasing—some techniques remove regions and in the mask, this class is
ignored.

There are several implementations of these transformations and libraries in the lit-
erature for the intended context, such as: ImageDataGenerator by TensorFlow or the
transformations by PyTorch when the user needs to apply the same transformation in the
image and in the mask. However, these approaches have some limitations, such as rotating
an image and the appearance of black corners. Another option is Albumentations [30], a
fast image augmentation library that applies the transformations to the images and ground
truth simultaneously. It has an extensive set of transformations, from the most common to
the more specialised, such as grid-based distortions, and supports more than sixty transfor-
mations in total. It is designed to be adaptable and efficient when applying transformations
in the training process, ensuring that both the image and the corresponding mask receive
the same transformations and parameters. It also allows a pipeline of transformations to
be applied together, so the variety of transformations is incredibly wide. For this reason,
this library was used for this work. In Figure 8, you can see some transformations of the
image and ground truth made by this library, e.g., by flipping, cropping and downscaling
transformations. By flipping and cropping data, one can simulate different perspectives and
sizes of objects that may appear on the images depending on the location and distance from
which the image was taken. Therefore, the ground truth also changes in these cases. To
better represent the different types of image capture systems, a downscale transformation
can be used, as in this context some of these systems provide images with lower resolution.
In this way, the trained model is more robust in segmenting objects even in low-quality
images, but with this transformation it is not necessary to change the mask.

Figure 8. Some examples of original images (a) and corresponding transformations (b) are shown.
The first and second rows represent transformations by flipping and cropping, which also change
the mask, and the third row represents a quality degradation where the ground truth does not need
to be changed. The second columns represent the ground truth, with each colour representing a
different class.
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4. Experimental Results

In order to be able to verify the statements made in the literature about the selected
procedures for increasing the final performance of semantic segmentation, it is necessary
to test them individually and analyse their relevance to the intended context. In this way,
new datasets are created for each test according to the respective assumptions. To compare
the results, the common metrics and the quality of the visual results are used, as explained
earlier. All experiments were conducted using an Intel(R)Core(TM) i9-9880 CPU @ 2.3 GHz
with 32 GB RAM computer.

4.1. Enhancement Techniques Comparison

As already described, three implementations to enhance the visual quality of the
images are tested and compared: CLAHE, white balance and dive correction. It is expected
that better visual quality of the images will lead to better training and, consequently, to
better semantic segmentation results. As mentioned before, a correct evaluation of the
quality of the obtained images is a difficult task, especially in cases where no image is
available as a reference. However, regardless of the underwater conditions in which the
images were acquired, it is important to have an idea of whether these newly generated
images lead to a more appealing result or not. Since it is very difficult and subjective
to check the result of all images in the dataset, some traditional metrics were used for
blind quality assessment, i.e., without resorting to a reference image. Therefore, a set of
20 images of each enhancement was created to test them with four previously selected
metrics: BRISQUE, PIQE, NIQUE and sr_metric. An attempt was made to make the set
as heterogeneous as possible in order to obtain a variety of contexts. This can be seen in
Figure 9, where there are images with a quality score of more than 40 (which represents
fair quality) and others with less than 20, i.e., excellent quality, according with the methods
BRISQUE and PIQE.

Figure 9. Quality assessment with BRISQUE and PIQE for 20 original images selected to evaluate the
quality of images processed with enhancement techniques.

The purpose of this type of test is to ensure that the most appropriate method not only
improves the images with low visual quality, but also does not degrade the images that are
already of good quality. If you look at the graph, you can quickly see that the results of these
two metrics do not always agree, but both say, for example, that the 2nd and 12th images
tested are of poor quality and that this is true in terms of human perception (Figure 10a).
Furthermore, both metrics indicate that the 14th and 18th images are of high quality, but
this conclusion is not clear in terms of human perception, as shown in Figure 10b.
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Figure 10. Two examples of bad visual images (a) and good visual images (b) of the original set,
according with the methods BRISQUE and PIQE.

To see if it is possible to determine which method of enhancement technique is most
appropriate in the underwater context according to these assessment methods, the quality
tests are performed for the three methods of enhancement and with the four selected
metrics. The results obtained are presented in Table 2. The obtained values of the metrics
that exceed the results obtained with the original set are highlighted in bold.

Table 2. Comparative results of the mean of the quality score of the Dive, WB and CLAHE corrections
for a total of 20 images, using PIQE, BRISQUE, NIQE and the sr_metric. For each metric, the results
that exceed the results obtained with the original set are highlighted in bold.

Data PIQE BRISQUE NIQE sr_metric

Original 30.63 33.14 3.30 6.35
Dive 31.9 30.16 3.15 7.27
WB 36.7 37.45 3.38 5.92

CLAHE 32.50 27.50 3.14 7.40

It is also important to point out that the BRISQUE and the PIQE represent the results
on a scale of 0 to 100, while the NIQE and the sr_metric are based on a scale of 0–10.
Furthermore, for the sr_metric, the higher the score, the higher the quality of the image. For
the other metrics, the relationship is reversed, i.e., the best results are achieved with a lower
quality score. As you can see, with the first metric, the overall quality of the results obtained
decreases as the quality score increases. With BRISQUE, the results of dive and CLAHE
corrections increase the quality of the images, with the CLAHE method being particularly
emphasised, as it greatly improves the average quality score (close to excellent quality, wich
is good for the underwater context). For NIQE and the sr_metric, these implementations
also increase the quality of the images in general, but with a small increase for CLAHE.
Looking at the individual results of the metrics obtained for the CLAHE enhancement
method, it can be seen that for the 13th image, the score for the quality of the image obtained
increases sharply (by more than 18 units) compared to the original visual quality for the
BRISQUE metric. This therefore indicates a good result. However, when we analyse the
results of the score for the same image in the other metrics, the value of the quality score
obtained for PIQE and NIQE shows a decrease of 6 and 0.3, respectively, indicating a
deterioration in quality. With the sr_metric, the results obtained do not differ from each
other. In this way, it is not possible to say with absolute certainty that one method is
better than the other at producing more appealing visual images. Although all results
indicate that the CLAHE method and the Dive correction provide the best results in terms
of improving image quality, there are sometimes contradictions.

Therefore, it was decided to test all obtained images with three enhancement methods
to determine whether the method offers the best results for segmentation. The three meth-
ods are thus applied to the whole training dataset, and also to the test images. For this test,
four different datasets were created and the model was trained with a total of 50,000 images,
with evaluations after 500 randomly selected images, resulting in 100 evaluations each. The
results obtained are compared with the original dataset, i.e., with the training performed
on images without the image enhancement already described, and can be seen in Table 3.
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Table 3. Comparative results of best measured model performance [%] achieved with CLAHE, WB
and dive corrections in a total of 100 validations, each after 500 training images. Whenever the results
achieved exceed the results of the original set, they are emphasised in bold.

Method Overall
Acc

Mean
Acc

Mean
IoU IoU 0 IoU 1 IoU 2 IoU 3 IoU 4 IoU 5 IoU 6 IoU 7

Original 79.7 64.4 53.1 87.2 62.7 29.5 58.8 16.6 51.6 59.1 69.6
CLAHE 80.4 64.0 53.3 87.0 61.6 25.7 59.1 14.1 54.2 60.5 64.2

WB 80.0 62.5 51.9 86.6 58.2 30.0 59.7 8.5 55.8 56.8 59.4
Dive 80.5 63.4 52.3 87.1 58.2 27.4 60.0 11.6 53.9 57.6 62.8

In general, the mean IoU value is the best way to check the performance of the semantic
segmentation methods, as it is calculated with respect to all classes. However, since we have
eight classes, it is normal that this value is not much higher. In other words, it indicates
how well the segmentation model works across all classes. As for the quantitative results,
it shows that CLAHE only slightly increases the mean IoU value. But it provides better
results than the original for tree classes and in the case of the fish class with significant
results (greater than 3%). For this reason, this enhancement method seems to be the best,
but the visual results should be observed. Figure 11 shows the results obtained by applying
the three enhancement methods to the images. Looking at the visual results, it is possible
that the CLAHE results are generally better because it is the best method for observing
the body of the human diver and the coral in the second example. Also, it is a unique
method that shows the plants of the third example in a high number of pixels, which is a
good result because it is a difficult class to model. The other implementation stands out
compared to the CLAHE method in the robot class, but it is not significant because it is
only one of eight classes and does not provide good segmentation results. In this way,
the best result is obtained using the CLAHE method, which slightly improves the final
result and has a higher overall accuracy, i.e., a higher rate of well-detected pixels. This
result was to be expected, as the contrast and thus the visibility of the main features of the
images improved, which can increase the performance, especially for underwater images
with different lighting conditions. It is also important to mention that this enhancement
technique allows the model to reach the best value of mean IoU (within 50,000) after
90 evaluations, i.e., using a total of 45,000 training images instead of 50,000 for white
balance enhancement or 47,500 for dive correction. For this reason, the CLAHE method
is chosen as the best and most appropriate for the context and for use in the next set of
experiments, if necessary.

Figure 12 shows an example of the improvement in the final segmentation results
using the CLAHE method in the fish and wreck classes compared to the original results.

4.2. Data Augmentation Influence

As far as data augmentation is concerned, there are several options that can be applied
to the images, but it is not possible to apply all of them, as the dataset would be larger
than necessary and the processing time would increase greatly without necessity. To
create the datasets needed for the following tests with data augmentation, a total of eight
transformations were used, which can be seen in Figure 13. Clipping operations were used,
as well as some distortions (grid and elastic) and a flipping in the horizontal axis. It is
important to note that the influence of data augmentation was tested in an isolated way,
i.e., without considering visual enhancement methods.
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Figure 11. Qualitative comparison results of 4 different examples (a,b): the CLAHE method (c),
WB method (d) and dive correction (e) using the best model in a total of 100 validations, each after
500 training images. The different colours represent the different classes along the results.

Figure 12. Comparison of the qualitative results of 2 different examples (a,b), between the result
obtained with the original set (c) and the CLAHE method (d) using the best model for a total of
100 validations. The different colours represent the different classes along the results.

4.2.1. General Data Augmentation

The first experiment with data augmentation was conducted on a dataset in which
five of the augmentations were applied to each image in the training dataset. This provided
a total number of 9144 images for the training to be able to evaluate the effects of this phase
in a larger dataset, as 1500 images is a small dataset for the intended context. Figure 14
illustrates the distribution of classes across images. It can be seen that the number of
samples per class increases and the distribution of classes remains the same.
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Figure 13. Eight transformations used in the creation of the augmented datasets for training.

Figure 14. Distribution of the individual classes for the images of the training set with data augmen-
tation.

To allow a fair comparison and because the new dataset is larger, the original dataset
was run for 50,000 training images, with the evaluations carried out for 1000 images
each (about two-thirds of the total number of images). Therefore, the new dataset with
data augmentation (DA) was evaluated after every 6000 images for a total number of
300,000 iterations, with the aim of having the same number of evaluations at the end,
i.e., 50 evaluations. Table 4 summarises the result for the best iteration for the original
dataset and the dataset with data augmentation (iteration 41 and iteration 47, respectively).
Looking at the results, we can see that increasing the number and variety of samples (under
the same conditions for the train) increases the general value of the mean IoU by about
2.5% (bold type on the table), which is a relevant result because there are five classes whose
IoU is increased. There are two classes in which the behavioural performance decreases,
but one of them is a difficult class to model (plants) and another is a general class because
it includes rocks. The value of this class is still useful in the intended context.
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Table 4. Performance measures [%] for the best result obtained with the original dataset and the
dataset with data augmentation in a total of 50 validations. In bold type, you can see for each class
whether the results achieved with the data augmentation are better than the original results.

Overall
Acc

Mean
Acc

Mean
IoU IoU 0 IoU 1 IoU 2 IoU 3 IoU 4 IoU 5 IoU 6 IoU 7

Original 80.6 62.9 51.8 87.6 60.9 20.9 60.2 11.6 54.1 55.5 64.0
DA 80.4 65.0 54.1 85.7 64.2 38.6 61.3 8.6 54.3 61.1 58.8

Figure 15 shows the results obtained during the learning process in terms of the
mean IoU value. It can be seen that the result with data augmentation generally performs
better throughout the process. If we look at the first 25 evaluations, we see that the
difference between the maximum values achieved is about 6.5%, which means that the data
segmentation learns faster.

Figure 15. Mean IoU measurement along the 50 evaluations with the original dataset and the data
augmentation dataset.

Figure 16 shows the same analysis, but in relation to the individual classes of the
process. It can be stated that in most cases, the data augmentation improves the result of
the IoU values or starts better and faster than the results without data augmentation. With
respect to classes 0 and 7, the DA results are not better than the original results, but these
are common classes that are strongly represented on many images and therefore easy to
learn. With respect to the worst classes (plants and robots), it is important to point out
that the results start earlier with data augmentation, which means the ability to learn in
the training dataset with a larger number of samples. These two values are lower than the
other classes because the dataset remains unbalanced, which means that these classes are
less represented than the others.

Figure 17 shows the results of the original dataset (second column) and the augmenta-
tion dataset (third column) with the same configurations. It can also be seen that for most
classes and images, the result with the augmented data is better than the previous one.
Pixels identified as robots occur in large numbers, and wrecks and human divers are better
delineated. Plants and robots are the classes that provide the worst results, as they remain
the classes with low representativeness.
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Figure 16. IoU measurement along the 50 evaluations with the original dataset and the data augmen-
tation dataset, for each class.

Figure 17. Qualitative comparison of the results of 10 different examples of semantic segmentation
(a,d) using the original dataset (b,e) and the data augmentation set (c,f) for the training process, in
which the best model was selected in a total of 50 validations. The different colours represent the
different predicted classes along the results.

4.2.2. Data Augmentation of the Less Representative Classes

It is clear that segmentation is good for improving the results because it produces
more images in which the classes are represented with different perspectives, sizes and
image qualities. So, in the next experiment, let us see what happens when we apply the
data augmentation to all images, but in a different number of variations depending on the
class. If we look at the distribution of the original dataset used for training (see Figure 2),
we can see that the classes Robots, Plants and Wrecks are less represented in the images.
Therefore, two image data augmentations (RandomSizedCrop and HorizontalFlipping)
were applied to all classes and another five transformations (CenterCrop, Crop on the left,
Grid and Elastic Distortion and Dowscale) were applied to the less representative classes.
The generated dataset includes a total of 7312 images. This is a larger dataset, but it still
needs to be verified if this number of images is sufficient to model the eight classes. The
new distribution of classes in all images is shown in Figure 18. It can be seen that the less
representative classes are the same as in the previous experiment, but with a higher number
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of samples per class. The higher representative class is present in about 70% instead of 80%
of the images and the three less representative classes are present on average in about 17%
instead of 12%. Note, however, that the increase in the worst classes is not proportional
(while the robot class increases by six times, the wrecks increase by seven times) because
the classes are not isolated in the image and some cropping transformations may suppress
some of them. This factor, together with the different size of each class in each image, may
affect this result.

Figure 18. Distribution of the individual classes for the images of the training set when applying the
data augmentation in different numbers according to the class.

As in the previous experiment, training was performed on the images in this new
dataset with data augmentation (DA1) after every 5000 images (about two-thirds of the
total number of images in this dataset) for a total number of 250,000 iterations, with the
aim of obtaining the same number of evaluations at the end as the original result presented
before. Table 5 summarises the result for the best iteration for the original dataset and for
the dataset with the new data augmentation dataset during the segmentation process over
the 50 evaluations.

Table 5. Performance measures [%] for the best result obtained with the original dataset and the new
dataset with data augmentation (DA1) in a total of 50 validations. In bold type, you can see for each
class whether the results achieved with the data augmentation are better than the original results.

Overall
Acc

Mean
Acc

Mean
IoU IoU 0 IoU 1 IoU 2 IoU 3 IoU 4 IoU 5 IoU 6 IoU 7

Original 80.6 62.9 51.8 87.6 60.9 20.9 60.2 11.6 54.1 55.5 64.0
DA1 80.2 66.0 54.4 86.3 61.1 37.7 61.2 23.5 53.4 54.8 57.9

As shown, both the value of the mean IoU and the mean accuracy increase because
there are some classes that increase both the accuracy in detecting the pixels and the IoU.
The classes that are more augmented in the training set increase the value obtained, with
the exception of the wreck, but the behaviour in this class is similar to that of the original.
However, the plants and the robots increase the value of IoU by 12% and 16%, respectively,
which is good because they are difficult to model and learn. The class of divers is not greatly
augmented compared to the robots, but they increase their IoU value because in most cases,
the robots appear on the image together with the human divers. The wrecks do not improve
their results, although they belong to the augmented classes, but their results are already
higher than 50%, and for this reason it is a good result. Curiously, this model was chosen
because it has the best value for the mean IoU during the 250,000 training iterations, but
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this best value corresponds to iteration number 22 (fewer evaluations). Therefore, Figure 19
shows the segmentation obtained for images with the classes augmented in the training
process: Wrecks, Plants and Robots. For these particular cases, you can see that the results
are much better than those obtained with the original set. In addition, the area of the plants
is much better delineated and the bodies of the robots and the wrecks are well identified.

Figure 19. Qualitative comparison results of 4 different examples of semantic segmentation (a,b),
obtained from the original training set (c) and the data augmentation set (d), using the best model in
a total of 50 validations for each case. The different colours represent the different predicted classes
along the results.

4.2.3. Data Augmentation of the Isolate Classes

The last result, related to data augmentation, has the main objective of testing if it
is possible to increase the performance of an isolated class via data augmentation in the
images when this class occurs. For this purpose, a dataset was created in which the images
of the robot (class with low representativeness) were augmented with the seven semantic
segmentations of those described previously. The new dataset shows the distribution of the
graph of Figure 20, obtaining a total of 2252 images.

The number of images with the robot class increases strongly and its representation
reaches more than 25%, which is a good result for a dataset with eight classes to be
segmented. The plant is the class with the lowest representation and the human divers
increase their value to more than 30%, as they often co-occur with the robot. Therefore, this
dataset was trained with a total of 75,000 images, evaluating all 1500 images to perform
a total of 50 evaluations, and the best model was determined after 36 evaluations. The
result of this best evaluation provided an IoU value of 41.4% for the robot class, which is
an incredible result for the class that had a maximum value of 20.9% in the original case.
As expected, the value for the human diver also increased to 67.8%. These two increases
lead to a higher mean value than in the original case (54.5% instead of 51.8%), proving
that one or two classes with poor results can strongly influence the value of the mean IoU.
Figure 21 shows the result for the value of the IoU of the robot class during the whole
training process. It can be observed that in addition to the fact that the value in the original
dataset was always lower than when the images with data augmentation were used, the
values in the dataset with data augmentation began to show. In the original case, the class
only shows results higher than zero (also unusable) after 25 evaluations.
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Figure 20. Distribution of the individual classes for the images of the training set when applying the
data augmentation only in the robot class.

Figure 21. IoU measurement for the robot class (class 2) along the 50 evaluations with the original
dataset and the data augmentation dataset.

Figure 22 shows the result of some images with robot class present, for which the best
model obtained in this test was used.

Figure 22. Qualitative results of different examples of segmented image with robots, obtained from
the data augmentation set for the robot class, using the best model in a total of 50 validations. The
different colours represent the different predicted classes along the results.

The class of plants is also less representative in the original dataset. Therefore, a new
dataset was created in which the images of the plant were augmented with seven data
augmentations. The difference is that only about 100 of the total number of plants were
augmented because this class occurs in many images with very small sizes or only in
one corner of the image and the transformation produces images without this class (see
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Figure 23). The remaining images were retained in the dataset without data augmentation
in a similar way as all images without plant class. In this way, we obtained a dataset with a
total number of 2588 images, but with more images with the plant classes, this class being
the fourth class most represented in all images; see Figure 24. Therefore, this dataset was
trained with a total of 75,000 iterations, evaluating all 1500 images to perform a total of
50 evaluations, and the best model was obtained after 45 evaluations. As for the result,
similar behaviour as for the robot class was observed, i.e., it started with values above 0%
and obtained higher results during the 50 evaluations (see Figure 25).

Figure 23. Demonstration of the size and location on the original set of the plants in some of the
images. The different colours represent the different classes in the original masks.

Figure 24. Distribution of the individual classes for the images of the training set when applying the
data augmentation only in the plant class.

In this case, the best value of the mean IoU (53%) does not refer to the best value of
the IoU for the plants, as all classes are considered in this metric. The value obtained for
the IoU for the plant was around 20% for the best model, which is also a higher value than
the results obtained without data augmentation. It is important to point out that this class
is very difficult to model, as it can appear on the image in different sizes, perspectives
and variations.
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Figure 25. IoU measurement for the plant class (class 4) along the 50 evaluations with the original
dataset and the data augmentation dataset.

4.3. Data Augmentation with CLAHE Method

In order to evaluate the effect of using both strategies simultaneously and to see if the
results improved, we decided to use the DA1 dataset, i.e., the more balanced dataset of the
previous tests and the better enhancement technique (CLAHE). Therefore, training with
the images from this new dataset (DA _C)) was performed after every 5000 images for a
total number of 250,000 iterations to perform 50 evaluations. Table 6 shows the comparison
between the new results and the results obtained in the test with the data augmentation
only. In bold type, you can see whether the results achieved with both strategies outperform
the result with only the data augmentation. This allows you to clarify whether it makes
sense to use both strategies or whether the data augmentation is sufficient.

Table 6. Performance metrics [%] comparison for the best result with the more balanced dataset
with data augmentation (DA) and this dataset with CLAHE method (DA_C) applied for a total of
50 validations. For each result, you can see whether using both strategies is better (in bold) than
using only the data augmentation.

Overall
Acc

Mean
Acc

Mean
IoU IoU 0 IoU 1 IoU 2 IoU 3 IoU 4 IoU 5 IoU 6 IoU 7

DA1 80.2 66.0 54.4 86.3 61.1 37.7 61.2 23.5 53.4 54.8 57.9
DA_C 81.8 67.6 56.0 87.9 66.7 39.4 62.4 12.8 53.9 61.0 63.9

From the results, we can see that all general performance metrics are increasing,
especially overall accuracy, which has been the best metric since the first test. Despite a
lower result, the mean accuracy improves by 1.5% and in terms of mean IoU, a value of 56%
is achieved, which is the best result ever obtained with this dataset (a good result, given
the number of evaluations that are performed). If we look at the results of the individual
classes, we can see that they are all increasing, with the exception of the value of plants. It
is important to mention that the value of IoU obtained during the training process for the
class of plants has a maximum of 17.3%. This could be due to the fact that the CLAHE could
damage the region of the specific plant areas on the images. Thus it was shown that using
both strategies together is a good plan to improve the results in general. Figure 26 shows
the segmented image result for some of the images used to test the different approaches
with the best model trained on this final dataset. The results show good segmentations and
many of the pixels are well labelled (some of the classes, such as robots or fishes, represent
the complete object).
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Figure 26. Results of 5 different examples of semantic segmentation (a,b), obtained from the
use of both strategies at the same time: data augmentation of the less representative classes and
CLAHE method (c). The different colours represent the different classes in the original masks and
predicted results.

5. Conclusions

The main objective of this work was to evaluate whether there are approaches
commonly used in outdoor environments that can be applied in visual segmentation
methods for the underwater context. If so, how much they could improve the overall
performance of this task? We wanted to find out how to build a more balanced dataset
without requiring data collection, which is already challenging and expensive in terms of
time and cost, in order to extend these methods to other domains and application tasks. For
this purpose, we start from the results of a previous study conducted by the authors. In that
work, four literature implementations for semantic segmented applications were tested
and Segnet stood out for its performance, which is why the same method is also used in
this work. The lack of good datasets with which to test these applications is still a problem,
namely datasets for semantic segmentation, which also requires the labelled ground truth
for each image. Therefore, the SUIM dataset was chosen because, although it contains only
1500 images for training, it presents different perspectives, sizes and conditions of eight
classes that are commonly encountered in this world. Although not all objects intended for
our applications have been covered yet and there are some errors in the labelled masks, the
authors resort to this dataset in both papers to perform the evaluations. Using the Segnet
in a training with 50,000 training images and evaluations after every 500 images gives
an overall accuracy of 80%, a mean accuracy of 64% and a mean IoU of 52% for the best
result in 100 evaluations, which is our starting point. The model shows low performance,
with only three of the total classes achieving more than 60% and two classes achieving less
than 30%, which could be dangerous in a real mission. Therefore, some strategies need to
be tested to see if it is possible to improve these results. For this purpose, approaches to
improve image quality and data augmentation were tested. Therefore, the main conclusions
about the results are as follows:
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• The better the quality of the visual images, the better the segmentation results are
expected to be. Therefore, in the first experiments, an attempt was made to determine
which enhancement method is the best using some IQA metrics that do not require a
reference image. Using 20 previously selected heterogeneous images, it was found
(looking at the average quality scores) that CLAHE and dive corrections improved the
results for three out of four metrics. However, when looking at individual cases, some
inconsistencies were found, so it cannot be said with certainty which enhancement
method is best suited to achieve better segmentation results.

• The first test of segmentation results was carried out with 50,000 training images.
The evaluation was performed after 500 images were randomly selected, i.e., after
100 evaluations, with the main aim of finding out which enhancement techniques
can improve segmentation performance. The test uses 100 images which have been
selected beforehand and are the same for all tests. Looking at the quantitative results,
we can see that the CLAHE method is the only one that increases the mean IoU
value, but with a small increase. As for the individual classes, this implementation
improves the result of the coral, wreck and fish classes. The visual results confirm
the quantitative results, and for this reason this method was chosen as the best to
improve the image quality, as it improves the visibility of the object boundaries and
some important features that allow a better training of the model.

The next tests have the main objective of testing the impact of data augmentation for
the intended application, since the dataset used is small and eight transformations were
used to create the new datasets used in the tests.

• In the first test of data augmentation, a new dataset with a total of about 9000 images
is created using five random data augmentations. The dataset is used for training
with a total of 300,000 training images, which are evaluated after every 6000 images
(two-thirds of the total dataset). A new test of the original images is performed under
the same conditions (a total of 50,000 training iterations and evaluations after every
1000 images to obtain a total of 50 evaluations). The results with the dataset using
the data augmentation increase the original result of the mean IoU by 2.3%, which
shows that it is relevant and allows some classes with more diversification to be
used in the learning process. There are five classes that improve their results, namely
classes that are more difficult to learn, such as the robot, because it is a class with
fewer images in the original dataset (only 104 images), which increases its metric by
17%. However, this class and the plants are the classes in which the increase in the
number of images also leads to an unbalanced dataset. The classes that decrease their
performance decrease by values that are still good and useful in a real context, i.e.,
they are not dangerous.

• The following test is to show what happens when we augment the classes with a
lower representativeness in the images. For this purpose, the images with plants,
robots and wrecks are augmented with seven transformations and the rest with only
two. However, it is impossible to isolate classes, and sometimes when we augment
a class with an image, we augment more than this class, as there is more than one
class in the original. The result is a slightly more balanced dataset in which the higher
representative class occurs in about 70% instead of 80% of the images and the three
less representative classes occur on average in about 17% instead of 12%. Under the
same conditions as the previous test, the performance for the mean IoU value is 54.4%,
with the robots improving their result and the plants having an IoU value of 23.5% for
the best model obtained during training.

• To test whether it is possible to increase the value of the isolated classes, two tests
are performed: one with the robot class that is least representative in the original
dataset, and another with the plants; this is shown to be the most difficult class to
learn. To achieve this, the images in which the robot class occurs are isolated and seven
transformations are performed so that the robot is no longer the least representative
class. The IoU value for this class increases to a value of 41.4% (a value that has
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never been reached for this class before). When examining the plants, it is not only
necessary to isolate the images of the plant class, but also to select only some of
them for data augmentation. In many images, the class appears with few pixels and
the transformations are images without the class. If we compare the results of the
class with this data augmentation and the original case, we can see that the class has
higher values than 0% in the data augmentation test at first. The values obtained are
always higher than in the original test and reach a maximum of 25%. This lower value
can be explained by the fact that the images with different variations are not very
representative, and for this reason it is a more difficult class to learn. These tests show
that it is possible to increase the values of a class by feeding the model with a variety
of images.

• The last test has the main objective of seeing if the technique of data augmentation
and enhancement provides good results. For this purpose, the CLAHE method was
applied to the data augmentation of the less representative classes (DA1). The results
obtained are very good, with a mean IoU value of 56% and an increased value of
overall accuracy of 81.8% (the highest value at this time). The mean accuracy value is
also increasing, which means that the results are better in different classes. This is not
the case for plants, which may mean that the enhancement may confuse the model
in the regions of this class (e.g., set many saliency features), and therefore this class
remains the most difficult in the learning process, but in the visual results, this class
already appears more frequently.

If we look at the last result with both strategies, we can conclude that all the changes
made during the study are beneficial and that the results at this stage are better than in
the original cases, because now there are five classes with more than 60% and only one
with less than 30% for the IoU value. This shows that the results are more reliable and
can be more easily used in real contexts. It is important to mention that the results are
different from the original results, which were obtained with more training. This is a good
result because it is to be expected that with longer training periods, the values of some
classes will achieve higher performance, as they are more difficult to train. Both strategies
are thus important in the context of semantic segmentation, especially in the underwater
domain, where it is very difficult to obtain relevant images in the quantity required for
Deep Learning techniques.

Future plans include automating the data augmentation process to apply more trans-
formations without worrying about the associated acquisition, e.g., rotational or flipping
transformations (which are allowed in some cases and avoided in others, when it is not
practical), and testing performance with images acquired during real missions of the robots.
In addition, both strategies to improve segmentation results will be tested using the current
methods to see if their application will always improve the final results. It is also important
to include other objects in the dataset that are important for the movement of the vehicles,
e.g., pipelines, anchors, etc.
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Abbreviations
The following abbreviations are used in this manuscript:

BRISQUE Blind/No-Reference Image Quality Evaluator.
CLAHE Contrast Limited Adaptive Histogram Equalization.
DA Data Augmentation.
FCNN Fully Convolutional Networks.
IQA Image Quality Assessment.
IoU Intersection-over-Union.
NIQE Natural Image Quality Evaluator.
PIQE Perceptual Image Quality Evaluator.
PSPNet Pyramid Scene Parsing Network.
SUIM Segmentation of Underwater IMagery.
WB White Balance.
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