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Abstract: Model predictive control (MPC), an extensively developed rolling optimization control method,
is widely utilized in the industrial field. While some researchers have incorporated predictive control
into underactuated unmanned surface vehicles (USVs), most of these approaches rely primarily on
theoretical simulation research, emphasizing simulation outcomes. A noticeable gap exists regarding
whether predictive control adequately aligns with the practical application conditions of underactuated
USVs, particularly in addressing real-time challenges. This paper aims to fill this void by focusing on
the application of MPC in the path following of USVs. Using the hydrodynamic model of USVs, we
examine the details of both linear MPC (LMPC) and nonlinear MPC (NMPC). Several different paths are
designed to compare and analyze the simulation results and time consumption. To address the real-time
challenges of MPC, the calculation time under different solvers, CPUs, and programming languages is
detailed through simulation. The results demonstrate that NMPC exhibits superior control accuracy and
real-time control potential. Finally, we introduce an enhanced A* algorithm and use it to plan a global
path. NMPC is then employed to follow that path, showing its effectiveness in tracking a common path.
In contrast to some literature studies using the LMPC method to control underactuated USVs, this paper
presents a different viewpoint based on a large number of simulation results, suggesting that LMPC is
not fit for controlling underactuated USVs.

Keywords: underactuated USV; LMPC; NMPC; real-time analysis; path following

1. Introduction

Unmanned surface vehicles (USVs), recognized for their efficiency and suitability for
water surface tasks, find extensive application in practical scenarios such as water research
and environmental monitoring [1]. This popularity is attributed to their cost-effectiveness
and safety features [2], with guidance, navigation, and control constituting the three pivotal
components. Among these, path following stands out as a crucial aspect of control, serving
as a key methodology for both path planning and re-planning [3,4]. USVs are tasked
with autonomously adhering to a predetermined path, prioritizing spatial constraints over
temporal considerations. This approach ensures the generation of smoother paths and a
reduced likelihood of actuator saturation. Consequently, path following is deemed more
attainable compared to trajectory tracking.

Upon review of the pertinent literature, USVs are categorized into two primary types:
underactuated and fully actuated. Underactuated USVs pose a greater challenge for control
due to the actuator’s lower degree of freedom [5]. Despite this inherent challenge, a consid-
erable proportion of USVs are intentionally designed as underactuated, the choice being
driven by cost considerations and practical convenience. Therefore, the path following
of underactuated USVs has gradually become a hot topic. Within this field, numerous
scholars have proposed various path following control methods, and these can be classified
into two categories.
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The first category comprises innovative control algorithms proposed in recent years,
and these can be further divided into two types. The first type consists of advanced adap-
tive control algorithms [6–8]. These algorithms typically involve the fusion of multiple
technologies to better address the uncertainties encountered and enhance path following ac-
curacy. For instance, in Reference [9], the authors introduced a control method that adapted
the neural network structure. By integrating adaptive techniques with neural networks, this
approach effectively handled model uncertainty and then enhanced control performance.
Similarly, a novel saturation dynamic surface controller [10] was designed by combining
adaptive neural networks with robust controllers, and it had the ability to dynamically
solve the problem of model uncertainty and external disturbance. Liu et al. [11] developed
an adaptive compensation mechanism based on the baseline state feedback controller,
synthesizing a reconfigurable USV adaptive path following controller. The second type of
innovative control algorithm involves novel controllers based on reinforcement learning.
In [12], data-driven training of deep neural networks (DNNs) was employed for designing
path following controllers. Another notable approach, as presented by the authors in [13],
utilized a reinforcement learning framework and integrated the long short-term memory
neural network (LSTM) method to enhance the convergence speed of the path-following
controller. Additionally, a hierarchical depth Q network (DQN) [14] was used to design
controllers for path following. In conclusion, the applicability and effectiveness of these
algorithms still need to be verified in complex real-world environments.

The second category of USVs consists of path following controllers designed based
on classical control algorithms in the field of automatic control. Examples include the
dynamic surface control algorithm (DSC) [15], sliding mode control algorithm (SMC) [16],
and backstepping control algorithm (BSC) [17]. Their limitations lie in their theoretical
strength, often neglecting practical constraints of marine vehicles such as the state of the
USV and various physical limitations of input. Additionally, these approaches do not
explicitly guarantee control performance metrics such as power consumption [18]. The
proportional–integral–derivative (PID) algorithm, which is widely applied and easy to
design, maintains its prominent position in various domains and practical engineering
applications [2]. Among the many applications in USV path following, a classic approach
involves utilizing the line-of-sight (LOS) algorithm to calculate the expected angle of the
USV. Subsequently, a PID controller is employed to regulate the heading angle of the USV
in order to achieve the desired value [19–21]. Despite the widespread applicability and
universality of the PID algorithm, its drawbacks cannot be ignored. PID, which is fit
for single-input, single-output (SISO) systems, has the inherent limitation of exhibiting
diminished applicability in the face of multi-variable systems and multiple constraints.

Rooted in optimal control theory, model predictive control (MPC) and linear quadratic
regulator (LQR) [22] are two popular approaches. However, LQR faces challenges in
directly handling input or state constraints during the design phase. In contrast, MPC’s
primary advantage lies in its capability to effectively address multi-variable systems and
input saturation [23]. The underactuated nature of the USV introduces high nonlinearity,
involving multiple state variables and constraints. This aligns with the characteristics
of MPC, which further distinguishes between linear MPC (LMPC) and nonlinear MPC
(NMPC). When exploring LMPC for underactuated USV path following, the simulation
results from [24,25] revealed a modest deviation between the actual and expected paths.
Conversely, in a parallel study [26,27], the authors also employed LMPC, but the simulation
results contrasted with those from the previous reference, demonstrating a more accurate
following effect. The above literature did not address the efficiency of solving LMPC, and
the sampling period range was set between 0.2 and 2 s. References [28–30] employed
NMPC to govern underactuated USV and conducted simulations, and the simulation
results demonstrated a high-precision path following effect. However, a notable omission
in these studies is the lack of discussion of NMPC solving time. Reference [18] employed
NMPC in actual ship path following experiments, yet the specific efficiency of the NMPC
solution remains unclear. On the other hand, some scholars designed a two-layer NMPC
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to improve computational speed [31]; however, the ultimate outcomes revealed highly
unstable solving times, with an average around 30 ms, which is not considered favorable.
According to the survey of existing literature, most studies have focused on the application
of LMPC or NMPC in path tracking experiments or on combining these methods with
other techniques to pursue more advanced control. However, these studies have some
limitations. First, no sources explicitly state whether LMPC or NMPC should be used or
preferred for underactuated USV systems. Second, although solving efficiency is a crucial
issue in the practical application of MPC, few publications have addressed this aspect.
These issues deserve our attention.

MPC, widely adopted in the industrial sector, has found increasing applications in
autonomous vehicle navigation, establishing a robust foundation in terms of feasibility [32].
However, MPC has faced criticism for its comparatively slow solving speed, requiring
substantial CPU resources. In the context of underactuated USV, careful consideration
of real-time solving times is essential, with an ideal preference for a sampling period
being 0.1 s or lower. With the rapid advancement of computer processor performance,
there has been notable improvement in the solving speed of MPC. This paper aims to
address the challenges associated with MPC-based path following for underactuated USV
by conducting comprehensive simulations, comparing LMPC and NMPC, and engaging in
a detailed discussion on computational efficiency concerns. The main contributions of this
paper are as follows:

1. A comprehensive simulation and analysis are undertaken for the path following
of underactuated USVs based on MPC, encompassing both LMPC and NMPC. In
response to certain articles in the literature advocating for the use of LMPC in path
following, we present an alternative perspective by suggesting that LMPC might not
be the optimal choice for path following in underactuated USVs, as it has the potential
to introduce notable errors.

2. A systematic and thorough comparison is conducted in this paper with the primary
objective of validating the real-time performance of NMPC. Specifically, we focus on
studying the computational time required when calculating the optimal control input.
The computational efficiency of NMPC is evaluated across different central processing
units (CPUs), solvers, and programming languages. The findings reveal that NMPC
achieves commendable control accuracy and exhibits potential for real-time solving.

3. An improved A* algorithm is proposed for path planning, integrated with NMPC for
path following. Validation results affirm that NMPC achieves outstanding tracking
performance when applied to smoothly planned paths for underactuated USVs.

The subsequent sections of this paper are structured as follows: Section 2 offers
a concise introduction to the hydrodynamic model of underactuated USVs. Section 3
expounds on the theoretical principles of MPC and the improved A* algorithm. Section 4
presents simulation results and a comprehensive analysis. Finally, Section 5 provides the
conclusion to this paper.

2. USV Hydrodynamic Model

The majority of USVs are typically underactuated and propelled by dual thrusters,
with steering being controlled by the differential speed of the dual thrusters. In general,
USVs manifest motion along 6 degrees of freedom (DOF). The motions within the horizontal
plane are denoted as surge (longitudinal motion), sway (lateral motion), and yaw (rotation
about the vertical axis). The remaining three degrees of freedom encompass roll (rotation
about the longitudinal axis), pitch (rotation about the transverse axis), and heave (vertical
motion), as illustrated in Figure 1.
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Figure 1. USV motions in 6 DOF and 3 DOF.

For the control of a USV, the 6 DOF ship model is often simplified into a coupled
surge-sway-yaw model, neglecting heave, roll, and pitch motions [33]. Drawing from
the content in [34], the state variables and control inputs of the USV control system are
typically defined in two coordinate systems: the body-fixed frame and the inertial frame.
The body-fixed frame serves as a reference frame fixed to the moving vessel, while the
inertial frame can be conceptualized as a global coordinate system, stationary and fixed.
The specific definitions are as follows:

η =

 x
y
ψ

, v =

 u
v
r

, τ =

 fu
fv
tr

 (1)

where v denotes the surge, sway, and yaw rate within the body-fixed coordinate system
of the USV; η represents the coordinates and attitudes of the USV in the inertial coordi-
nate system, corresponding to the X-axis position, Y-axis position, and yaw angle; and τ
characterizes the three inputs of the USV, corresponding to forward force, lateral force,
and steering torque. With reference to the preceding vector model, the kinematic and
hydrodynamic models of the USV can be written as follows:

η̇ = R(ψ)v (2)

MRBv̇ + MAv̇ + CRB(v)v + CA(v)v + D(v)v = τ (3)

where R(ψ) is the transformation matrix that transforms a variable from the body-fixed
coordinate system to the inertial coordinate system; MRB denotes the inertia matrix result-
ing from the rigid body, while MA represents the inertia matrix attributed to added mass
arising from water resistance; and CRB signifies the Coriolis matrix inherent to USV and
CA is the Coriolis matrix stemming from added mass, both contingent on the operational
velocity of the USV. The damping matrix, denoted as D, encompasses both linear and
nonlinear damping components. Detailed expressions for these matrices can be found in
either Reference [35] or [24].

In accordance with the relationship between the inputs and propellers, the general
form of the input vector τ can be formulated as:

τ =

 fu
fv
tr

 =

 Tport + Tstbd
Tmid(

Tport − Tstbd
)

B/2

 (4)

where Tport and Tstbd represent the magnitudes of forces generated by the rear right and left
propellers of the underactuated USV, respectively; B denotes the distance between the two
propellers. The lateral thruster generates a force denoted as Tmid; however, this component
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is absent in underactuated USVs, resulting in Tmid = 0. The specific relationship between
the thrusters and the USV is visually depicted in Figure 2.

North

Eastinertial reference frame

body-fixed reference frame



Figure 2. Force diagram of the USV.

Combining Equations (2) and (3) and selecting the state variable x = [x, y, ψ, u, v, r]T

with y = x as the system output, the state space representation of the underactuated USV
motion can be expressed as:

ẋ = f (x, τ) =

[
R(ψ)v

(MRB + MA)
−1(τ − CRB(v)v − CA(v)v − D(v)v)

]
(5)

Remarkably, the value of fv for an underactuated USV is set to 0. This arises from the
fact that the two propellers at the rear are incapable of independently supplying lateral
force for the USV. Consequently, direct control over the sway of the USV is unattainable.
Steering torque or interference from external wind and waves may result in sideslip for
the USV.

3. Theory and Methodology

MPC originated in the 1970s and was initially applied to the control of chemical
processes. MPC primarily comprises three components: model, prediction, and control. The
fundamental concept involves predicting future states over several steps and minimizing
the disparity with the anticipated future states. This optimization approach is employed
to ascertain the optimal control inputs at the present time. Its noteworthy feature is its
applicability to multiple-input and multiple-output (MIMO) systems while simultaneously
managing multiple constraints. As illustrated in Figure 3, conventional control methods
such as PID or backstepping would necessitate designing numerous controllers or control
laws based on different control variables of the USV. In contrast, a single MPC controller
can address this directly. Given that underactuated USVs inherently involve multiple state
variables and constraints, MPC is well-suited for such systems.

The strengths of MPC lie in its ability to handle complex nonlinear systems, multi-
objective optimization, and constraints. By predicting future states, MPC provides flexible
control strategies and can adaptively adjust to disturbances or changes in the system. As a
result, MPC has achieved significant success in various fields such as chemical processes,
energy management, robotics, and traffic flow control. However, MPC methods face chal-
lenges and limitations, including computational complexity, model errors and uncertainties,
and difficulty meeting real-time requirements. The current focuses of researchers are to
accelerate solver calculation speed, model identification, and modeling; improve robust-
ness; and expand the application scope of MPC. In conclusion, MPC, as a model-driven
optimization control method, has significant practical applications and research value.
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MPC methods can be classified into two types: LMPC and NMPC. LMPC involves
linearizing the nonlinear model and transforming it into the format of a state-space equation.
This process encompasses key steps such as model linearization, discretization, imposing
constraints, and formulating the optimization objective function. NMPC, in comparison to
LMPC, eliminates the need for model linearization, while the other steps remain similar. For
a more comprehensive exploration of the theoretical foundations and derivations of MPC,
readers are directed to [36]. The methodology presented in this paper primarily addresses the
hydrodynamic model discussed in Section 2, with detailed steps outlined below.

3.1. LMPC

In this subsection, we introduce the specific implementation steps of LMPC, including
the linearization and discretization of state space, constraint conditions, and optimization
objectives.

3.1.1. Linearization and Discretization of State Space

The essence of LMPC lies in the linearization of the nonlinear model at a specific
point. We set the reference state as xR = [xr, yr, ψr, ur, vr, rr]T and the reference input as
τR = [ fur, 0, trr]T. Then, performing a first-order Taylor expansion of Equation (5) at the
reference point yields the following expression.

ẋ = (xR, τR) +
∂ f (x, τ)

∂x

∣∣∣∣ x=xR
τ=τR

(x − xR) +
∂ f (x, τ)

∂τ

∣∣∣∣ x=xR
τ=τR

(τ − τR) (6)

Then, the state-space equation can be rewritten as follows:

˙̃x = Ax̃ + Bũ (7)

where, x̃ = x − xR, ũ = τ − τR,A = ∂ f (x,τ)
∂x | x=xR

τ=τR
and B = ∂ f (x,τ)

∂τ | x=xR
τ=τR

.

Then, it is discretized using the forward Euler method. Its specific expression is
xk+1 − xk ≈ ẋ · T. {

x̃(k + 1) = Ak x̃(k) + Bkũ(k)
ỹ(k) = Cx̃(k)

(8)

where Ak = I + T · A, Bk = T · B, and C = I. T denotes the sampling period, and I
represents a 6 × 6 identity matrix.
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3.1.2. Constraint Condition

Given the inherent physical limitations of propulsion systems, it becomes necessary to
introduce specific constraints on the input. In practical terms, these are transformed into
the following representation of inputs:

∆umin ≤ ∆u(k + i) ≤ ∆umax i = 0, 1, 2, . . . , Nc − 1
umin ≤ u(k + i) ≤ umax i = 0, 1, 2, . . . , Nc − 1

(9)

where Nc represents the predefined control time domain. Within any given control cycle,
both the input magnitude (umax and umin) and the input increment (∆umax and ∆umin) of
the propeller are subject to boundary constraints.

To more effectively integrate constraints into the control system, a new set of system
state variables is introduced here.

ξ(k) =
[

x̃(k)
ũ(k − 1)

]
(10)

Combining Equations (8) and (9) results in a new state-space model expressed as follows:{
ξ(k + 1) = Ãkξ(k) + B̃k∆u(k)
ỹ(k) = C̃kξ(k)

(11)

where Ãk =

[
Ak Bk

06×3 I3

]
, B̃k =

[
Bk
I3

]
and C̃k =

[
I6 06×3

]
.

Over the Np prediction time domains, it is possible to combine all predictive inputs
and outputs, leading to the following expression:

Ỹ(k) = Ψkξ(k) + Θk∆U(k) (12)

where Ψk and Θk are the system matrices. Ỹ(k) is the output sequence over the entire
prediction time domain, and ∆U(k) denotes the input increment sequence over the entire
control time domain. Their specific expressions are as follows:

Ψk =


C̃k Ãk
C̃k Ã2

k
...

C̃k Ã
Np
k

 Θk =



C̃k B̃k 0 0 0
C̃k Ãk B̃k C̃k B̃k 0 0

...
...

. . .
...

C̃k ÃNc−1
k B̃k C̃k ÃNc−2

k B̃k · · · C̃k B̃k
C̃k ÃNc

k B̃k C̃k ÃNc−1
k B̃k · · · C̃k Ãk B̃k

...
...

. . .
...

C̃k Ã
Np−1
k B̃k C̃k Ã

Np−2
k B̃k · · · C̃k Ã

Np−Nc
k B̃k



Ỹ(k) =


ỹ(k + 1)
ỹ(k + 2)

...
ỹ
(
k + Np

)
 ∆U(k) =


∆u(k)

∆u(k + 1)
...

∆u(k + Nc − 1)


3.1.3. Optimization Objective

To ensure precise path following and smooth control inputs for USVs, it is essential to
formulate an objective function based on the deviation of the system state and the energy
consumption of control inputs. Consequently, the objective function for LMPC is defined
as follows:

J(∆U) =
Np

∑
i=1

∥ỹ(k + i)∥2
Q︸ ︷︷ ︸

State cost

+
Nc−1

∑
i=0

∥∆u(k + i)∥2
R︸ ︷︷ ︸

Input smoothness cost

(13)
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where ∥ • ∥ is L2-norm. Q and R are both weighting matrices, with Q ∈ R6×6. In the
underactuated state, R ∈ R2×2, while in the fully actuated state, R ∈ R3×3.

After combining Equations (12) and (13) and removing terms unrelated to the control
input ∆u, the standard quadratic programming (QP) form is as follows:

arg min
∆U(k)

J(∆U(k)) = 1
2 ∆U(k)THk∆U(k) + FT

k ∆U(k)

s.t.
Ỹ(k) = Ψkξ(k) + Θk∆U(k)
∆Umin ≤ ∆U(k) ≤ ∆Umax
Umin ≤ M∆U(k) + U(k) ≤ Umax

(14)

where Hk = ΘT
k QeΘ + Re, Fk = 2(Ψkζ(k))TQeΘk, ∆Umax and ∆Umin are column matrices

representing the lower and upper bounds of the control input, respectively. The specific
composition of matrices

Qe =

 Q
. . .

Q


Np×Np

, Re =

 R
. . .

R


Nc×Nc

and M =


1 0 · · · 0
1 1 · · · 0
...

...
. . . 0

1 1 1 1


Nc

⊗ I3. ⊗ is Kronecker product.

3.2. NMPC

In contrast to LMPC, NMPC does not require the step of model linearization. It
involves discretizing the model, making predictions, and making control decisions based
on this discretization. The specific steps include predicting and controlling the state,
utilizing the objective function, and employing a nonlinear solver to find the optimal
control input. The detailed procedure is outlined below.

3.2.1. Discretization of the State Space

Two commonly utilized methods for discretizing state-space equations are the forward
Euler method and the fourth-order Runge–Kutta method. The latter provides higher
accuracy in solving differential equations compared with the former but may be slightly
slower in terms of computation speed. The forward Euler method has been introduced in
Section 3.1.1; here, we present the fourth-order Runge–Kutta method.

For the nonlinear function ẋ = f (x, τ), given the current state x(k) at time k, the
solution for the state at time k + 1 using this method, x(k + 1), can be expressed as follows:

x(k + 1) = x(k) +
1
6
(K1 + 2K2 + 2K3 + K4) (15)

Here, K1, K2, K3, and K4 are intermediate values specifically defined as follows:

K1 = T f (xk, τk), K2 = T f
(

xk +
1
2 K1, τk

)
K3 = T f

(
xk +

1
2 K2, τk

)
, K4 = T f (xk + K3, τk)

(16)

where T is the sampling period.

3.2.2. Optimization Objective and Constraints

We designate the prediction horizon of NMPC as Np and the control horizon as Nc.
The task of the nonlinear solver is to find an optimal set of control inputs U that satisfies the
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predefined minimal objective function. The optimization objective here is slightly different
from the objective function in LMPC.

Let k represent the current time, xk+i denote the predicted state after i time steps, uk+i
be the input, and xi

re f represent the reference state at time i. The optimization objective
function is defined as follows:

J(X, U) =
Np

∑
i=1

∥ xk+i − xi
re f ∥

2
Q︸ ︷︷ ︸

State cost

+
Nc−1

∑
i=1

∥ ui − ui−1 ∥2
R︸ ︷︷ ︸

Input smoothness cost

s.t.
ẋi = f (xi−1, ui) i = 1, . . . , Np
umin ≤ ui ≤ umax i = 0, . . . , Nc − 1

(17)

where ∥ • ∥ is L2-norm, X represents the sequence of state variables across the entire
prediction time domain, and U represents the sequence of control inputs throughout the
control time domain. The matrix R serves as a smoothing factor for the inputs, aiming to
promote a smoother transition between control inputs. umax and umin denote the maximum
and minimum values, respectively, within the entire input sequence.

3.3. Improved A* Algorithm

The A* algorithm, a classic and widely employed global path planning method, has
received considerable attention since its introduction. Researchers have sought to boost its
efficiency by implementing measures such as jump point search (JPS) [37] and variable step
size search [38]. To achieve smoother paths within the A* algorithm, scholars have explored
the use of Bezier curves [39] for trajectory smoothing. In the realm of autonomous driving
for unmanned vehicles, the hybrid A* algorithm [40] has been proposed to generate paths
that adhere to kinematic constraints. This algorithm takes into account steering angles
and velocity to plan smooth paths, proving particularly valuable for tasks like automated
parking. Drawing inspiration from the literature in this field, we introduce an improved A*
algorithm tailored for USV.

The cost function of the traditional A* algorithm is expressed as

f (n) = h(n) + g(n) (18)

where n is the n-th path point. g(n) represents the actual cost from the starting point to the
current path point, while h(n) represents the heuristic cost from the current point to the
endpoint, typically calculated using the Manhattan distance.

The A* algorithm exhibits two primary limitations: first, the planned path tends to
be dangerously close to obstacles, and second, the generated path may include straight
sections with sudden, sharp angle changes, rendering them unsuitable for direct application
in USV. Detailed principles and drawbacks can be found in Reference [41]. In addressing
these issues, the following improvement measures are proposed.

(1) To maintain a considerable distance from the edges of obstacles, the obstacle section of
the grid map is expanded by N grid cells. The choice of N is dependent on the resolution
of the map grid and the size of the USV. As depicted in Figure 4, the black region
represents the impassable obstacle area on the map, while the gray region represents an
outward extension from the obstacles that, if required, can be traversed. This strategy is
implemented to ensure that the path avoids approaching obstacles too closely.

(2) To ensure the smooth planning of a path, our approach draws inspiration from the
hybrid A* algorithm while considering the yaw rate of the USV. Simultaneously, we
introduce a fixed step size approach to determine the next path point. Different from
the traditional A* algorithm using adjacent grids as the next path point, the proposed
approach accelerates the speed of path search.
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Figure 4. Obstacle expansion example illustration.

As illustrated in Figure 5, the left side portrays the original A* search utilizing an
8-neighborhood, whereas the right side shows the modified search area. The blue vector
line represents the current yaw angle, and the two red vector lines represent the maximum
allowable change in yaw angle between adjacent path points. Discretization takes place
within this range, and the black vector lines serve as the search angle, contributing to the
creation of a smoother path. The distance between adjacent path points is represented by
the parameter step .

max

Figure 5. Enhanced search area conceptual diagram.

In the pursuit of both a smoother path and reduced steering, the improved cost
function is formulated as follows:

f (n) = h(n) + g(n) + α∆θ + extraCost (19)

where α denotes the penalty coefficient; ∆θ represents the angular difference between
adjacent path points. We can express ∆θ as ∆θ = θn+1 − θn, where θn and θn+1 are the
yaw angles of the n-th and (n + 1)-th path points, respectively. The range of θn+1 is
[θn − ∆θmax, θn + ∆θmax], where ∆θmax represents the variable representing the maximum
allowable yaw angle difference between neighboring path points. The term extraCost is
defined as the additional cost incurred when a path point traverses a grid cell. When the
cell is white, extraCost equals 0. When it is gray, extraCost is h(n)/2, and when it is black,
extraCost is inf.

(3) Generate a path with specified step length intervals and employ third-order B-
splines [42] for path optimization. This approach refines the path further to achieve
smoothness, enhancing its effectiveness for precise tracking.
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4. Simulation Experiment and Analysis

In the MPC simulation, a comprehensive analysis of various articles from the literature
and multiple path-following scenarios reveals a significant weakness in the turning capa-
bility of underactuated USVs. To tackle this challenge, four sets of simulated paths were
designed for underactuated USVs. These include a straight-line path (no turning scenario),
a circular path (small-angle turning scenario), an oblique turning path (moderate-angle
turning scenario), and a rectangular path (large-angle turning scenario), as depicted in
Figure 6.
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Figure 6. Four designed paths to track.

The hydrodynamic model data for the simulated USV in this study is obtained from
Reference [35]. Table 1 presents detailed parameters related to the USV and hydrodynamics
and crucial for Equation (5).

Table 1. Hydrodynamic parameters.

Parameter Value Parameter Value Parameter Value

m 23.8 Xu −0.723 Yr 0.25
Iz 1.76 X|u|u −1.327 Y|v|r −0.845
xg 0.046 Xuuu −5.866 Y|r|r −3.45
Xu̇ −2 Yv −0.89 N|r|v 0.13
Yv̇ −10 Y|v|v −36.473 Nr −1.9
Yṙ −0.0 Nv 0.031 N|v|r 0.08
Nv̇ −0.0 N|v|v 3.956 N|r|r −0.75
Nṙ −1 Y|r|v −0.805 B 0.22

The definition of reference states in various paths is as follows, where the order of
meaning for each variable is defined as XR = [x, y, ψ, u, v, r]T .

(1) For the straight-line path, the reference state is defined as XR = [0.1t, 0, 0, 1, 0, 0]T .
(2) For the circular path, the reference state is specified as XR = [4 sin(0.02t), 4(1 −

cos(0.02t)), 0.02t, 0.78, 0, 0.2]T .
(3) For the oblique turning path, the reference state for the straight-line segment re-

mains the same as (1). The reference state for the oblique path segment is defined as
XR = [4 + 0.1t, 4 + 0.1t, π/4, 1.414, 0, 0]T .

(4) For the rectangular path, the reference state for the straight-line segment remains
unchanged. The right vertical segment is defined as XR = [4, 4 + 0.1 · t, π/2, 1, 0, 0]T .
The remaining horizontal and vertical segments are mostly similar.

In each simulation, the starting time is set at t = 0. T represents the sampling period,
which is consistently chosen as 0.1 s. During the simulation process, there exists t = N · T,
where N denotes the number of simulation steps. To evaluate the influence of CPU
processors on the MPC solver, all subsequent experiments were carried out on different
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computers. One utilized an AMD Ryzen 7 5800H CPU (referred to as AMDR7), which is
produced by AMD in the United States, considered a standard CPU processor. The other
employed a 13th Gen Intel(R) Core(TM) i9-13900KF CPU (referred to as RTM9), which is
produced by Intel Corporation in the United States, a higher-end CPU. The simulation
based on MATLAB programming language was completed on Matlab R2022a , and the
simulation based on C++ programming language was completed on Vscode 1.36 using
C++11 standard libraries.

In the following explanations and discussions, unless explicitly specified as a fully
actuated USV, the subject is assumed to be an underactuated USV by default.

For subsequent simulation experiments, the default will be to run them on the RTM9
computer, unless specified otherwise for comparative experiments.

4.1. LMPC Simulation

The LMPC is parameterized with the following settings: a prediction horizon of Np = 20
and a control horizon of Nc = 19. The initial states for the USV simulation are specified as
x = [0, 0, 0, 0, 0, 0]T. The provided reference inputs are fur = 0 and trr = 0, with a maximum
input limit of umax = 400 and a maximum single-step increment of ∆umax = 100. The
solver employed in this configuration is the classical quadratic programming solver named
quadprog.

Upon conducting tests, it was noted that the weight matrices Q and R exhibited vari-
ations when tracking each type of path. Despite multiple manual adjustments to these
parameters, the tracking performance remained suboptimal. In response, the particle
swarm optimization (PSO) algorithm [43] was employed to search for the optimal param-
eters of the weight matrices. The Q-matrix is utilized to assess the importance of state
variables, implying that optimization solutions prioritize certain variables. Simultaneously,
the R-matrix constrains the magnitude of input changes. The optimization process in this
context concentrates on determining the optimal values for Q.

Given the paper’s emphasis on path following, the evaluation of actual tracking
performance depends on specific tracking positions in comparison to the reference path.
Consequently, the fitness function for the PSO algorithm is defined as follows:

f itness =
Nall

∑
i=1

√(
xi − xi

re f

)2
+

(
yi − yi

re f

)2
(20)

where Nall is the total number of all path points, xi and yi denote the coordinates of the
tracking position obtained in the i-th step, and xre f and yre f represent the coordinates of the
reference path point. The equation represents the sum of distances between the tracking
position and the actual reference position for each step.

4.1.1. Simulation of Underactuated USVs

After extensive simulation, it has been shown that placing a constant Q-matrix may
lead to suboptimal tracking performance on paths with varying shapes. Therefore, it is
necessary to adjust different parameters according to different paths. Finding the optimal
parameters through the PSO algorithm can significantly minimize the impact of parameters
on tracking performance. Table 2 presents the optimal weights for the four paths.

Table 2. Parameters matrices for four paths.

Path Type Q Matrix (Optimized by
PSO) R Matrix (Self Defined)

straight-line path diag[214, 411, 18, 21, 0.6, 6] diag[0.08, 0.08]
circular path diag[376, 452, 3, 12, 3, 5] diag[0.4, 0.4]

oblique turning path diag[283, 289, 36, 8, 2, 4] diag[2, 2]
rectangular path diag[466, 486, 50, 3, 0.2, 6] diag[2.4, 2.4]

diag means diagonal matrix.
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First, let us focus on the straight-line path and the simulation results.
As illustrated in Figure 7b, err-x represents the positional error in the x-direction be-

tween the current point and the reference path point. Similarly, err-y denotes the positional
error in the y-direction, while err-yaw is the yaw angle difference. Additionally, err-dist
corresponds to the Manhattan distance error. In the initial stage, the distance error in the x
direction first increases and then decreases toward 0. This phenomenon arises because the
initial velocity of the USV is 0, while the reference velocity is 1. Hence, during the initial
stage, the actual state of the USV tends to lag behind the reference state. With the thrusters
exerting force on the hull, the velocity of the USV gradually increases, eventually aligning
with the reference state. It is evident that LMPC achieves fast and accurate tracking of
the straight-line path according to Figure 7a. In Figure 7c, both thrusters apply identical
forces since the reference path does not require turning and the input changes smoothly.
Figure 7d reveals that the solving time is approximately 35 ms per step.
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Figure 7. Diagrams of straight-line path following based on LMPC. (a) path following performance
graph; (b) error charts for key performance indicators; (c) actual input for the USV’s Tport and Tstbd;
(d) time taken for each step of computation.

Next, we show the simulation results for circular paths. As detailed in Table 2, we
have adopted a larger R matrix to minimize input oscillations. This is advantageous when
navigating paths with frequent turns, ensuring smoother inputs of thrusters.

Figure 8a,b reveal that the underactuated USV exhibits suboptimal performance
in LMPC when navigating circular paths, with a maximum error of approximately 0.3
m. While the basic shape meets requirements, the actual accuracy is relatively low due
to position and velocity errors induced by the underactuated USV’s sway during the
turning process. The reference position and speed deviate significantly from the current
state, particularly concerning the sway, denoted as v. The expected value (reference
value) of v is 0, but in practical operation, the underactuated USV’s v is nonzero. The
approximate expansion of Equation (6) at the reference point introduces errors, and these
errors accumulate as the turning progresses, resulting in unsatisfactory continuous tracking
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performance. Figure 8c,d represent the two thruster inputs of the USV and the computation
time for each round of MPC solver, respectively.
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Figure 8. Diagrams of circular path following based on LMPC. (a) Path following performance graph;
(b) error charts for key performance indicators; (c) actual input for USV’s Tport and Tstbd; (d) time
taken for each step of computation.

Subsequently, we present the results for the remaining two groups of path following.
From Figure 9, it is apparent that the tracking performances of the oblique turning

path and the rectangular path are inferior. The maximum error in the oblique turning path
is approximately 1 m in Figure 9a, and the maximum error in the rectangular path is about
1.8 m in Figure 9b. This phenomenon is due mainly to the underactuated USV’s inability
to execute instantaneous turns during abrupt and excessive turning angles, resulting in
positional and velocity errors. Simultaneously, as the turning angle increases, the disparity
between the expected state and the actual state at that moment amplifies. This leads to a
larger error when Equation (4) is applied at the reference point, consequently diminishing
the effectiveness of steering control for larger angles. To optimize paper space, error
diagrams, input diagrams, and computation time diagrams will not be provided.

After numerous tests and simulations, it was observed that the time spent in each
simulation varies, which is considered a normal occurrence. Figure 10 illustrates the time
required to attain a circular path on two different computers. Under RTM9, the average
time spent per simulation ranges from approximately 35 to 45 ms, whereas under AMDR7,
the average time is approximately 85 to 100 ms, slowing down the solving speed by about
twice. It can be seen that the performance of the CPU has a certain impact on the running
speed of the program.
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Figure 9. Path following based on LMPC: two additional paths. (a) Oblique turning path; (b) rectan-
gular path.
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Figure 10. Comparison of time consumption for different CPUs.

In summary, this proves LMPC to be unfit for underactuated USVs for two primary
reasons. First, the linearized nonlinear model inherently introduces inaccuracies, and the
v of the underactuated USV remains uncontrollable, resulting in a gradual accumulation
of errors. As a consequence, the actual control outcomes deviate significantly from the
expectations. Second, the optimal weight matrices necessary for different path types vary,
and the provided weight matrices Q and R are not universally applicable.

4.1.2. Simulation of Fully Actuated USV

This section is designed to provide stronger support for the earlier viewpoint that
LMPC is not fit for controlling underactuated USV. Under the consideration of the in-
frequent utilization of fully actuated USVs, this section primarily presents simulation
results for the path tracking performance of fully actuated USVs based on LMPC, without
extensively exploring the topic.

As depicted in Figure 2, a fully actuated USV can generate lateral thrust with a specific
input. The uniform use of the basic weight matrix is maintained, with Q = diag [94, 105, 29,
5, 2, 1] and R = diag [0.5, 0.5, 0.5]. The other simulation conditions are identical to those in
Section 4.1.1, with the addition of an extra control variable. Figure 11 illustrates the specific
effect. Figure 11a–d represent the four preset path tracking effect diagrams. The evidence
indicates that LMPC exhibits superior control when the USV is fully actuated. While the
precision may not reach exceptionally high levels, it represents a significant improvement
compared to the underactuated scenario. This observation further supports the idea that
LMPC is not fit for the control of underactuated USVs.
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Figure 11. The path following performance graph of fully actuated USVs. (a) Straight-line path;
(b) circular path; (c) oblique turning path; (d) rectangular path.

4.2. NMPC Simulation

Narrowing down our focus to underactuated USVs, it is important to note that NMPC
exhibits high precision and can yield effective results for underactuated USVs. Therefore,
in our simulations, we exclusively explore scenarios involving underactuated USVs and do
not consider fully actuated USVs.

4.2.1. NMPC Based on Fmincon Solver

The fmincon solver serves not only as a nonlinear planner within MATLAB but also as
a widely adopted tool among scholars for studying NMPC due to its ability to efficiently ad-
dress nonlinear programming problems. The simulation parameters include a predicted time
domain, Np = 20, and a controlled time domain, Nc = 19, and NMPC exhibits relatively stable
parameter universality. Control weights are set to Q = diag[30000,30000,1000,0.1,0.1,1000] and
R = diag[0.5,0.5]. The maximum input is 400. The simulation employs the same computer
hardware as LMPC.

Given that the straight path is the simplest path, specific simulation results for this
case will not be provided here.

In Figure 12, the path following performance of underactuated USVs based on NMPC
appears highly satisfactory. Beyond the initial error, subsequent errors gradually converge
and diminish, resulting in an overall commendable outcome. In Figure 12b, the specific
error representation of Figure 12a illustrates that the tracking error distance stabilizes within
0.1 m. Figure 12c,d represent the two thruster inputs of the USV and the computation
time required for each round of the MPC solver, respectively. However, regarding the yaw
angle, there is a notable deviation from the expected value. This discrepancy is attributed
to the underactuated characteristics of the USV, leading to sideslip. A detailed graphical
representation is provided below.



J. Mar. Sci. Eng. 2024, 12, 575 17 of 26

-5 0 5
X-axis

0

2

4

6

8

Y
-a

xi
s

desired path
real path

(a)

0 5 10 15 20 25 30 35
-0.2

0
0.2

er
r-

x

0 5 10 15 20 25 30 35
-0.2

0
0.2

er
r-

y

0 5 10 15 20 25 30 35
-0.2

0
0.2
0.4

er
r-

ya
w

0 5 10 15 20 25 30 35
time (seconds)

-0.1
0

0.1
0.2

er
r-

di
st

(b)

0 5 10 15 20 25 30
time (seconds)

0

20

40

60

80

N

Tport
Tstbd

(c)

0 50 100 150 200 250 300 350
step

20

40

60

80

100

120

tim
e 

(m
s)

(d)

Figure 12. Diagrams of circular path following based on NMPC. (a) Path following performance
graph; (b) error charts for key performance indicators; (c) actual input for USV’s Tport and Tstbd;
(d) time taken for each step of computation.

In Figure 13, it is evident that in the body-fixed coordinate system, the yaw angle of
the underactuated USV aligns with the velocity u, depicted as a blue vector line in the
figure. However, there is a green vector solid line in the velocity v diagram perpendicular
to the heading angle, and the sum of these vectors yields the course angle. This aligns with
the red vector solid line in the figure, representing the tangent of the circle and the true
direction of the USV’s motion. In an ideal state, the USV should not experience sideslip,
ensuring that the heading angle, yaw angle, and course angle align. The existence of
sideslip velocity v introduces inconsistency between the yaw angle and the true direction of
motion. If the USV is fully actuated, then the lateral thruster can eliminate v, allowing only
the surge to drive the USV. In such an ideal state, the yaw angle and course angle of the
USV coincide. Figure 12c illustrates the input throughout the entire movement, adhering to
the predefined maximum range. The solver for each step is time consuming, employing the
forward Euler method to solve the differential equation. The average time consumption is
approximately 75∼95 ms, indicating a longer processing time compared to LMPC. Here
are the path following visualizations for the other two paths.

As depicted in Figure 14, NMPC continues to exhibit robust adaptability to under-
actuated USVs. Figure 14a,b show the tracking effects of oblique and rectangular paths,
respectively. Notably, even when confronted with an oblique turning path or a rectangular
path, the incurred errors remain minimal. The partially enlarged image provides a closer
view, showing the details and the superior tracking performance of NMPC.
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Figure 13. Motion analysis in the turning process of USV.
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Figure 14. Path following based on NMPC: two additional paths. (a) Oblique turning path; (b) rect-
angular path.

The aforementioned simulation tests were conducted using the RTM9 processor and
the forward Euler method. To facilitate a comparative analysis of solution times, the
corresponding simulation data for the AMDR7 processor and the fourth-order Runge–
Kutta method are presented below. The ultimate path following results across different
methods are essentially identical; for brevity, we focus solely on comparing solution times.

Figure 15 presents experimental data obtained from tests conducted on computers
equipped with RTM9 and AMDR7 CPUs, respectively. For the RTM9 processor, the average
time required for each step using the forward Euler method is 80 ms, while the average
time required for the fourth-order Runge–Kutta method is approximately 120 ms. On the
contrary, for the AMDR7 processor, the average time for each step using the forward Euler
method is 180 ms, while the average time for the fourth-order Runge–Kutta method is
approximately 260 ms. Therefore, if precision requirements are not stringent, the forward
Euler method proves to be a more favorable choice. Moreover, it is noteworthy that a
superior CPU has a certain impact on the realization of real-time NMPC.

In MPC, the control horizon Nc and the prediction horizon Np are two parameters
that require attention. Nc represents the number of control inputs computed at each
time step, but MPC typically uses only the first control input for each step, so Nc has a
minimal impact on the control performance. For convenience in programming, Nc is often
set to Nc = Np − 1. On the other hand, Np represents the number of steps forward in
the prediction horizon and has a significant impact on the control performance. Specific
simulation results for comparison are shown in Figure 16.



J. Mar. Sci. Eng. 2024, 12, 575 19 of 26

0 50 100 150 200 250 300
step

50

100

150

200

250

300

350
tim

e 
(m

s)

Forward Euler Method(AMDR7)
4th Order Runge-Kutta Method(AMDR7)
Forward Euler Method(RTM9)
4th Order Runge-Kutta Method(RTM9)

Figure 15. Two different methods and CPUs: computation time comparison ( f mincon solver with
MATLAB programming language).
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Figure 16. Tracking results under different parameters Np.

We designed five sets of comparative experiments for different prediction horizons Np,
with Np gradually increasing from 10 to 30 with an interval of 5. The results show that the
control performance gradually improves as Np increases. However, when Np reaches 20,
further increasing Np has diminishing effects on control performance improvement. The
average solution time for each step of these 5 experiments is 35 ms, 56 ms, 83 ms, 103 ms,
and 113 ms, respectively. It can be observed that as the prediction horizon increases, the
computational time required per step also increases. Therefore, finding a balance between
control performance and computational efficiency is crucial.

4.2.2. NMPC Based on CasADi Solver

The preceding discussion introduces NMPC based on the fmincon solver, revealing
an average solution time of approximately 80 ms per step. This time frame may pose
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challenges for real-time control applications, where control cycles are typically set at 0.1 s
or even shorter, such as 0.05 s or 0.01 s. Although a control cycle of 0.1 s may suffice for
non-high-precision control tasks, the time required for the solver to compute the optimal
control inputs becomes a crucial factor in determining the adaptability of this algorithm for
real-time control. The observed characteristics indicate that the fmincon solver, as described
above, may not be well-suited as a real-time solver for NMPC.

Here is an introduction to the CasADi solver [44]. CasADi is an open-source software
tool designed for general numerical optimization, with a particular emphasis on optimiza-
tion control, involving differential equations. The performance of this NMPC using the
CasADi solver is outstanding, as demonstrated in the following results. With the CasADi
solver, the weight matrix is set to Q = diag[600, 600, 30, 0.1, 0.1, 0.1] and R = diag[0.05, 0.05].
Next, we focus on its solving efficiency.

As shown in Figure 17, the CasADi solver surpasses the f mincon solver when applied
to the same problem. Through extensive testing under the RTM9 CPU, it was observed
that the forward Euler method requires approximately 5 ms on average, whereas the
fourth-order Runge–Kutta method consumes around 7 ms, resulting in a marginal 2 ms
difference. Conversely, under the AMDR7 CPU, the forward Euler method averages about
9 ms, while the fourth-order Runge–Kutta method consumes approximately 13 ms, again
exhibiting a 4 ms difference. In comparison to Figure 15, the fmincon solver requires a
substantial amount of time to compute the optimal control inputs. On the other hand, the
CasADi solver exhibits a shorter and more stable computation time, avoiding significant
fluctuations in the solution time.
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Figure 17. Two different methods and CPUs: computation time comparison (CasADi solver with
MATLAB programming language).

An interesting observation is that, in the initial stage, the CasADi solver typically
exhibits the longest processing time. This phenomenon arises from the fact that, during the
initial phase, an arbitrary initial value is assigned to the optimal solution. Consequently,
the solver needs to iterate until it reaches the predefined accuracy when solving. Then, we
use the values of the optimal control sequence obtained within the preceding Nc control
time domains as the initial values for the next solver, thereby accelerating the solver’s
computational speed.

In practical engineering applications, programs recorded in hardware or control
programs for host computers are frequently coded using the C++ language, known for its
swift execution speed. To align with real-world scenarios, the NMPC algorithm has been
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implemented in the C++ language, and its runtime performance has been reevaluated. The
results are presented in Figure 18.
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Figure 18. Two different methods and CPUs: computation time comparison (CasADi solver with
C++ programming language).

Figure 18 illustrates that programming in C++ can notably enhance the computational
speed of the NMPC solver. Even with a standard AMDR7 processor, both methods can
complete the solution within 10 ms. With a high-performance CPU, the solution time using
the forward Euler method remains stable at approximately 3 ms, and the more complex
fourth-order Runge–Kutta method also stabilizes at 5∼6 ms, demonstrating rapid execution
and significant potential for real-time applications.

The following table summarizes the computation time for various methods, CPUs,
solvers, and programming languages. The data represent an approximate average derived
from multiple tests, as presented in Table 3.

Table 3. Comparison of computation time across various scenarios: a summary table.

CPU Solver Language FEM (ms) RKM (ms)

AMDR7
fmincon MATLAB 180 260
CasADi MATLAB 9 13
CasADi C++ 6 8.8

RTM9
fmincon MATLAB 80 120
CasADi MATLAB 5.3 7.1
CasADi C++ 3.2 5.5

FEM means forward Eular method. RKM means fourth-order Runge–Kutta method.

Although our simulation experiments have yielded good results, there are still some
potential limitations of NMPC that need to be considered. In particular, there are concerns
regarding the computational demands. Our simulations were conducted in a controlled
laboratory environment, while the actual operating conditions of USVs are on open water,
which may impose certain constraints on the CPU performance and slow down the solu-
tion speed. To address this, considering a solving mechanism based on event-triggered
approaches may alleviate the computational demands to some extent.
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4.3. Actual Path Following Testing Based on NMPC

In Section 3.3, we introduce an improved A* algorithm, and its efficacy will be demon-
strated and tested in conjunction with NMPC. The parameters are set as step = 2, α = 10,
and ∆θmax = π/5, indicating that the maximum angle difference between adjacent nodes
is π/5. The initial and goal positions are set to (8, 8) and (80, 80), respectively, and the
initial point’s orientation is set to 0 degrees. After testing, the improved A* algorithm
produced 69 path points. The overall count of path points increased to 667 after B-spline
optimization.

In the subsequent path following, the calculation approach for the reference state
XR = [xr, yr, ψr, ur, vr, rr]T is outlined below.

ψk
r = arctan
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r

xk
r−xk−1
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uk
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+

(
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r

)2
/T

vk
r = 0

rk
r =

(
ψk

r − ψk−1
r

)
/T

(21)

where (·)k
r represents the reference state of the k-th path point and k = 2, 3, · · · , 667. Both

xr and yr are derived from the path points optimized by B-spline.
In Figure 19, the original A* algorithm produces a path that closely adheres to the

obstacle, resulting in a steep turn that is impractical for the robot to track. Conversely, the
path generated by the improved A* algorithm overcomes these limitations, as denoted by
the blue dashed line, presenting a smoothly turning path that adheres to specified turning
constraints. The path further undergoes B-spline smoothing, depicted by the dashed red
line, which essentially aligns with the blue dashed line, indicating that the unsmoothed path
also exhibits good feasibility. The locally enlarged image along the path demonstrates that
B-spline smoothing provides additional compensation for occasional lack of smoothness in
specific locations.
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Figure 19. Original and improved paths of the A* algorithm.

Analyzing Figure 20a, it is evident that the USV controlled by NMPC achieves com-
mendable following performance on the planned path. Simultaneously, examination of
the velocity curve presented in Figure 20b reveals that the USV stabilizes at approximately
2 m/s during the intermediate stage. As the USV approaches the goal position, its velocity
u gradually decreases. Figure 20c illustrates the input signals, indicating relatively smooth
inputs that adhere to the defined constraints. Figure 20d illustrates the solver’s solving
time throughout the simulation process, revealing that each round of solving consistently
remains below 10 ms. This demonstrates a notably fast computational performance.
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Figure 20. Diagrams of path following generated by improved A* based on NMPC. (a) Path following
performance graph; (b) path following velocity graph; (c) actual input for USV’s Tport and Tstbd;
(d) time taken for each step of computation.

5. Conclusions and Discussion

In this paper, the theory and simulation experiments of LMPC and NMPC were
thoroughly analyzed and discussed. The following conclusions are drawn from the study.

(1) In the context of underactuated USV control, we conducted a detailed comparative
analysis of various paths in this paper. The findings clarify the reasons why LMPC is
unfit for underactuated USV control and suggest that NMPC is the better choice.

(2) In addressing real-time concerns, this paper extensively discussed the performance
of NMPC under varying solvers, CPUs, and programming languages. Utilizing the
CasADi solver with C++ as the programming language, the paper showed that even
with a standard CPU, NMPC achieved a solution speed within 10 ms. In conclusion,
the study affirms the potential of NMPC for real-time control applications.

(3) For the universality of NMPC, we conducted simulations across a range of paths to
support this perspective. Ultimately, the improved A* algorithm was employed to
generate paths for testing, demonstrating its efficacy in achieving robust path following.

The path tracking based on NMPC and path planning based on the improved A*
algorithm proposed in this study have important practical significance and application
value. First, the path tracking method based on NMPC can assist USVs in accurately
following predefined paths during mission execution. By performing online optimization
of control inputs, the USV can dynamically adjust its heading and speed in order to stay
on the desired path and reduce deviations. This is particularly important for applications
that require high-precision positioning and navigation, such as ocean mapping and the
detection of waterborne targets. Second, the path planning method based on the improved
A* algorithm can help USVs find optimal paths in complex environments. By considering
obstacles, environmental constraints, and mission objectives, the A* algorithm can generate
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a safe and efficient path that enables the USV to navigate successfully. This is especially
useful for applications that involve operating in congested or hazardous areas, such as
harbor patrols and maritime rescues.

In the future, it is hoped that NMPC can become a popular control algorithm for underac-
tuated USVs. However, NMPC relies on the precise mathematical model of an underactuated
USV. Therefore, modeling an underactuated USV is an important research work.
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