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Abstract: Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid
obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms,
focusing on their effectiveness in dynamic obstacle avoidance, resistance to water currents, and
path smoothness. Meanwhile, this research introduces a novel collective intelligence algorithm
tailored for two-dimensional environments, integrating dynamic obstacle avoidance and smooth
path optimization. The approach tackles the global-path-planning challenge, specifically accounting
for moving obstacles and current influences. The algorithm adeptly combines strategies for dynamic
obstacle circumvention with an eight-directional current resistance approach, ensuring locally optimal
paths that minimize the impact of currents on navigation. Additionally, advanced artificial bee colony
algorithms were used during the research process to enhance the method and improve the smoothness
of the generated path. Simulation results have verified the superiority of the algorithm in improving
the quality of USV path planning. Compared with traditional bee colony algorithms, the improved
algorithm increased the length of the optimization path by 8%, shortened the optimization time by
50%, and achieved almost 100% avoidance of dynamic obstacles.

Keywords: unmanned surface vehicles; dynamic obstacle; water currents; eight-directional current
resistance; path smoothness

1. Introduction

An unmanned surface vehicle (USV) is an autonomous, crewless watercraft capable of
self-navigating with high intelligence. Path planning is essential in the USV’s navigation
system, optimizing its trajectory for enhanced precision, efficiency, and safety. This process
involves the algorithmic computation of the best route based on a predefined map and
start point. USVs, adept in aquatic and subaqueous operations, surpass human physical
limits, boosting underwater task efficiency. Their autonomous features include precise
targeting, cyclic engagement, self-destruct capabilities, and swift evacuation, reducing
their dependence on human operators and logistical support. This makes path planning
crucial in USVs’ industrial and scientific applications, garnering significant interest from
researchers and industry professionals.

Path planning is divided into two main categories: global and local. Global path
planning uses established algorithms, like Dijkstra’s A-star, the Probabilistic Roadmap
Method (PRM), Rapidly Exploring Random Tree (RRT), and swarm intelligence-based
methods, such as ant colony and genetic algorithms. These often represent the environment
as a grid map for spatial discretization. Local path planning, in contrast, occurs in real time
during the USV’s movement, employing methods like the artificial potential field method,
Fuzzy Logic, Reinforcement Learning, and the Dynamic Window Approach.

The global planning of the USV involves determining the optimal path from the
starting point to the target position in the known surrounding environment. For global path
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planning and multi-objective joint optimization path control, a previous paper proposed
a method that maximizes the unit time profit in the traveler’s problem, establishes a
global-path-planning model, and takes the path distance, stability, residence risk, economic
cost, and safety as target constraints. A path control model between two task locations
was established. The CSPSO algorithm was introduced to solve global path planning [1].
However, a new mechanism was not used to improve the collision avoidance rate in the
collision avoidance link. In order to make the unmanned surface vessel better applied
in the monitoring fields of inland rivers, reservoirs, coasts, etc., a bidirectional search
strategy was proposed to search nodes simultaneously from the starting point and the target
point. An improved A-star global-path-planning algorithm was introduced based on the
vertical distance node deviation factor of the starting point and target point connection [2].
However, the practical application of unmanned ships does not consider the comprehensive
influence of environmental factors, so the reliability requirements for unmanned ships are
higher. In order to improve the overall path search efficiency and smoothness, an improved
A-star algorithm with a bidirectional alternating search strategy was proposed [3]. However,
the improved A-star algorithm is carried out in a static environment. In the whole process,
obstacles are fixed and known. Many mobile robot application scenarios are dynamic
environments with unknown obstacles. To improve the optimality of global search paths, a
forward search optimization (FSO) algorithm was proposed to shorten the paths planned
by Dijkstra, A*, and other global algorithms based on searching. It was combined with the
SHPP method of the IFIS and IAPF algorithms to smooth the global path [4]. However, the
resulting path cannot ensure optimality in a continuous space, and its smoothness can be
further improved. In order to solve the problem that the ant colony algorithm makes it
difficult to meet the mission requirements of underwater robots, another paper proposed a
global-path-planning algorithm (IQACA) that utilizes the efficiency of quantum computing
and the optimization ability of the ant colony algorithm [5]. However, in the algorithm
fusion process, the correlation between multiple objectives, the weight of each objective
in the cost function, and the actual environmental load’s influence on the USV’s path
optimization process energy consumption were not considered, and the USV’s dynamic
and kinematic constraints were not added to the cost function.

In USV local path planning, only partial environmental information can be obtained,
and prior information, such as obstacle locations, cannot be known in advance. The algo-
rithm deals with the problem of avoiding obstacles during movement by identifying the
dynamic conditions of the environment and establishing relationships between various
elements. Local path planning is used in dynamic environments, where robots need to
constantly sense environmental changes and adjust their paths in a timely manner to avoid
collisions. A fuzzy-based path-planning approach was proposed for various uncertain
obstacles in unknown, highly uncertain, and dynamic environments to find the locally
optimal path for robotic movement [6]. The motion of USVs in complex environments
requires multi-objective optimization and multi-modal constraints. An improved fuzzy
ant colony algorithm (ACO-FL) was proposed after considering factors like wind, current,
waves, and dynamic obstacles to handle local avoidance path planning [7]. However, this
study had limitations in modeling obstacles with elliptical trajectory motion and consid-
ering water current effects. It did not take into account complex dynamic environments
with more moving and static obstacles, or dynamic ocean current speeds. To address
the dynamic path-planning problem for environmental monitoring USVs under complex
offshore navigation conditions, a hybrid path-planning algorithm combining global and
local approaches was proposed based on bi-level programming ideas. An improved par-
ticle swarm optimization algorithm (PSO) was proposed based on ocean environmental
information for global path planning. Then, an improved artificial potential field (APF)
algorithm was used for local dynamic obstacle avoidance based on the globally optimal
path to solve the local minimum problem [8]. However, the USV and dynamic obstacles
were simplified in the experiment as particles without considering their specific shapes.
Path optimization ignored external factors like wind, waves, and current and only con-
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sidered geometric constraints in the workspace without considering the USV’s kinematic
model and constraints. Also, the dynamic obstacle avoidance process did not consider the
rules of obstacle avoidance at sea. Particle swarm optimization has also been used for path
planning, but its local minimum, premature convergence, and low efficiency hinder its
widespread application. An improved localized particle swarm optimization algorithm
(ILPSO) was proposed to address the local minimum issue of PSO. By modifying the inertia
weight, acceleration factor, and locality, the algorithm’s convergence speed was increased,
and its ability to search for the locally optimal path was enhanced [9]. However, this
algorithm still falls short in complex, large-scale, and three-dimensional environments.

Obstacle avoidance has always been a continuous research focus in path planning.
Traditional algorithms are limited to avoiding static obstacles and often ignore the impact of
dynamic obstacles that exist in practical applications of USVs. To address the challenges of
single global path planning and local path planning, which cannot guarantee the existence
of a feasible solution in complex environments, an algorithm was proposed that uses the
A* algorithm for global path planning to generate a global path for the USV to reach the
target point, and it introduces an improved DWA algorithm with weight coefficients for sea
conditions for local path planning. This algorithm was ultimately verified for its real-time
obstacle avoidance capabilities [10]. To address the computational workload required
by current algorithms for dynamic path planning, which makes them difficult to use in
dynamic situations, and the simplicity of other methods but their tendency to be stuck in
local minima, an improved simulated annealing algorithm was proposed that introduces
an initial path selection method and deletion operation for dynamic path planning [11], but
it did not consider the precise obstacle avoidance of multiple targets in actual application
scenarios. To address mobile robots moving in dynamic environments, a predictive path-
planning algorithm based on the fast search random tree algorithm was proposed. It
searches for an approximate global optimal path in advance and then performs simple
predictions of the motion of the robot itself and dynamic obstacles before replanning the
path for dynamic obstacles [12]. However, the RRT algorithm’s attempt to force pruning
can result in significant time and additional computational overhead. To address USVs’
inability to efficiently avoid dynamic obstacles, NT* was introduced to establish a mapping
relationship and add minimum path costs to the objective function. The IDWA algorithm
was proposed to achieve real-time obstacle avoidance and improve dynamic collision
avoidance capabilities [13], but it is difficult to directly establish a universal standard
for parameter selection due to the limitations of single scenarios and strong coupling
between weight parameters. Due to the complexity of the interactive environment, dynamic
obstacle avoidance path planning poses a significant challenge to the mobility of intelligent
agents. Dynamic path planning is a complex multi-constraint optimization problem with
combinations of constraints. Some existing algorithms can easily get stuck in local optima
when avoiding moving obstacles in complex interactive environments, resulting in defects
in convergence speed and accuracy. An improved Q-learning algorithm was proposed,
which greatly improves the convergence speed and accuracy of the algorithm and finds
better paths in dynamic obstacle path planning [14]. However, as the problem size increases,
the Q table in Q-learning algorithms expands, increasing the complexity of the algorithm.
The Adaptive and Sound Searching Algorithm can only obtain the initial optimal path in a
static environment. The Morphin algorithm was introduced to achieve real-time obstacle
avoidance for moving obstacles [15], but it does not consider the impact of different shapes
and motion states of dynamic obstacles on USV motion. To solve the problem that global
path planning cannot avoid dynamic obstacles, an improved APF algorithm was used for
local path planning, and a dynamic warning mechanism was adopted to optimize the step
size, forming an improved ACO-APF hybrid algorithm [16]. Finally, it can effectively avoid
unknown static and dynamic obstacles.

At present, path-planning research in the land and air domains is relatively mature,
and various land mobile robots and drones have been able to complete path-planning tasks
well. However, USVs typically operate in complex and changing underwater environments,
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where the drag force of water is much greater than that in the air or on land. Therefore,
path planning for USVs must not only consider timely obstacle avoidance but also take into
account the impact of the water flow on USV navigation. The water flow, as an energy flow,
has a great impact on the navigation of USVs, which can exhibit both thrust and resistance.
To address the issue of dynamic ocean current changes in complex marine environments,
an improved MPP framework with a multi-level approach, backbone CA and RC, and
self-adjusted path planning was proposed to adapt to time-varying ocean current envi-
ronments [17]. To solve the problem of two-dimensional autonomous path planning for
unmanned underwater vehicles (UUVs) in environments influenced by both ocean currents
and obstacles, an improved Fireworks–Ant Colony Hybrid algorithm was proposed to
establish a two-dimensional Lamb vortex ocean current environment model with randomly
distributed obstacles, in which circular obstacles were equivalent to square grid cells [18],
while considering energy consumption, travel time, and distance as reference factors in
the cost function. Considering the complexity of the underwater environment and the
efficiency of the planning algorithm, an improved artificial jellyfish search algorithm (IJS)
was proposed, which integrated memory functions with multiple strategies to establish
a target function that included ocean current disturbance models to avoid the impact of
obstacles and strong lateral flow on AUV movement [19]. However, the actual energy
loss, size, and attitude changes of AUVs were not considered. To address the issue of path
planning for autonomous surface vessels not considering external factors such as wind,
waves, and currents that affect navigation safety, an adaptive inertia weight was intro-
duced into the fitness function of an improved particle swarm optimization algorithm [20]
to increase the resistance to wind and wave forces. This improved path safety but did
not consider the actual energy loss of the ship. In response to complex ocean current
environments, an underwater path-planning method based on near-policy optimization
was proposed by constructing a deep reinforcement network as a decision-making control
system (UP4O), which integrated features of obstacles with current state information [21].
It was demonstrated that, under complex three-dimensional ocean currents, limited prior
knowledge, and local information, it could find a time-saving collision-free path that nar-
rowed the gap between AUV theoretical research and actual marine applications. The
control difficulty and collision risk of unmanned surface vehicles (USVs) were increased
due to an insufficient consideration of the impact of ocean environment factors. To ad-
dress this issue, a new evaluation function was proposed by redesigning the kinematics
model for underwater robots and classic practical local-path-planning methods based on
dynamic windowing [22], ensuring that underwater robots could adjust to planned paths
and avoid obstacles in real time during navigation in real ocean environments. However,
changes in the strength of environmental factors still significantly affected the path length
and navigation time of USVs. To eliminate the impact of ocean currents on optimal path
planning for UUVs, an intelligent algorithm with an adjusted function was proposed [23],
but the actual scenario maneuverability was not considered. As winds and waves had a
great impact on obstacle avoidance for unmanned aerial vehicles (UAVs) in actual flight
environments, a UAV path-planning method based on COLREGS (Convention on the Inter-
national Regulations for Preventing Collisions at Sea) and an improved DWA algorithm
(UDWA) was proposed [24]. By prioritizing speed sampling areas and enhancing speed
functions in the target function, the impact of winds and waves on UAVs was transformed
into speed changes. However, this method did not consider the impact of ship structure
and shape on actual speed. To address path-planning issues for unmanned sailboats in
complex marine environments, an integrated algorithm based on improved adaptive ant
colony optimization and rolling window methods was proposed [25]. However, it did not
consider more complex dynamic environments or real ship application scenarios.

In the path-planning of robots, traditional algorithms demonstrate strong optimization
capabilities, but most paths feature many turning points, a high degree of curvature,
and a lack of directionality, which ultimately result in significant energy loss and path
redundancy for the robots. To address the disadvantages of traditional APF-ACO, such
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as multiple turning points and a high degree of curvature, an IAPF-IACO algorithm
(Improved Artificial Potential Field-Improved Ant Colony Optimization) that integrates
turning point optimization and circular spline fitting was proposed, which significantly
reduced the number and length of turning points in the path and obtained smoother and
more stable path results [26], but this approach does not consider the impact of ocean
environmental factors on submarine navigation, limiting its practical application. Aiming
to solve the problem that meta-heuristic methods can easily fall into local minima, a
high-order continuous Bezier curve was proposed, with the constraints being the length
of the expected path of the robot and the non-collision safety requirement, creating an
optimized problem for smooth path planning and transforming the smooth path-planning
problem into an optimization problem searching for the control node positions of the
Bezier curve [27], but this algorithm can only solve the global planning of static obstacles,
and when unknown or dynamic obstacles arise due to geometric topology changes, the
control points of the path may also experience sub-optimal or insufficient conditions. Since
RRT-related algorithms have problems such as slow convergence speed, too many turning
points, and uneven path generation in ship track planning, a new method called PI-DP-RRT
was proposed, which combines information from the advanced automatic identification
system (AIS) with Douglas–Peucker (DP) compression ship path planning, applying an
improved DP algorithm and a new path optimization method to optimize the path to
improve its smoothness and practicality [28], but it does not fully consider more complex
navigation environments and dynamic obstacle avoidance. To address the issues of slow
convergence, the tendency to be easily trapped in local optima, and poor smoothness in the
traditional ant colony algorithm in mobile robot path planning, an improved ant colony
algorithm with a path smoothness factor was proposed. The algorithm incorporates an
updated pheromone update rule, which reduces the number of robot turns. Additionally, a
new path evaluation function was introduced to enhance the pheromone discrimination
for effective paths [29]. A new method based on a fourth-order Bezier transition curve
and an improved particle swarm optimization algorithm was proposed for the smooth
path planning of mobile robots [30], but it does not consider SPP through the real-time
position of mobile robots; traditional A* algorithms generate routes that are constrained by
the map resolution and may not be compatible with a USV’s non-holonomic constraints.
A smooth A* path-planning algorithm suitable for autonomous navigation control systems
of unmanned ships was proposed to improve route performance, reduce unnecessary
“sawtooth”, and provide more continuous routes [31], but this algorithm does not consider
hydrodynamic effects from the perspective of path planning. To address the issue of
repeated paths and many turning points during agricultural robot work, an immune ant
colony B-spline interpolation-based path-planning algorithm was proposed to eliminate
path repetition and angular turning points, increasing the smoothness of agricultural robot
path trajectories [32], but it does not consider the actual energy consumption of robots.

2. Overview of Improved Algorithms

This article introduces the Dynamic Obstacle Avoidance Strategy with Smooth Opti-
mization for the Artificial Bee Colony (DOASO-IABC) algorithm, offering an innovative
solution to address real-world challenges. The algorithm seamlessly combines dynamic
obstacle avoidance strategies and smooth optimization techniques. The main contributions
of this work are as follows:

(1) In scenarios with known static obstacle positions, it leverages the artificial bee colony
(ABC) algorithm to determine the global optimal path.

(2) When confronted with moving obstacles and water current influences, it adapts
by integrating dynamic obstacle avoidance strategies and anti-current optimization
methods to identify locally optimal paths, significantly enhancing the practicality and
effectiveness of path planning.
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(3) To further elevate path quality, this article introduces the integration of the Ad-
vanced_sprcv curve optimization model. This addition refines path smoothness,
ultimately augmenting the navigational performance of unmanned surface vehicles.

This article is organized as follows: Section 1 briefly introduces the necessity of path
planning for USVs; Section 2 briefly describes the improvement of swarm intelligence
algorithms in this article; Section 3 proposes the structure of the USV path-planning
algorithm; Section 4 analyzes the results of simulation experiments; Section 5 provides
corresponding experimental conclusions.

3. Methods
3.1. Environmental Modeling

The working environment of the USV in this paper is set in a two-dimensional space.
In the two-dimensional environment, when setting obstacles, the obstacle is expanded to
the maximum diameter of the robot. At the same time, the robot is regarded as a point
mass to simplify the complexity of the problem under the premise of ensuring safety. The
grid method is easy to implement and has a clear and direct path display. Therefore, the
grid method is used to model static spatial two-dimensional spaces [33]. The grid method
model is shown in Figure 1. The coordinates are set with the upper left as the origin, from
left to right as the positive direction of the x-axis, and from top to bottom as the positive
direction of the y-axis. Each grid length is marked as the unit length and is set as unit 1.
Starting from the upper-left corner, it is marked as serial number 1. The serial numbers
increase sequentially from left to right and from top to bottom. The white grid in the figure
is the reachable grid, the black grid is the obstacle grid, the yellow grid is the starting
point, and the red grid is the endpoint. The mod() function is used for modulo (remainder)
operations. Let the grid serial number be c, and let n be the number of grids in each row
and column. The ceil() function represents rounding up. The correspondence between
serial numbers and coordinates in Figure 1 is shown in Formula (1).

x = mod(c, n)− 0.5
i f x = −0.5, x = 19.5

y = n + 0.5 − ceil(c/n)
(1)J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 7 of 27 
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3.2. Modeling of 2D Path Planning for Underwater Robots

Path planning is the process of finding an optimal route from a starting point to a
target point. In the intricate underwater environment, it is crucial to consider not only the
robustness of the algorithm but also the actual conditions of the underwater environment,
including factors like water flow and dynamic or static obstacles beneath the surface.

3.2.1. Traditional 2D Artificial Bee Colony Algorithm

The bee colony algorithm (ABC) is an optimization technique that mimics the clus-
tering intelligence observed in honey bee foraging behavior. It does not require explicit
knowledge of the problem’s specifics; rather, it relies on comparing the relative advantages
and disadvantages of the problem. Through the local optimization efforts of individual
bees, the global optimal value can be highlighted within the colony, resulting in a faster
convergence rate. The overall path-planning process can be conceptualized as bees ex-
tracting honey from a map and sharing information about honey source locations. Three
distinct types of bee colonies follow distinct foraging rules, ultimately converging on an
optimal path that effectively avoids obstacles. The algorithm’s overall flow is summarized
in Figure 2 below.
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(1) Leading Bee Search Mechanism

The size of the bee colony num_polution, the maximum number of iterations max_gen,
and control parameters limit are initialized; initial nectar sources are generated according
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to the random production nectar Formula (2); and the fitness function value f it of each
solution is calculated.

xid = Lb + (Ub − Lb)rand(0, 1) (2)

The lead bee conducts a neighborhood search in the vicinity of the current nectar
source i, finds the node k that is not j, generates new solutions according to the neighboring
search Formula (3), and calculates its fitness function.

vij = xij + φij(xij − xkj), i ̸= k (3)

In this equation, k is a random number generated and not equal to i, a random number
within φij = [−1, 1]; the neighborhood search formula controls the generation of food
sources in the vicinity of position x, which represents the comparison of bees to adjacent
food sources. According to the greedy selection method, the state of the new honey source
is determined as retention or replacement. If the fitness value of the new solution is better
than that of the old solution, the leading bee updates the old solution to the new one;
otherwise, it retains the old solution. Formula (2) represents the greedy selection formula.

f iti(t) =

{
1

1+ fi(t)
fi(t) ≥ 0

1+| fi(t)| fi(t) < 0
(4)

In this equation, f iti(t) represents the richness of the nectar source corresponding to
the fitness value of the ith solution, and fi(t) is the objective function of the i-th individual
for the optimization problem. If the fitness of the new solution is better than that of the old
solution, the new solution is regarded as the current optimal solution; otherwise, the nectar
exploitation is fi(t) + 1.

(2) The probability selection mechanism of following bees

The fitness value of each nectar source is calculated, the following probability pi is
obtained, and the following bees select nectar sources according to this probability pi.
Then, they search the neighbors of the selected nectar source according to the position
update formula, generate new solutions, and calculate their fitness. Then, they make greedy
choices between the current nectar source and the new nectar source and determine the
nectar amount in the nectar source. Formula (5) represents the selection probability of a
roulette wheel for calculating solutions.

pi =
f iti

NP
∑

k=1
f itk

(5)

(3) The spatial random search strategy of scout bees

When a nectar source fails to be updated after a limited number of iterations, it will be
abandoned, and the nectar source will be recorded in the table. At the same time, according
to Formula (6), the following bees corresponding to this nectar source will become scout
bees and randomly generate new nectar sources in the global scope to replace the original
nectar source (remembering the best nectar source found so far).

xj
i = xj

min + (xj
max − xj

min)rand() (6)

In this equation, xi = (xi1, xi2, · · · , xid) is a d-dimensional vector, xj
max and xj

min
represent the upper and lower limits of the j-th dimension of the problem, respectively, and
rand() is a random number within [0,1].



J. Mar. Sci. Eng. 2024, 12, 477 9 of 25

3.2.2. Improved Two-Dimensional Artificial Bee Colony Algorithm

The traditional artificial bee colony algorithm has strong global optimization ability;
it can adjust parameters adaptively and has a certain tolerance to parameter changes. It
also exhibits good robustness in the two-dimensional water environment. In this paper,
considering the unpredictable obstacles in the actual water environment and the impact
of the water flow on the robot’s motion state, a dynamic obstacle avoidance strategy was
integrated into the traditional bee colony algorithm, and a water flow correction function
was added to ensure that the USV can still reach the target point position after being
impacted by the water flow and smooth the path based on improvement. The red border
and the black dashed line in Figure 3 represent the bee colony’s optimization area and
the bee colony’s actual movement direction, respectively. The red arrow indicates the
final decision of the bee colony in the next optimal position. As shown in Figure 3a, the
traditional artificial bee colony algorithm’s bee colony is greatly affected by water flow
during the process of searching for the next optimal point. The landing points are relatively
random, and the bee colony is unable to decide on the impact of the water flow while
finding the target point, resulting in the “lost” state of its motion trajectory. As shown in
Figure 3b, under the resistance of the water flow, the movement trajectory of the improved
artificial bee colony algorithm shows a relatively “unified” state. Meanwhile, the improved
bee colony can reduce the impact of the water flow and find a better landing point after
resisting the water flow without randomly appearing landing points.
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Figure 3. Optimization of bee colony motion using traditional artificial bee colony algorithm and
improved artificial bee colony algorithm.

(1) Real-time dynamic obstacle avoidance strategy

During the movement of a USV in complex water areas, hardware limitations may pre-
vent the recognition of certain obstacles, and unpredictable obstacle movement information
may even arise. Therefore, it is essential to provide timely feedback for unforeseen events
during unmanned robot navigation, enabling it to avoid obstacles and reach the target point
safely and efficiently. The key to achieving autonomous navigation for a USV also lies in
the technology for active obstacle avoidance. To avoid obstacles without prior knowledge,
USVs utilize real-time obstacle recognition systems, such as vision sensors or obstacle
avoidance sonar, to detect unknown obstacle information. In this paper, without assuming
sensor recognition, an improved artificial bee colony algorithm combined with a dynamic
obstacle avoidance strategy is employed to achieve the timely evasion of local obstacles.

The fitness function in the traditional bee colony algorithm is given by Equation (4).
Assuming that the number of obstacles is n and their positions are denoted by o1, o2, . . . , on,
a new fitness function is defined by Equation (7).

Fiti(t) = f iti(t) +
n

∑
i=1

ωi·dobs−USV (7)
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in which ωi is the weight related to obstacle i, and dobs−USV is the distance between the
artificial bee colony x and obstacle i.

There may be multiple unknown moving obstacles in an unknown environment, so it
is necessary to detect the obstacles in advance. Among them, the obstacles that have no
impact on the planning process are removed, then the risk of the remaining obstacles to the
overall planning is evaluated, and finally, the next step is planned.

(2) Initial screening of obstacles

First, a virtual straight line from the USV to the target point is established and denoted
by Lst, as shown in Equation (8).

Lst : y = kstx + bst, x ∈ (xUSV , xtar) (8)

In the formula, kst =
ytar−yUSV
xtar−xUSV

is the slope of the line Lst;
xtaryUSV−xUSVytar

xtar−xUSV
is the intercept

of the line Lst; and bst represents the intercept of the line between the USV and the target
point at the intersection of the y-axis after extension. (xUSV , yUSV) and (xtar, ytar) are the
position coordinates of the USV and the target point, respectively.

The distance between the obstacle and USV is denoted by dobs−USV , and the distance
between the obstacle and the line Lst is denoted by dobs−st. When dobs−USV or dobs−st is
less than the corresponding safety threshold, it is judged that the obstacle will affect the
subsequent planning of the USV, so obstacles that may affect the planning are screened out
at the beginning. The screening method reduces the impact of far obstacles on the trajectory
and improves the efficiency of path planning. The expressions dobs−USV and dobs−st are
given by Formulas (9) and (10).

dobs−USV =

√
(xobs − xUSV)

2 + (yobs − yUSV)
2 (9)

dobs−st =
|kst · xobs − yobs + bst|√

k2
st + 1

(10)

The corresponding safety thresholds of the two are d∗obs−USV and d∗obs−st.
When dobs−USV < d∗obs−USV or dobs−st < d∗obs−st, the obstacle is involved in the

calculation of the planning algorithm.

3.2.3. USV’s Obstacle Avoidance Strategy for Dynamic Obstacles

(1) USV left- and right-side dynamic obstacle planning

According to the moving direction of the obstacle, a ray starting from the current posi-
tion of the obstacle and pointing to the moving direction of the obstacle is established [33].
This ray is denoted by Lobs, as shown in Figure 4. Based on the movement trend of the
obstacle, a judgment is made as to whether there is a possibility of collision between the
USV and the obstacle. The expression of the ray Lobs is as follows:

Lobs =


y = tan θobs(x − xobs) + yobs, θobs ∈

(
−π

2 , π
2
)
∪
(

π
2 , 3π

2
)

θobs ∈
(
−π

2 , π
2
)
, x ⩾ xobs;

θobs ∈
(

π
2 , 3π

2
)
, x ⩽ xobs

(11)

In the formula, θobs represents the angle between the obstacle’s moving direction
and the x-axis, which is a dynamic variable; (xobs, yobs) represents the obstacle’s position
coordinates, which change with its movement.

It is assumed that the intersection point of the ray Lobs and the line segment Lst is
P(xP, yP), where the horizontal and vertical coordinates are represented in Formula (12)
as follows: {

xp = tan θobs·xobs−yobs+bst
tan θobs−kst

yp = kst·xobs−yobs+bst
tan θobs−kst

· tan θobs + yobs
(12)
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In the formula, kst =
ytar−yUSV
xtar−xUSV

, xtaryUSV−xUSVytar
xtar−xUSV

, and (xobs, yobs) represent the position
coordinates of obstacles, and θobs indicates the angle between the motion direction of
obstacles and x-axis.
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Based on the collision point P, we calculate the time cost of the USV and obstacles
from their current positions to the collision point P. Suppose that the current speed of the
USV is vUSV and the acceleration is aUSV , while the current moving speed of obstacles is
vobs and the acceleration is aobs. Both of them move toward the point P under the current
state. The time costs of the USV and obstacles are tUSV−P and tobs−P, respectively, which
are expressed by Formulas (13)–(16), respectively.

tUSV−P =

√
2aUSVSi−P + ν2

USV − νUSV

aUSV
(13)

tobs−P =

√
2aobsSobs−P + ν2

obs − νobs

aobs
(14)

Sobs−P =

√
(xobs − xP)

2 + (yobs − yP)
2 (15)

SUSV−P =

√
(xUSV − xP)

2 + (yUSV − yP)
2 (16)

In the formula, SUSV−P represents the distance from the current position of the USV
to the intersection P, and Sobs−P represents the distance from the current position of the
obstacle to the intersection P.

The times at which the USV and obstacle will reach the point P are compared. If
tobs−P < tUSV−P, then the obstacle reaches the intersection P first:

(1) When the obstacle is close to the point P and the distance from the USV to the obstacle
is greater than the safe distance, the USV maintains its original state of motion;

(2) When the distance from the USV to the obstacle is less than the safe distance, the USV
decelerates in advance to avoid collision;

(3) When the obstacle moves away from the point P, the USV resumes its original speed
and moves to the target point.

If tobs−P = tUSV−P, then the USV and the obstacle are in a parallel state.
To ensure the collision-free driving of the USV, a collision priority is set under the

premise that the USV maintains a safe distance from obstacles. When the USV is close
to obstacles (within a safe distance), deceleration measures are taken. When the distance
between the USV and obstacles expands, the USV accelerates to its initial speed (without
considering increasing speed).
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If tobs−P > tUSV−P, then the USV reaches the intersection P faster.
If the distance from the USV to the obstacle is less than the safe distance, the USV will

judge the safety grid around the obstacle and avoid it. Secondly, when the USV judges that
the risk of collision increases, it increases its driving speed to quickly avoid the dangerous
influence range of the obstacle.

If the distance from the USV to the obstacle is greater than the safe distance, the USV
maintains its original speed and continues to move to the target point.

(2) Obstacle planning on the front side of the USV

When the obstacle is moving in the same direction as the USV on the front side of the
USV, the motion state of the obstacle is judged, and the next state of the USV is selected [33],
as shown in Figure 5. In this figure, the blue rectangle represents the USV; the black solid
circle represents a moving obstacle, whose direction of movement is consistent with that of
the USV; the red pentagram represents the target point of the USV; and the white arrow
indicates the forward direction of the USV.

(1) vUSV = vobs, and when the distance dUSV−obs is safe, the USV maintains the origi-
nal speed.

(2) vUSV > vobs, and when the distance dUSV−obs is less than the safe distance and there
are static obstacles around, it does not meet the obstacle avoidance distance, so the
USV stops driving.

(3) vUSV > vobs, and when the distance dUSV−obs reaches the variable distance and meets
the obstacle avoidance distance, the USV accelerates to pass the obstacle.

(4) Mathematical model of water flow constraint
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In the actual motion process of the robot on the water surface, the robot is inevitably
affected by the water flow. In a two-dimensional grid map, the general choice is to simulate
the water flow in four directions relative to the robot, as shown in Figure 6, where the water
flow velocities from the four directions are represented by (clockwise from top to bottom)
vup, vright, vdown, vle f t.

This is not considered in actual scenes, as the actual influence of the water flow
is not limited to four directions, so the remaining four positions are considered the ac-
tual water flow constraints, as shown in Figure 7, where the water flow velocities from
the four new angle directions are represented by (clockwise from top right to top left)
vup_right, vdown_right, vdown_le f t, vup_le f t.

In view of the different directions of the water flow, it was simplified to a mathematical
model. Considering that the water flow impact is a new constraint factor, its effect is similar
to that of dynamic obstacles. Dynamic obstacles have a “Repulsion” effect on the USV. The
actual effect of the water flow is not only “Repulsion”, which acts as an obstacle, but also
“Traction”, which pushes the USV. Therefore, the schematic diagram of this mathematical
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model is shown in Figure 8. There are three forces in the figure, where fUSV represents
the direction of the force acting on the USV, fup_right represents the force acting on the
water flow from the northeast direction, and f joint represents the combined force of fUSV
and fup_right.
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Figure 8. The combined motion direction of the USV after being affected by the water flow.

It can be seen from Figure 8 that the direction of the resultant force acting on the
USV is not the desired direction of the USV’s movement in the ideal state. Therefore, a
direction adjustment is needed. The direction adjustment constraint formula is shown in
Equation (17). Based on Figure 8, a new USV direction model is established, as shown in
Figure 9. The figure contains different forces, with fUSVactual , indicated by the red arrow,
indicating the actual forward force of the USV after two combined forces.
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Figure 9. Illustrative diagram of actual resultant force of USV.

As can be seen from Figure 9, there is a certain angle error between the actual force
and the actual direction of movement. To address this error, the grid map’s angle range
is set. When the error angle is within the range of ϕ ∈ (−π/4, π/4), the USV selects the
middle grid point within the error range as the target point; when the error angle is within
the range of ϕ ∈ (−π/3,−π/4) ∪ (π/4, π/3), there are multiple reachable grid points within
this angle range, which may have a certain interference on the final actual target point
position. Within this range, the error angle is associated with the grid point serial number,
as specified in Formula (17).{

x = mod(c, n)− 0.5
y = n + 0.5 − ceil(c/n)± (19.5 − x)× arctanϕ

, ϕ ∈ (−π
4 , π

4 ){
x = mod(c, n)− 0.5

y = [n + 0.5 − ceil(c/n)]× fAd
, ϕ ∈ (−π

3 ,−π
4 ) ∪ (π

4 , π
3 )

(17)

In this equation, the function f is Advanced_sprcv. When the error angle is
ϕ ∈ (−π/3,−π/4) ∪ (π/4, π/3), the number of grid errors is greater than or equal to 2.
If the formula insists on using arctangent for projection, although the results can be ob-
tained, there are multiple errors and obstacles in the projection process. Therefore, the
function is used to apply the smooth optimization in advance, as shown in Figure 10.
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Figure 10. Advanced_sprcv optimization of large-angle error path.

When the error angle exceeds ±π
3 , this error cannot be eliminated, and it is regarded

as a path exceeding the reachable range. Then, the algorithm returns to the previous node
to re-optimize.

(4) Path-smoothing strategy

In this study, the originally planned path for unmanned surface vehicles (USVs) is
depicted on a raster map as a sequence of disjointed line segments, which are interconnected
sequentially at the raster’s center according to the coordinates of the planned path points.
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This configuration results in sharp peak inflection points at the junctures of the path,
posing a risk of damaging the USV’s hardware facilities. Moreover, these abrupt inflections
hinder the USV’s ability to accurately follow the path, leading to unnecessary energy
expenditure. To address this issue, this paper first proposes the utilization of quadratic
Bezier curves to smooth out the sharp peaks, enhancing path continuity and reducing
mechanical stress on the USVs. Recognizing the potential for collision, the study further
incorporates the “spcrv” function, which ensures obstacle avoidance while maintaining the
path’s smoothness. Bezier curves are mathematically represented as a series of connected
control points, forming line segments that collectively define the smooth path, as illustrated
in Figure 11. This approach not only mitigates the risk of hardware damage but also
optimizes the energy efficiency of USVs by providing a more navigable path.
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The definition formula of an n-order Bezier curve (18) is

P[t0,t1]
(t) =

n

∑
i=0

Bn
i (t)Pi, t ∈ [0, 1] (18)

where t is a location parameter, Pi represents control points, leading to P(t0) = P0 and
P(t1) = Pn, and Bn

i (t) is the Bernstein polynomial given by the following formula:

Bm
i (t) =

(
m
i

)
ti(1 − t)m−i, i = 0, 1, . . . , m, (19)

P(t) = P0(1 − t) + P1t (20)

According to Equation (20), the linear Bezier curve represented by two points does not
contain slope factors, so they form a segment in which the starting point and the endpoint
are specified by the first and last points. The linear Bezier curve can be specified in the
form of P(t) = (x(t), y(t)), where

x(t) = x0(1 − t) + x1t (21)

y(t) = y0(1 − t) + y1t (22)

P(t) = P0(1 − t)2 + 2P1t(1 − t) + P2t2 (23)

According to Equation (23), the quadratic Bezier curve represented by three points
forms a parabolic figure, because they form a quadratic equation. The quadratic Bezier
curve can be specified in the form of P(t) = (x(t), y(t)), where

x(t) = x0(1 − t)2 + 2x1t(1 − t) + x2t2 (24)



J. Mar. Sci. Eng. 2024, 12, 477 16 of 25

y(t) = y0(1 − t)2 + 2y1t(1 − t) + y2t2 (25)

L =

√
(yn − yn−1)

2 + (xn − xn−1)
2 (26)

According to Equation (26), the absolute distance between two nodes is given by L.

t = d/L (27)

According to Equation (27), it is clear that the increment value is equal to the preset
value d regardless of the distance between two nodes.

Ltotal =
n

∑
m=1

Lm (28)

Formula (28) is used to calculate the total length of the path from the starting point to
the target point.

Since the path search algorithm generates a large number of path nodes and many
turns, it cannot be used directly. Therefore, the optimal path was obtained using the Bezier
smoothing process. The Bezier curve is used to smooth the sharp turning points in the path
selected from redundant nodes. The smoothing steps are as follows:

1. Quadratic Bezier curves are applied to the nodes except for the starting point and
ending point, similar to piecewise functions.

2. Whether obstacles are near the nodes is determined in the planning process, and thus,
the curves are applied to these nodes safely.

3. As shown in Figure 12, Pw represents fixed control points, and Pw+i represents vari-
able control points. When drawing the curve, Formulas (16)–(19) are used, and
∥ (Pw, Pw+i) ∥ + ∥ (Pw, Pw−i) ∥ in Formula (18) is set to L, which is Formula (29).

L =∥ (Pw, pw+i) ∥ + ∥ (Pw, pw−i) ∥ (29)

The curve drawn for small values up to i, corresponding to the obstacle, shows the
safe curve. Obs represents obstacles in the environment, and Pw shows the nodes. Pw+i and
Pw−i represent the waypoints between two nodes [34].
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The quadratic Bezier curve belongs to the convex optimization path-planning algo-
rithm. In the smoothing process of the back-end optimization of path planning, quadratic
optimization is the most common form, so it can ensure that there is an optimal solution
under the current circumstances, and it can ensure that the local optimal solution is also
the global optimal solution. However, in terms of obstacle avoidance, the reason why the
situation in Figure 11 occurs is that this optimization can only ensure that there is no colli-
sion between waypoints and obstacles, but it cannot ensure that the polynomial connecting
waypoints also has no collision with obstacles, and it cannot guarantee the ability to avoid
dynamic obstacles. Therefore, in the case of complex environments and different forms of
obstacles, the path can ensure smoothness but cannot guarantee planning safety.
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To solve this problem, the convex optimization form needed to be changed, the
number of control points on the way needed to be increased, and they needed to constitute
high-order Bezier curves. However, high-order Bezier curves are prone to the Runge
phenomenon, and there may be path redundancy in the process of finding target points.
This improvement cannot eliminate the possibility of collision in the smoothing process,
and it is crucial to use a dense sequence of functions with the sprcv function for smooth
optimization to solve this problem. The function has a dense sequence f (tt) of points on the
k-order uniform B-spline curve f with B-spline coefficients c, as shown in Formula (30).

f : t| →
n

∑
j=1

B(t − k/2|j, . . . , j + k)c(j),
k
2
≤ t ≤ n +

k
2

(30)

In this formula, B(|a, . . .z) represents the B-spline with nodes a, . . ., z. n is the number
of coefficients in c, i.e., [d,n] = size (c). The parameter interval filled with uniform sampling
points tt is [k/2 . . .(n − k/2)]. The output is composed of the array f (tt). After the smooth
optimization is improved by sprcv based on Bezier smoothing, it ensures that the robot can
successfully avoid obstacles and the path is smoother, as shown in Figure 12.

After Bezier optimization (Figure 13a), the path has achieved the smoothing goal,
but there are still obvious problems in obstacle avoidance. After the sprcv improvement
optimization, we have obtained a smooth and highly successful obstacle avoidance path
(Figure 13b). In Figure 13, the red path is the shortest path found by the improved artificial
bee colony algorithm in the 2D grid environment, the yellow path is the smooth path after
the Bezier optimization curve, and the blue path is the smooth path after the improved
sprcv curve optimization. By comparison, the path after Bezier curve optimization may
encounter obstacles that cannot be avoided. Therefore, improved sprcv is added to improve
the smoothness of the path and obtain an optimal path with high smoothness and safe
obstacle avoidance.
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Determining the obstacle avoidance ability of the USV requires testing not only
whether it can successfully avoid static obstacles in the environment but also whether
it can avoid static obstacles and completely avoid dynamic obstacles after adding dynamic
obstacles to the same obstacle environment.
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3.3. Experimental Facilities

The experimental equipment used in this article is mainly as follows: a Windows
computer (Intel Core i5-10500H CPU, 64-bit operating system, 16GB memory, Hasee,
Shenzhen, China) and a Mac computer (MacBook Pro, Apple M1 Pro, 10 cores, 16GB
memory, Apple, Cupertino, CA, USA).

4. Simulation Experiment Analysis and Comparison
4.1. Dynamic Obstacle Avoidance Capability Testing of USV

Determining the obstacle avoidance ability of the USV requires testing not only
whether it can successfully avoid static obstacles but also whether it can avoid both static
and dynamic obstacles in the same obstacle environment.

In the traditional artificial bee colony algorithm, the path search efficiency is high, but
it is only used for obstacle avoidance in a static obstacle environment, as shown in Figure 14.
When the USV travels on the water surface, it may encounter both known obstacles and
unknown moving obstacles. Therefore, it is necessary to improve the obstacle avoidance
mechanism of the traditional artificial bee colony algorithm to enable it to normally avoid
static obstacles and efficiently avoid dynamic obstacles on the water surface, as shown in
Figure 15.
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In the obstacle avoidance process of static obstacles, the updating of the population
and the honey source will affect the search by honey bees to the target point, which leads
to a fluctuation in the iteration times needed for the search for the optimal path in the
traditional bee colony algorithm. As shown in Figure 16, under the premise of avoiding
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static and dynamic obstacles, the traditional bee colony algorithm finds the shortest path
after 87 iterations. After improving the algorithm, it can avoid obstacles in dynamic
environments and find the shortest path after 80 iterations under the premise of avoiding
both static and dynamic obstacles.
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Based on the comparison of the number of iterations between traditional and improved
artificial bee colony algorithms, it can be seen from Figures 16 and 17 that the improved
bee colony reduces the excess foraging team on the optimization path and improves the
optimization route of leading and following bees. Experimental verification shows that the
improved algorithm improves the efficiency of searching for the shortest path under the
requirement of successfully avoiding dynamic obstacles.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 21 of 27 
 

 

 
Figure 16. The iteration number of a population avoiding obstacles in the traditional bee swarm 
algorithm. 

 
Figure 17. Improved bee swarm algorithm for obstacle avoidance: population iteration times. 

4.2. Comparison of Optimization Times for USV to Avoid Dynamic Obstacles in Different Envi-
ronments 

The USV can avoid static obstacles in time, but it also needs a certain reaction time to 
judge obstacles with the support of the algorithm. The traditional bee colony algorithm 
inevitably identifies and avoids obstacles in the process of path optimization, so the reac-
tion time of the traditional algorithm is relatively long in a static environment, and there 
are many inflection points in the path of the map, which is also the reason for the longer 
optimization time of obstacle avoidance. As the USV cannot identify moving obstacles in 
a new environment, the improved algorithm can achieve the ability to avoid obstacles in 
time. The results of the comparison of obstacle avoidance times on different grid maps are 
in Table 1. 

  

Figure 17. Improved bee swarm algorithm for obstacle avoidance: population iteration times.

4.2. Comparison of Optimization Times for USV to Avoid Dynamic Obstacles in
Different Environments

The USV can avoid static obstacles in time, but it also needs a certain reaction time to
judge obstacles with the support of the algorithm. The traditional bee colony algorithm
inevitably identifies and avoids obstacles in the process of path optimization, so the reaction
time of the traditional algorithm is relatively long in a static environment, and there are
many inflection points in the path of the map, which is also the reason for the longer
optimization time of obstacle avoidance. As the USV cannot identify moving obstacles in
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a new environment, the improved algorithm can achieve the ability to avoid obstacles in
time. The results of the comparison of obstacle avoidance times on different grid maps are
in Table 1.

Table 1. The time consumed for path optimization in different dynamic environments using tradi-
tional and improved algorithms.

Compared Type
of Algorithm

First Environmental
Optimization Time/s

Second Environmental
Optimization Time/s

Third Environmental
Optimization Time/s

Fourth Environmental
Optimization Time/s

ABC 1.10 1.34 0.85 1.03

DOASO-IABC 0.65 0.66 0.60 0.63

Figures 18–21 show the comparison of obstacle avoidance times for the two algorithms
in different environments. Each grid map represents static obstacles in black and dynamic
obstacles in red. The dynamic obstacles move randomly in four directions.
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In the grid environment with dynamic obstacles, the optimization time of the tradi-
tional algorithm is more than 1 s. After the improved algorithm, the optimization time
of the USV is doubled. The experimental results verify that the improved algorithm has
achieved the desired results. Therefore, the algorithm proposed in this paper has strong
real-time obstacle avoidance ability.
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4.3. Comparison of Optimal Path Length for Dynamic Obstacle Avoidance by USV in
Different Environments

One of the factors that best reflect the advantages and disadvantages of the algorithm
in path planning is the overall path length, which can be reflected through both the overall
route length of the map and the intuitive path length value. The paths found by traditional
algorithms are more tortuous and have more inflection points, so the overall path length
is the longest. After improving the traditional algorithm and increasing the influence of
actual water flow factors, although the path length shows a smoothing trend, due to the
water flow, the angle deviation of USV travel is optimized by Advanced_sprcv. Finally,
after optimization, the path length obtained by the improved algorithm is shortened, and
the effect is very good, as shown in Table 2 below.

On the one hand, the path length is shortened by reducing the number of inflection
points, which can turn the right angle at the turning point into a curve. On the other
hand, the whole path is processed by a smoothing mechanism. The experimental results
show that the improved algorithm has some success in optimizing the path length, and the
optimization efficiency reaches 15%.
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Table 2. Comparison of optimization path lengths of traditional bee colony algorithm and im-
proved algorithm.

Compared Algorithm
Type

First Environmental
Path Length/Grid

Second Environmental
Path Length/Grid

Third Environmental
Path Length/Grid

Fourth Environmental
Path Length/Grid

ABC 35.62 37.85 34.72 33.38

DOASO-IABC 33.04 33.55 30.79 29.73

4.4. Path-Smoothing Comparison

The traditional bee colony algorithm for path planning deploys points, connects lines,
searches for optimization by the bee colony, and determines the final route for each grid
center position. Therefore, the overall path is mostly a broken line with many inflection
points. Frequent changes in the direction of the USV in the water lead to the continuous
adjustment of its power system, thereby increasing energy consumption, reducing the
USV’s speed, prolonging the task execution time, and affecting the overall process efficiency.
In response to this situation, a path-smoothing optimization mechanism is added to the
traditional algorithm. After the experimental comparison, it is found that the overall
smoothness of the path is improved after adding Improved_sprcv, and obstacle avoidance
can reach 100%. After the improved strategy is added, it is more practical to use Bezier
curve smoothing paths than conventional ones. A comparison of the smoothness effect is
shown in Figures 22 and 23.
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ciency. In response to this situation, a path-smoothing optimization mechanism is added 
to the traditional algorithm. After the experimental comparison, it is found that the overall 
smoothness of the path is improved after adding Improved_sprcv, and obstacle avoidance 
can reach 100%. After the improved strategy is added, it is more practical to use Bezier 
curve smoothing paths than conventional ones. A comparison of the smoothness effect is 
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Figure 22. The Bezier smooth optimization path diagram of artificial bee colony fusion. Figure 22. The Bezier smooth optimization path diagram of artificial bee colony fusion.

In Figure 22, the red broken line is the shortest path found by the traditional artificial
bee colony algorithm based on the starting point location. The yellow curve is the optimal
path found by the algorithm after fusing Bezier curve optimization. By comparison, the
improved path has completed the smoothing task, but it cannot avoid obstacles, especially
moving obstacles. Therefore, this fusion does not meet practical requirements. Therefore,
an improved artificial bee colony algorithm is proposed, which fuses the Improved_sprcv
smooth optimization mechanism, as shown in Figure 23. The red broken line is the optimal
path of the traditional artificial bee colony algorithm, and the blue curve is the optimal
path after smooth optimization. Compared with Bezier’s smooth optimization, this smooth
mechanism can not only smooth the path but also avoid obstacles in time. According to
experimental verification, this improvement strategy is suitable for practical application
scenarios, and the improvement of the algorithm also improves the overall smoothness of
the path.
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5. Conclusions

Effective path planning is crucial for unmanned surface vehicles (USVs) to navigate
and avoid obstacles, especially amidst water currents and dynamic barriers. This study
introduces a grid-based method for two-dimensional environmental modeling, focusing on
overcoming these specific challenges. It highlights the importance of avoiding dynamic
obstacles and achieving smooth path transitions. The paper presents a novel fusion swarm
intelligence algorithm tailored for global path planning in known, dynamic aquatic environ-
ments. This algorithm integrates dynamic obstacle avoidance with optimization techniques,
enhancing the ability to circumvent obstacles in fluid settings and identify locally optimal
paths. This method significantly improves the accuracy and efficiency of path planning
for USVs. When compared to traditional bee colony algorithms, the enhanced algorithm
exhibits an 8% increase in the optimization path length, a 50% reduction in optimization
time, and a nearly 100% obstacle avoidance capability in dynamic environments.

To further refine the path quality, we introduce an improved artificial bee colony
algorithm (IABC). Through a series of simulation experiments, the superior performance
of the proposed algorithm compared to traditional methods is demonstrated. It not only
efficiently identifies the shortest optimal path but also ensures the path’s high degree of
smoothness and dynamic obstacle avoidance capabilities. It is important to note that the
shortest path obtained may not necessarily represent the lowest energy consumption path,
given the variable influence of water flow on energy consumption. The improvement of
the algorithm in the article is not only applicable to USVs but also to underwater vehicles,
unmanned aerial vehicles, and other facilities in the deep-sea field.
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