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Abstract: In recent years, bi-layer pipes, composed of an inner layer and an outer layer, have been
widely used in offshore engineering. In this study, the governing equation for a bi-layer pipe subjected
to axisymmetric loadings is derived based on classical shell theory. Then, the equation is used to
develop stress concentration factor formulations for girth welds in bi-layer pipes with fabrication
tolerances and thickness transitions. Axisymmetric finite element analysis is carried out to verify
the accuracy of the proposed formulations. It is noted that these formulations can be well suited for
determining the stress concentration factors for a wide range of thickness ratios (ratio of the inner
layer thickness to the total thickness in a bi-layer pipe) varying from 0.0 to 1.0. They can also obtain
accurate stress concentration factors whether the elastic modulus of the inner layer is smaller or larger
than that of the outer layer.

Keywords: bi-layer pipe; finite element analysis; classical shell theory; stress concentration factor

1. Introduction

Misalignment widely exists in welded structures due to the eccentricities at fabrication
tolerances or thickness transitions. The presence of misalignment introduces local bending
stress at the welded joints, and in turn, the additional loading increases the stress of the
structures. A stress concentration factor (SCF) [1] is used to assess quantitatively the effect
of misalignment on the failures of structures, and it is defined as:

SCF = 1 +
σs

σnom
(1)

where σs is the maximum induced bending stress due to misalignment and σnom is the
nominal stress. The maximum stress, often referred to as the hot spot stress, is the sum of
the maximum bending stress and the nominal stress. The hot spot stress, in combination
with S-N data, is usually used for the fatigue life evaluation of structures subjected to
dynamic loadings, and it is determined using the SCF multiplying the nominal stress.
Therefore, it is necessary to calculate the SCFs for various plated and tubular structural
members, and considerable research has been carried out to determine the SCFs [2–6].
Maddox [7] performed the derivation of SCFs at transverse butt welds under fatigue
loadings. Based on extensive finite element (FE) analysis of various tubular configurations,
a set of SCF formulations for the most commonly used tubular joints was developed
by Efthymiou [8] and Smedley and Fischer [9]. Lotsberg [10–12] conducted a detailed
assessment of SCFs for butt welds in plated and tubular structures subjected to axial force
and internal pressure using the classical shell theory [13]. Effects of fabrication tolerances,
thickness transitions and ring-stiffeners on SCFs were investigated systematically. It is
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noted that these formulations are used to calculate the SCFs of homogeneous (one-layer)
plated or tubular structures and have been incorporated into fatigue design rules such as
DNV-RP-C203 [14] and BS 7910:2013 [15].

In recent years, bi-layer pipes, consisting of two layers with different functions for
each layer, have been widely used to satisfy special needs [16,17]. For example, high-quality
bi-layer pipelines are increasingly emerging as the most efficient mode of transporting
vital energy resources such as oil and gas as extensive installation takes place [18–20].
The clad pipe is one of these cases, which is composed of a carbon steel outer pipe and
a corrosion resistant alloy liner, protecting the outer pipe from corrosion. Despite the
numerous numerical schemes [21–23] developed for assessing the fatigue and fracture
behaviour of bi-layer pipes with misalignment at girth welds, their practical application
remains challenging due to the difficulty of generating FE models in engineering settings.
The SCF formulations, as mentioned earlier, encounter limitations when directly applied
to evaluate stress concentrations in the notch regions at both the inner and outer sides of
bi-layer pipes.

To overcome these challenges, this study adopts an innovative approach by initially
deriving the governing equation for a bi-layer cylindrical shell under axisymmetric load-
ings, utilizing the principles of classical shell theory. This derived equation serves as the
cornerstone for developing SCF formulations tailored explicitly for girth welds in bi-layer
pipes, accounting for fabrication tolerances and thickness transitions. The efficacy and
reliability of these formulations are rigorously validated through comprehensive axisym-
metric FE analyses, ensuring their accuracy and applicability in real-world engineering
scenarios. The developed models not only enhance the understanding of the fatigue and
fracture behavior in bi-layer pipes but also provide a practical and robust tool for engineers
dealing with complex structural assessments in the field.

2. Derivation of Governing Equation for a Bi-Layer Cylindrical Shell

A one-layer cylindrical shell subjected to the forces distributed symmetrically with
respect to the axis of the cylinder is frequently encountered in practice. The governing
equation for the shell has been built up using the classical shell theory [13]. In this study,
a bi-layer cylindrical shell under the same loading conditions (Figure 1) is considered,
and the corresponding governing equation is derived as an extension to the classical shell
theory [13] (please refer to Appendix A for details). The definitions of related parameters
used in Figure 1 are given in Table 1.
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Table 1. Definition of parameters.

Layers Thickness Outer Diameter Radius Elastic Modulus Poisson’s Ratio

Inner layer ti d − to / Ei υi
Outer layer to d / Eo υo

Bi-layer pipe t = ti + to d r = d−t
2 / /
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The governing equation of the bi-layer shell presented in Appendix A is:

Db
d4w
dx4 +

αEot
r2 w = p(x)− υ

r
N (2)

where Db is the flexural rigidity of the bi-layer shell, α is a constant depending on the ratio
of inner layer thickness to the total thickness and the ratio of elastic modulus of the inner
layer to the elastic modulus of the outer layer, r is the radius of the bi-layer pipe, υ is the
Poisson’s ratio for both inner layer and outer layer, and N is the axial force applied on the
pipe. More details about Db and α can be referred to in Appendix A.

By introducing the notation,

β4 =
αEot

4r2Db
(3)

Equation (2) can be expressed in the following simplified form:

d4w
dx4 + 4β4w =

p(x)
Db

− υ

rDb
N (4)

The general solution of Equation (4), w, consists of a homogeneous part, wh, and a
particular part (wp), and it is expressed as:

w = wh + wp (5)

The homogeneous part of the solution is

wh =
e−βx

2β3Db
{βM0[cos(βx)− sin(βx)] + Q0cos(βx)} (6)

where M0 and Q0 are the bending moment and the shear force per unit circumferential
length at x = 0, as shown in Figure 1.

Using the following notation,

φ(βx) = e−βx[cos(βx) + sin(βx)] (7a)

ψ(βx) = e−βx[cos(βx)− sin(βx)] (7b)

θ(βx) = e−βxcos(βx) (7c)

ζ(βx) = e−βxsin(βx) (7d)

Equation (6) can be written as:

wh =
1

2β3Db
[βM0ψ(βx) + Q0θ(βx)] (8)

The particular part of the general solution of Equation (5) is:

wp =
r

βE0t
[rp(x)− υN] (9)

For constant p, the slope at a section x can be obtained by differentiating Equation (6),
and this provides:

∂w
∂x

= − 1
2β2Db

[2βM0θ(βx) + Q0 φ(βx)] (10)
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The moment (per unit circumferential length) at a section x is determined by the
following expression:

Mx = −Db
∂2w
∂x2 =

1
β
[βM0 φ(βx) + Q0ζ(βx)] (11)

The shear force (per unit circumferential length) at a section x is calculated as:

Qx =
∂Mx

∂x
= −[2βM0ζ(βx)− Q0ψ(βx)] (12)

3. Girth Welds in Bi-Layer Pipes with Fabrication Tolerances

In this section, a stress concentration in the girth weld of a bi-layer pipe with an
eccentricity e as shown in Figure 2a is analyzed using the equation obtained in Section 2.
Figure 2b shows the geometry analyzed. The length of the girth weld is L, and the cor-
responding slope is α. The pipe is subjected to an axial loading per unit circumferential
length N. Due to the asymmetry of the static model, the moment at the middle of the weld
(x = 0) is zero (inflection point), and the moments at the notch region (x = ±L/2) have the
same values (Ne/2) but different directions, as shown in Figure 2c.
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Figure 2. Model of a bi-layer pipe with fabrication tolerance over a section length L.

The boundary conditions of the bi-layer pipe shown in Figure 2b can be written as:

M|x=0 = 0, Q|x=0 = −Nsin(α) ∼= −N
e
L

(13)

On the other hand, according to Equation (11), the bending moment at x = L/2 is:

M|x= L
2
= −Ne

βL
e−

βL
2 sin

(
βL
2

)
(14)

In this study, the notch region considered is on the outside of the pipe indicated by
“A” in Figure 2b. Hence, the bending stress induced by misalignment at “A” is:

σA
b =

Eo Ne(t − 2ηn)

2(1 − υ2)DbβL
e−

βL
2 sin

(
βL
2

)
(15)

The nominal stress for the bi-layer pipe without misalignment needs to be determined
in order to calculate the SCF. In Appendix A, it is assumed that the outer and the inner
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layers of the aligned pipe undergo the same deformation when subjected to an axial loading
N. Hence, the nominal stress is expressed as:

σA
nom =

N(
1 − t + tE

)
t

(16)

where t is the ratio of inner layer thickness to the total thickness, and E is the ratio of the
elastic modulus of the inner layer to the elastic modulus of the outer layer.

Based on Equations (15) and (16), the SCF at “A” is determined:

SCF =
σA

nom + σA
b

σA
nom

= 1 +
3.22µ

(1 − υ2)
1/4

e
L

√
d − t

t
e−

βL
2 sin

(
βL
2

)
(17)

where

µ =

(
1 − 2t + t2

+ 2tE − t2E
)√

1 − t + tE(
1 − 4t + 4tE + 6t2 − 6t2E − 4t3

+ 4t3E + t4 − 2t4E + t4E2
)3/4 (18)

When the Poisson’s ratio is set as 0.3 (υ = 0.3), Equation (17) can be written as:

SCF = 1 + 3.30µ
e
L

√
d − t

t
e−

βL
2 sin

(
βL
2

)
(19)

The above expression is the same with the formulation derived by Lotsberg [10] for
double-sided circumferential welds in tubular members except the remaining dimensionless
parameter µ accounting for the varying thickness ratio t and elastic property ratio E. When
t = 0 or E = 1, µ = 1, and Equation (19) for calculating the SCF of a misaligned bi-layer
pipe is degraded to the formulation for a one-layer pipe given by Lotsberg [10], verifying
the validity of Equation (19) derived in this study to some extent.

The comparison of the SCFs obtained by FE analysis and Equation (19) is carried
out to further demonstrate the accuracy of the formulation. The mesh design of the FE
models is based on the recommendations for the notch stress methodology in Appendix D
of DNV-RP-C203 [14]. The notches at “A” and “B” are modeled using a radius of 1.0 mm.
An axisymmetric pipeline model with a diameter of 400 mm and thickness of 20 mm is
analyzed in this study.

At first, the SCFs obtained by FE analysis for a misaligned one-layer pipe are compared
with that given by Lotsberg [10] formulation to test the validity of FE models (Figure 3). It is
observed that the maximum percentage difference of SCFs is 1.2% (e/t = 0.15), illustrating
a good agreement between the FE results and the formulation. Hence, the FE models are
considered suitable for numerical analysis of a misaligned bi-layer pipe when adequate
elements are used to obtain good convergence. The convergent test shows that a total of
nearly 1 × 104 elements is adequate in this study.

Figure 4 compares the SCFs from Equation (19) and FE analysis for varying e/t
(0.00 ≤ e/t ≤ 0.15) and E (E = 0.5 and 2.0) with constant t (t = 0.5), showing a very
good correlation between the two results. As the misalignment increases, the value of
SCF also increases. FE analyses and formula-based calculations show consistency in the
overall trend. However, it is observable that compared to FE results, the outcomes derived
from formulas are slightly conservative. The reason might be that it is assumed that the
shell has infinite curvature radius or the ratio of thickness to radius can be neglected in
the theoretical derivation; however, the curvature radius is not infinite, and the ratio of
thickness to radius is not zero although it is quite near zero in the FE models. Overall,
both methods exhibit a very good correlation. This alignment in trends between the two
approaches underscores the reliability of the derived formular in predicting the impact of
misalignment on SCF in engineering applications.
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Figure 4. Comparison of SCFs from Equation (19) and FE analysis for t = 0.5.

For varying t with constant e/t (= 0.15) and E (= 0.5), a good agreement between
Equation (19) and FE results is also observed, as indicated in Figure 5. Therefore, Equation (19)
can accurately assess the stress concentration in the notch region of the girth weld in a
bi-layer pipe.

Figure 6 shows the influence of E with the variation of t on the SCF given by Equation (19)
for constant e/t (= 0.15). E = 1 indicates that the inner layer and the outer layer in the
bi-layer pipe have the same elastic modulus, which is the case of the one-layer pipe. Hence,
the SCF is not affected by the varying t as presented by a horizontal line in Figure 6. E > 1
means the elastic modulus of the inner layer is higher than that of the outer layer, and a
larger E raises a more pronounced effect on the SCF. For the case of E < 1, a reverse trend
is observed in comparison with that of E > 1.
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Even though it has been indicated that Equation (19) is used to calculate the SCF at
the notch region “A”, it can be transformed into determining the SCF at “B” (Figure 2b) by
substituting the two dimensionless parameters

(
1 − t

)
and 1/E into Equation (19) instead

of t and E. Figure 7 shows the calculation of the SCF at “B” for E = 2.0 and e/t = 0.15
based on the above approach. The two parameters

(
1 − t

)
and 1/E (= 0.5) are substituted

into Equation (19) and the plot of SCF over t for “B” is given using a dashed line in Figure 7.
It is noted that the two lines for “A” and “B” are symmetric with t = 0.5, and the validity
of the above transform approach is further verified using the FE analysis as indicated by
the triangle symbol in Figure 7.
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The SCF formulation in Equation (19) is derived based on the double-side weld
configuration of the bi-layer pipe with centerline offset misalignment. However, the
formulation can also be applied to determine the SCF at the pipe’s notch region “A” with
single-side welds (Figure 8). The SCF at “B” becomes close to 1.0 due to the region close to
the intersection point where the bending moment induced by misalignment is zero.
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4. Girth Welds in Bi-Layer Pipes at Thickness Transitions

This section details the derivation of the SCF in the girth weld of a bi-layer pipe with
thickness transitions, as shown in Figure 9.
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For the pipes subjected to dynamic loading, thickness transitions are normally to
be fabricated with slope 1:4. The inflection point (zero moment) in Figure 9 needs to be
determined in advance in order to calculate the eccentricity moment at the notch region of
the girth weld based on Equation (11). It is assumed that the thickness ratio t keeps constant
along the longitudinal section of the pipe. Thus, the rotational stiffness is in proportion to
the pipe thickness t raised in a power of 2.5 according to Equation (10) and x0 (please refer
to Figure 9) is given as:

x0 = L
t2.5

t2.5 + T2.5 (20)

Following the same steps for calculating the SCF in Section 3, the SCF at the transition
at the outside of the pipe (region “A” as indicated in Figure 9) is:

SCF = 1 + 6µo
e
t

1

1 + (T/t)2.5 e−βx0 (21)

where

µo =

(
1 − 2t + t2

+ 2tE − t2E
)(

1 − t + tE
)(

1 − 4t + 4tE + 6t2 − 6t2E − 4t3
+ 4t3E + t4 − 2t4E + t4E2

) (22)

The SCF at the transition at the interior side of the pipe (region “B” as indicated in
Figure 9) is:

SCF = 1 − 6µi
e
t

1

1 + (T/t)2.5 e−βx0 (23)

where

µi =

(
1 − t2

+ t2E
)(

1 − t + tE
)(

1 − 4t + 4tE + 6t2 − 6t2E − 4t3
+ 4t3E + t4 − 2t4E + t4E2

) (24)

When t = 0 or E = 1, µo and µi are both equal to the unit, and Equations (21) and (23)
for calculating the SCF of a misaligned bi-layer pipe become the formulations for a one-
layer pipe presented by Lotsberg [10], verifying the accuracy of the proposed formulations.
In addition, FE analysis is carried out to further test the validity of the formulations, as done
in Section 3. Figure 10 compares the SCFs from the present formulations and FE analysis. It
is observed that the formulations are in good agreement with the numerical results except
for the case of the SCF at region “B” for E = 0.5. However, the present formulations
show a trend closer to the FE results in comparison with that given by Lotsberg [10], as
indicated by an arrow line in Figure 10. In general, the results obtained from the present
formulations and FE analysis are consistent with one another, validating the accuracy
of Equations (21) and (23) derived using the bi-layer cylindrical shell equation given in
Section 2.

Figure 11 shows the effect of E on the SCFs with the increasing t for constant T/t(= 2.0)
at region “A” and “B”. The variation trend of the SCF with the varying E presented in
Figure 11a is the same as that of Figure 9 for region “A”. However, a reverse trend is
observed for region “B” (Figure 11b) compared with region “A” (Figure 11a), which can
be easily explained by the opposite signs in Equations (21) and (23). The SCF at region
“B” is minimal when region “A” has the maximum SCF value for certain dimensionless
parameters t and E, illustrating a reverse variation trend as shown in Figure 11a,b.
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5. Conclusions 
The present study investigates the effect of fabrication tolerances and thickness tran-

sitions on the SCFs for girth welds in a bi-layer pipe. Based on the classical shell theory 
[14], the governing equation of a bi-layer cylindrical shell subjected to an axial force and 
an internal pressure is built up. Then, the equation is used to derive SCF formulations for 
girth welds of a bi-layer pipe with fabrication tolerances and thickness transitions. Ax-
isymmetric FE analysis is carried out to validate the proposed formulations, and a good 
agreement between the formulation and the FE results is observed. These formulations 
are well suited for a wide range of thickness ratios 𝑡̅ and elastic modulus ratios 𝐸, and 
degraded to the expressions derived by Lotsberg [10] when 𝑡̅ = 0 or 𝐸 = 1. Finally, the 
influence of varying 𝑡̅ and 𝐸 on the SCF are investigated in detail. 
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5. Conclusions

The present study investigates the effect of fabrication tolerances and thickness transi-
tions on the SCFs for girth welds in a bi-layer pipe. Based on the classical shell theory [14],
the governing equation of a bi-layer cylindrical shell subjected to an axial force and an
internal pressure is built up. Then, the equation is used to derive SCF formulations for girth
welds of a bi-layer pipe with fabrication tolerances and thickness transitions. Axisymmetric
FE analysis is carried out to validate the proposed formulations, and a good agreement
between the formulation and the FE results is observed. These formulations are well suited
for a wide range of thickness ratios t and elastic modulus ratios E, and degraded to the
expressions derived by Lotsberg [10] when t = 0 or E = 1. Finally, the influence of varying
t and E on the SCF are investigated in detail.
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Appendix A

This appendix details the derivation of the governing equation for the bi-layer cylindri-
cal shell subjected to an internal pressure p(x) and an axial force N uniformly distributed
along the x-direction, as shown in Figure 1. The total thickness of the shell is denoted
by t, this quantity always being considered small compared to other dimensions of the
shell. The neutral surface is the surface free of stress when a shell is loaded by a bending
force, and the surface that bisects the thickness of the shell is named the middle surface.
For the one-layer shell, it is noted clearly that the neutral surface is overlapped with the
middle surface. However, the neutral surface of the bi-layer shell deviates from the middle
surface due to the variation of material properties along the thickness direction. Therefore,
it is necessary to determine the position of the neutral surface in order to derive the final
governing equation.

Due to t being very small in comparison with the radius of the shell as referred to
above, the infinitely small element (Figure A1a) cut from the shell can be regarded as a
rectangular one (Figure A1b), and the small rectangular element follows the Kirchhoff
assumptions [13] during the action of symmetric loadings. Therefore, the strain along the
x-direction is distributed linearly, as indicated in Figure A1c, along the thickness direction,
and it can be expressed as:

εx =
εt

t/2 − ηn
η (A1)

where εt is the x-direction strain at the top of the element, η is the vertical coordinate in
the local ξ-η coordinate system, ηn denotes the vertical coordinate of the neutral surface.
It is noteworthy that if the ratio of thickness to radius cannot be neglected, the above
assumption may not be valid.
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In this study, it is assumed that the shell’s outer and inner layers have the same
Poisson’s ratio (υo = υi = υ) but different elastic modulus (Eo ̸= Ei). The position of the
neutral surface can be determined based on the x-direction equilibrium of forces, and the
integral expression is written as:

∫ t/2−ηn

0
Eoεxdη =

∫ −(t/2+ηn)+ti

−(t/2+ηn)
Eiεxdη +

∫ 0

−(t/2+ηn)+ti

Eoεxdη (A2)

By solving the above integral, ηn is expressed in the following form:

ηn = ηnt (A3)

where

ηn =
t
(
1 − t

)(
1 − E

)
2
(
1 − t + tE

) , t = ti/t, E = Ei/Eo (A4)

and t indicates the ratio of the inner layer thickness to the total thickness, and E is the ratio
of the inner layer elastic modulus to that of the outer layer, both characterizing the bi-layer
shell, which is different from the one-layer one.
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In the following, the governing equation of the bi-layer shell is built up under an
axial force and an internal pressure. An infinitely small element (Figure A2) cut from the
shell is analyzed to establish the equations of equilibrium required for this problem. Nx
and Nφ are the axial forces per unit circumferential length and per unit length around the
circumference of the shell, respectively, Qx is the shear force per unit circumferential length,
Mx and Mφ are the bending moments per unit circumferential length and per unit length
around the circumference of the shell, respectively. Due to symmetry, other forces such as
Nxφ, Qφ and Mxφ vanish in this case. Assuming that an internal pressure p(x) normal to
the surface and an axial force N uniformly distributed along the x-direction are applied,
the equations of equilibrium obtained are:

Nx = N
dQx
dx + 1

r Nφ = −p(x)

dMx
dx − Qx = 0

(A5)
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The displacements of the points in the neutral surface of the shell need to be considered
to solve the other three unknown quantities: Nφ, Qx, and Mx. From symmetry, the
displacement component v in the circumferential direction vanishes. The components u
and w in the x- and z- directions are only considered. Therefore, the geometric equations
can be written in the following simplified form:

εx =
du
dx

, εφ = −w
r

(A6)

By using Hooke’s law,

σx =
E

1 − υ2

(
εx + υεφ

)
, σφ =

E
1 − υ2

(
εφ + υεx

)
(A7)

and the relationship between Nx, Nφ, Qx, Mx and σx, σφ,

Nx =
∫ t

0
σxdη, Nφ =

∫ t

0
σφdη, Mx =

∫ t/2−ηn

−t/2−ηn
σxηdη (A8)
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the constitutive equations for this problem are:

Nx = α1
du
dx − α2

w
r

Nφ = −α1
w
r + α2

du
dx

Mx = −Db
d2w
dx2

(A9)

where

α1 =

(
1 − t + tE

)
tEo

1 − υ2 , α2 =

(
1 − t + tE

)
tEoυ

1 − υ2 (A10)

and Db is the flexural rigidity of the bi-layer shell, which is expressed as:

Db =
Eot3

24(1 − υ2)

[
(1 − 2ηn)

3 + E(1 + 2ηn)
3 +

(
1 + 2ηn − 2t

)3 − E
(
1 + 2ηn − 2t

)3
]

(A11)

Substituting Equation (A9) into Equation (A5) obtains the required governing equations,

d2

dx2

(
Db

d2w
dx2

)
+

αEot
r2 w = p(x)− υ

r
N (A12)

where

α = 1 − t + tE (A13)

When the thickness of the shell is constant, the above equation is simplified as:

Db
d4w
dx4 +

αEot
r2 w = p(x)− υ

r
N (A14)

Obviously, the form of the equation is nearly the same as that of the one-layer shell
except for the expressions of the flexural rigidity Db and the dimensionless parameter α.
When t = 0 or E = 1, Db = Et3/12

(
1 − υ2) and α = 1, and Equation (A14) becomes the

governing equation for the one-layer shell derived based on the classical shell theory.

Appendix B

This appendix focuses on the generation of FE models for bi-layer pipelines with
misalignment at girth welds, including a detailed description on the number of elements,
types of elements, element sizes, loads, boundary conditions, and the overall structure of the
finite element mesh. Moreover, it outlines the procedural steps and critical considerations
in the generation of FE models.

Firstly, the FE model of bi-layer pipe without misalignment should be generated,
which is actually not difficult in practice because the shape of bi-layer pipe is quite regular.
Figure A3 shows the typical FE meshes of the girth weld.
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Then, the coordinate transformation was adopted to generate FE models of bi-layer
pipelines with misalignment at girth welds from the FE model of aligned bi-layer pipelines.
The coordinate transformation formulas presented below are essential for adapting aligned
pipeline models to accommodate misalignments, reflecting more realistic and complex
real-world scenarios. This addition enhances the applicability of the finite element method
in pipeline structural and stress analysis, allowing for more accurate simulations and
analyses of pipelines under various conditions, including those that are not perfectly
aligned. Figure A4a,b illustrates the coordination transformation of bi-layer pipe, which
has centerline offset with equal thickness and diameters and bi-layer pipe, which has
centerline offset with varying thickness but aligned inner surfaces, respectively.
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For bi-layer pipe with a centerline offset with equal thickness and diameters (Figure A4a),
the transformation from an aligned (x-, y-, z- coordinate system) to a misaligned configura-
tion (X-, Y-, Z- coordinate system) is executed using the specified expression as follows.

Region 1


X = x
Y = y

Z = z − e
(A15a)

Region 2


X = x
Y = y

Z = z − eeff

(A15b)
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Region 3


X = x
Y = y
Z = z

(A15c)

where

eeff =

(
2x + Le + Lv

2Lv

)
e (A16)

Lv = Li +
[2(r + t2)− De2](Le − Li)

2t2
(A17)

r =
√

y2 + z2 (A18)

For a bi-layer pipe with a centerline offset with varying thickness but aligned inner
surfaces (Figure A4b), there are two scenarios: r ≤ rc and r > rc with rc = De2/2 −
(t2 − ti2). Here, ti2 represents the clad layer thickness, as shown in Figure A4b. The
coordinate transformation for these two cases is summarized through specific expressions
as follows.

For the first scenario, r ≤ rc:

Region 1


X = x

Y = (r − ev1)sin θ

Z = (r − ev1)cos θ

(A19a)

Region 2


X = x

Y = (r − ev1,eff)sin θ

Z = (r − ev1,eff)cos θ

(A19b)

Region 3


X = x
Y = y
Z = z

(A19c)

where

ev1 = (ti2 − ti1)

[
r − (De2/2 − t2)

ti2

]
(A20)

ev1,e f f =

(
2x + Le + Lv

2Lv

)
ev1 (A21)

For the second scenario, r > rc:

Region 1


X = x

Y = (r − ev2)sin θ

Z = (r − ev2)cos θ

(A22a)

Region 2


X = x

Y = (r − ev2,eff)sin θ

Z = (r − ev2,eff)cos θ

(A22b)

Region 3


X = x
Y = y
Z = z

(A22c)

where
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ev2 = (ti2 − ti1) +

(
1 − t1 − ti1

t2 − ti2

)
(r − rc) (A23)

ev2,eff =

(
2x + Le + Lv

2Lv

)
ev2 (A24)

Consequently, the FE models of the two typical bi-layer pipes with misalignment can
be generated, which can be seen in Figure A5.
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The FE models in this study were generated using the ABAQUS software V2021. Given
the consideration of large deformations, the C3D20R element is used for the numerical
simulation. It is difficult to determine the mesh density directly; hence, the convergence test
is recommended to determine the number of elements in the FE models. One can gradually
increase the mesh density until the simulation results converge. In this study, the number
of elements increases to 1 × 104 to make the results converge. In addition, the axial force is
applied at one end of the pipe, and the fixed boundary condition is applied on the other.
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