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Abstract: Mesoscale eddies are common in global oceans, playing crucial roles in ocean dynamics,
ocean circulation, and heat transport, and their vertical structures can affect the water layers from tens
to thousands of meters. In this study, we integrated sea surface height and sea surface temperature
data into deep learning methods to study the mesoscale eddy subsurface temperature structure and
to explore the relationship between sea surface data and eddy subsurface layers. In this study, we
introduce Dual_EddyNet, a deep learning algorithm designed to invert the subsurface temperature
structure of mesoscale eddies. Using this algorithm, we explore the impact of the sea surface height
and sea surface temperature on the subsurface temperature structure inversion of mesoscale eddies.
Furthermore, we compare different data fusion strategies, namely single-stream neural networks and
dual-stream neural networks, to validate the effectiveness of the dual-stream model. To capture the
interrelations among surface data and integrate feature information across various dimensions, we
introduce the Triplet Attention Mechanism. The experimental results demonstrate that the proposed
Dual_EddyNet performs well in reconstructing the three-dimensional structure of mesoscale eddies
in the South China Sea (within a depth of 1000 m), with an inversion accuracy of 91.44% for cyclonic
eddies and 95.25% for anticyclonic eddies. This algorithm provides a new method for inverting
the subsurface temperatures of mesoscale eddies, and can not only be directly deployed in systems,
embedded in ship moving platforms, etc., but can also provide a data reference for assimilations and
numerical simulations, demonstrating its rich application potential.

Keywords: mesoscale eddies; temperature structure; deep learning

1. Introduction

The South China Sea is a vital marginal sea in the Pacific region, holding significant
geographical importance. Mesoscale eddies, a common oceanic phenomenon, play a crucial
role in heat transfer and nutrient transport in the South China Sea [1]. Typically, mesoscale
eddies can survive for several days or even years, with spatial scales ranging from tens
to hundreds of kilometers. In the vertical dimension, they exhibit nonlinear and isolated
features, with their influence extending to depths of several kilometers [2]. Based on
their rotational direction and vorticity, mesoscale eddies can be categorized as cyclonic
eddies (CEs) or anticyclonic eddies (AEs) [3,4]. In the northern hemisphere, cyclonic
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eddies, also known as cold-core eddies, transport cold water from the lower to the upper
layers, resulting in lower temperatures within the eddy. Anticyclonic eddies, on the other
hand, transport warm water from the upper layers to the lower layers, causing higher
temperatures within the eddy compared to the surrounding ocean [5]. Mesoscale eddies
contain a significant portion of the kinetic energy of overall ocean circulation, accounting
for 80% to 90% or more [6]. Their motion generates upwelling, transporting nutrients
from the ocean’s subsurface to the thermocline, which is indispensable for transferring
nutrients, organic salts, heat, and energy [7]. Mesoscale eddies influence parameters such
as the sea surface temperature (SST), sea surface salinity (SSS), and sea surface height
(SSH) in upper ocean layers, consequently affecting ocean circulation and ecosystems [8].
They lead to anomalies in sea surface temperature, altering turbulent heat flux, sea surface
wind speed, divergence, cloud cover, and precipitation and thereby giving rise to distinct
three-dimensional spatial structures. Mixing at mesoscale eddy fronts and its effect on
the advection of particles impact the ocean chemistry and biological environment in local
areas, which has significant implications for fisheries, military operations, and the marine
ecosystem. Therefore, the study of mesoscale eddies, particularly their subsurface aspects,
should not be overlooked.

In recent years, high-resolution remote sensing data have rapidly evolved, becoming
essential in various fields such as oceanography and meteorology. However, by relying
solely on remote sensing data, only surface-level analyses can be performed, failing to
directly detect information within the ocean. Compared to remote sensing observations,
in situ oceanographic data, such as Argo data, offer insight into the sea’s subsurface
profiles. Several researchers have conducted studies on subsurface structure inversion.
For instance, Hu et al. [9] analyzed a cyclonic eddy near the Vietnamese coast using
extensive CTD observational data, examining its three-dimensional structure from the
sea surface to a depth of 500 m, and found that the axis of the eddy tilts southwestward
with depth. Dong et al. [10] utilized a regional ocean model (ROMS) to analyze mesoscale
eddies in the Southern California Bight, defining three shapes of eddies: bowls, convex
lenses, and cones. Jeong et al. [11] estimated the ocean subsurface temperature (OST)
using a multivariate linear regression model and analyzed the characteristics of global sea
surface temperature anomalies (SSTAs) and mixed layer depths. Ali et al. [12,13] employed
a back propagation (BP) neural network method combined with satellite observational
data from the Arabian Sea system, such as SST, SSH, wind stress, net radiation, and
heat flux data, to estimate ocean temperature profiles. Su et al. [14,15] proposed using a
support vector machine method and satellite sea surface observational data to estimate
subsurface temperature anomalies (STAs) for over 1000 m in the Indian Ocean. They
subsequently used Argo and satellite sea surface data to estimate the ocean temperature
structure through a random forest (RF) approach. Han et al. [16] introduced a convolutional
neural network that integrates multiple surface parameters, including the SST, SSH, and SSS,
to construct monthly Pacific subsurface temperature structures, improving the subsurface
temperature structure inversion accuracy. Cosne et al. [17] used unsupervised methods to
investigate local ocean currents in the North Atlantic Ocean, characterizing local regression
relationships between the sea surface temperature, sea surface anomalies, and vertical
temperature fields. Chen et al. [18] proposed an improved deep neural network that
estimates the vertical profile of the chlorophyll-a concentration using multilayer perceptron
and Gaussian activation functions, achieving inversion from surface ocean data to the
subsurface. Yu et al. [19] introduced the ECN convolutional neural network algorithm
to invert the temperature structure of mesoscale eddies in the northwest Pacific Ocean,
achieving accuracy rates of 89.64% for cyclonic eddies and 87.25% for anticyclonic eddies.
Xie et al. [20] proposed an Attention U-net model to establish a subsurface salinity field in
the South China Sea based on satellite data and Copernicus reanalysis data.

Overall, in situ ocean data such as Argo are often used in ocean subsurface studies, but
they encounter problems related to uneven spatiotemporal distributions, discontinuities,
and low spatial resolutions, and do not fully meet the requirements for understanding the



J. Mar. Sci. Eng. 2024, 12, 723 3 of 20

internal dynamics of mesoscale eddies [21,22]. Dynamic methods mainly rely on numerical
simulations, dynamic models, and other forms to construct three-dimensional mesoscale
eddy structures, which have certain drawbacks such as requiring significant computational
resources and depending on expert experience [23,24]. While numerical simulations like
ROMSs have certain advantages, data assimilation models are susceptible to initialization
and uncertainty factors. Additionally, these models can be complex and computationally
intensive. Existing statistical methods do not fully leverage the features of ocean surface
data; they often are limited, only use single features, and exhibit relatively poor nonlinear
fitting capabilities. Consequently, they fail to fully harness the data, leaving significant
room for improvements in accuracy [21]. Deep learning possesses certain advantages. It
allows for the separation of training and inference stages, rendering it more convenient
for application on edge platforms with limited computational power. Additionally, it can
flexibly analyze small regions without the need for boundary conditions. Moreover, deep
learning requires fewer computational resources and facilitates easy transfer learning with
new data, eliminating the need for re-simulation. Deep learning technology has been widely
used in oceanography and has made some progress, such as in the inversion of oceanic
subsurface structures [25]. However, the study of the three-dimensional morphology of
mesoscale eddies remains a challenge due to their susceptibility to factors such as the
topography, their more complex physical characteristics, and the need for more detailed
spatial observational data [26].

Based on the above issues, in this article, a dataset is constructed for the inversion
of mesoscale eddy subsurface structures based on Copernicus reanalysis data. Recog-
nizing the complex dynamic processes and nonlinear characteristics within mesoscale
eddies [27,28], we propose a deep learning approach that integrates SSH and SST data to
achieve the inversion of the three-dimensional temperature structure of mesoscale eddies.
The algorithm presented in this study was used to investigate the impact of the SST and
SSH on the inversion of the subsurface temperature structure of mesoscale eddies. Further-
more, we explored different data fusion strategies, including single-stream neural networks
and dual-stream neural networks, validating the effectiveness of the dual-stream model.
To fully exploit the value of the data, we introduced the Triplet attention mechanism to
enhance the inversion accuracy and integrated feature information from different input
dimensions. The proposed algorithm successfully reconstructed the three-dimensional
temperature structure of the mesoscale eddies in the South China Sea (within a depth of
1000 m). The accuracy of cyclonic eddy inversion reached 91.44% in experiments, while
the anticyclonic eddy inversion accuracy reached 95.25%. This study opens up a new per-
spective using artificial intelligence. Unlike numerical simulation methods, this algorithm
has advantages such as a fast speed and low computational power consumption. If trained
well enough, it can even surpass traditional methods. In this study, the Dual-EddyNet
algorithm is proposed as a deep learning technique to enable data-driven inversion of
the subsurface temperature of mesoscale eddies. This algorithm can quickly obtain sub-
surface temperature information using input sea surface parameters without the need
for manual intervention. This method can be used as a standalone tool to predict the
temperature of the subsurface layer of mesoscale eddies in the South China Sea in systems
such as moving shipping platforms, ocean detection devices, ocean monitoring systems, etc.
Deep learning methodologies can additionally provide initialization data for traditional
numerical simulations and similar approaches. With sufficiently refined training, the deep
learning model may even surpass and supplant conventional assimilation and numerical
simulation techniques. Therefore, this algorithm has good application potential. The main
contributions of this research include:

(1) We construct a dataset for the inversion of the subsurface temperature structure of
mesoscale eddies by combining SSH, SST, and subsurface temperature reanalysis data.
This dataset offers practical support, particularly for studying mesoscale eddies in the
South China Sea.
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(2) Using a data-driven approach and deep learning technology, we build a network
(Dual_EddyNet) that establishes the relationships between the sea surface and subsur-
face, incorporating multiple sources of sea surface data. As a result, we reconstruct
the three-dimensional temperature field of mesoscale eddies within a depth of 1000 m
in the South China Sea, significantly improving the inversion accuracy.

(3) Based on the proposed Dual_EddyNet method, we investigate the trends in the
three-dimensional temperature fields at different depths for cyclonic and anticyclonic
mesoscale eddies in the South China Sea, with a focus on the impact of the SST
and SSH.

2. Data and Data Preprocessing
2.1. Data

Sea surface height, sea surface temperature, and temperature profile data were used
in this study to construct a three-dimensional temperature field dataset for the South
China Sea (0–30◦ N, 105–130◦ E), with a horizontal resolution of 0.25◦ × 0.25◦ and a
vertical depth range of 0–1000 m, comprising a total of 36 layers. The mesoscale eddy
identification information used here was taken from Archiving Validation and Interpola-
tion of Satellite Oceanographic (AVISO) (https://www.aviso.altimetry.fr/en/home.html,
accessed on 22 April 2024) and the altimetric Mesoscale Eddy Trajectory Atlas prod-
uct (META3.2 DT [29], https://www.aviso.altimetry.fr/en/data/products/value-added-
products/global-mesoscale-eddy-trajectory-product.html, accessed on 22 April 2024). This
dataset includes the latitude, longitude, radius, and amplitude of mesoscale eddies, up-
dated from 1993 to the present, with a spatial resolution of 0.25◦ × 0.25◦ and a daily
temporal resolution. This dataset can identify eddies with diameters ranging from 100 to
300 km, and the identification method is based on Absolute Dynamic Topography (ADT).

The sea surface parameters used in this study include the SSH and SST, sourced
from the Copernicus Marine Data Store website (https://resources.marine.copernicus.eu,
accessed on 22 April 2024), which is part of the Copernicus Marine Environment Monitoring
Service (CMEMS). The data product is Global Ocean Physics Reanalysis with data ID
GLOBAL_MULTIYEAR_PHY_001_030 from CMEMS global ocean eddy resolving. The
spatial resolution is 0.083◦ × 0.083◦ with a daily temporal resolution, covering the period
from 1993 to 2020.

Currently, in the inversion of the subsurface structure of mesoscale eddies, profile
data are typically based on Argo data [30,31]. However, there are issues with low spatial
resolutions, sparse data coverage, and a lack of continuity. This study used reanalysis data
as a substitute for Argo data to address this issue. The Global Ocean Physics Reanalysis
data product includes ocean profile temperature data. In this experiment, the subsurface
temperature profiles of the mesoscale eddies were taken from this dataset, which consists
of 75 vertical levels with a vertical depth of up to 1000 m. In this study, the first 36 layers of
data were selected. The data information used in this study is presented in Table 1.

Table 1. Data description.

Dataset Source Variable Temporal
Resolution

Spatial
Resolution Time Period

META 3.2 DT AVISO latitude, longitude,
time amplitude Daily 0.25◦ × 0.25◦ 1 January 1993–9

February 2022

Reanalysis data Copernicus
SSH, SST,

temperature
profile

Daily 0.083◦ × 0.083◦ 1 January 1993–26
December 2023

2.2. Data Preprocessing

Critical information, including the coordinates, radius, and time of the eddy center,
was extracted from the mesoscale eddy dataset provided by AVISO, and separate datasets

https://www.aviso.altimetry.fr/en/home.html
https://www.aviso.altimetry.fr/en/data/products/value-added-products/global-mesoscale-eddy-trajectory-product.html
https://www.aviso.altimetry.fr/en/data/products/value-added-products/global-mesoscale-eddy-trajectory-product.html
https://resources.marine.copernicus.eu
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were constructed for cyclonic and anticyclonic eddies. A relationship mapping was estab-
lished based on the eddy center coordinates, time, sea surface data, and subsurface profiles.
Subsequently, the mesoscale eddy subsurface temperature samples were divided based on
temperature profile information to form a comprehensive sample library.

The process of constructing this sample library is shown in Figure 1; the specific steps
are as follows:

(a) The South China Sea region (0–30◦ N, 105–130◦ E) is selected. Critical information,
such as the coordinates and time of the eddy center, is extracted from the AVISO
mesoscale eddy dataset and separate cyclonic and anticyclonic eddy datasets.

(b) The corresponding sea surface position coordinates are identified based on the eddy
center coordinates and time. A 4 × 4 matrix is defined with the coordinates as the
center, and sea surface information (SSH and SST) is extracted from the Copernicus
reanalysis data within the specified region, establishing the relationship mapping
between mesoscale eddies and the sea surface.

(c) Subsurface temperature profile information is obtained within the corresponding
region from the Copernicus reanalysis data. We select the first 36 layers of data
(0–1000 m) as the ground truth data.
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During this process, it is necessary to ensure the spatiotemporal consistency of the two
sets of data. The two datasets are divided into the same grid system and processed at a uni-
fied resolution. The data are preprocessed using linear interpolation to achieve a uniform
resolution of 0.25◦ × 0.25◦. At the same time, in order to ensure that the two datasets are
obtained from the same eddy, filtering is also performed. Using the automatic eddy current
detection algorithm (py-eddy-tracker, PET), all vortices in Copernicus reanalysis data are
simply partitioned and cyclonic and anticyclonic eddies are classified. Simultaneously, a
threshold of 1◦ is set to filter out all vortices from the two datasets whose eddy deviation
does not exceed this threshold. Ultimately, separate three-dimensional temperature inver-
sion datasets for cyclonic and anticyclonic eddies are constructed. Figure 1 illustrates the
data processing flowchart.

In this study, we focus on mesoscale oceanic eddies of the South China Sea during
the five-year period from 2016 to 2020. The data were collected daily, and they consist of
146,630 cyclonic samples and 154,715 anticyclonic samples. The training data consist of
88,495 cyclonic samples and 92,754 anticyclonic samples from 2016 to 2018. The validation
set consists of 29,174 cyclonic validation samples and 30,275 anticyclonic validation samples
from 2019. The test set consists of 28,961 cyclonic test samples and 31,686 anticyclonic test
samples from 2020.

3. Method
3.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) use convolutional operations to extract fea-
tures, map data to a high-dimensional feature space, and achieve feature regression [32,33].
They usually consist of convolutional layers, pooling layers, and fully connected layers.
Convolution, as an important component, utilizes convolution operations to achieve feature
extraction. The convolutional layer utilizes multiple different convolutional kernels to
slide the receiver field, and a sliding window performs local calculations on the input data.
Through weight sharing and local connection operations, the model’s parameter count is
reduced and its generalization ability is improved. All local connections of each filter in
weight sharing use the same parameters, which can greatly reduce the network parameters
and is suitable for sharing duplicate features. Additionally, it has a high processing effi-
ciency for high-dimensional data and can automatically extract some advanced features,
reducing the time for feature engineering. Shallow neural networks will acquire more
local and general features, and as the network deepens, they will acquire deeper and more
concrete features [34]. In this study, we use convolutional neural networks to construct a
model in order to capture the temperature characteristics of the subsurface layer.

The U-net network [35], as shown in Figure 2a, is a mainstream convolutional neural
network and has received widespread attention in fields such as semantic segmentation.
This model includes an encoding and a decoding stage. The encoding stage is mainly
used for backbone feature extraction, utilizing convolutional layer stacking to effectively
obtain deep information. In the decoding stage, feature extraction is strengthened, and
the features obtained in the encoding stage are fused to combine the effective information
from both stages. The U-net network has been widely used in the field of remote sensing
due to its simplicity and efficiency. Xie et al. [20] and Liu et al. [36] have both adopted
this convolutional network in the field of ocean remote sensing, verifying its effectiveness.
However, the U-net Attention method proposed by Xie et al. was not targeted at mesoscale
eddies; they constructed an ocean model to generalize and estimate mesoscale eddies,
losing a certain degree of robustness. The attention mechanism used here is the CBAM [37]
method, as shown in Figure 2b, which takes into account the correlation and interaction
between sea surface parameters.
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3.2. The Overall Architecture of the Model

The method proposed in this study is a data-driven deep learning algorithm called
Dual_EddyNet, based on an encoder–decoder structure, as shown in Figure 3a. It consists
of two modules: an encoding stage for feature extraction of SSHs and SSTs and a decoding
stage for feature fusion. The input data consist of two types of sea surface parameters: SSH
and SST. During the inversion process, a 4 × 4 matrix with a resolution of 0.25◦ × 0.25◦

is input, corresponding to a patch size of 17 × 17 points. Simultaneously, 36 layers of
temperature profiles are employed as the ground truth for the inversion of the deep
learning model at the depth level.

In the encoding stage, the dual-stream data of SST and SSH are input to explore
the relationship between SST, SSH, and subsurface temperature. For feature extraction
from SSH and SST, considering the complex nonlinear characteristics of mesoscale eddies,
there is an inherent connection between SSH and SST. A data feature fusion network is
constructed to capture this relationship between SSH and SST, and skip connections are
utilized to reduce the risk of overfitting. In this process, the SSH and SST are separately
input into the two branches of the neural network to model the subsurface temperature
field. Feature extraction is performed within the same stream, and feature interaction is
conducted between different streams to achieve data feature fusion.

The encoding stage deepens the network, and, thus, the feature maps become smaller
to extract data at different resolutions. In the decoding stage, the feature outputs from each
layer of the encoding stage are fused, and the solution is restored using deconvolution.
To fuse feature information across different dimensions, the Triplet attention mechanism
is incorporated into the model [38], as shown in Figure 3b, which utilizes a three-branch
structure to combine channel attention and spatial attention, enabling cross-dimensional
interactions and improving the model’s inversion accuracy. This can facilitate better
interactions and capture potential features between data.
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3.3. Comparison of Single-Stream and Dual-Stream Models

The single-stream model, as shown in Figure 4a, adopts an encoder–decoder archi-
tecture. The encoding stage consists of four convolutional layers with ReLU activation
functions, implementing down-sampling operations. The resolution decreases as the num-
ber of layers increases, and the feature maps become smaller, capturing deeper semantic
information. In the decoding stage, deconvolution is used for up-sampling to restore the
output resolution, making the feature maps larger. In this process, the input data are the
fused SST and SSH data, with the subsurface temperature profile data as the ground truth.
The model establishes the relationship between SSH, SST, and the subsurface temperature
and uses surface data to invert the subsurface temperature.

The dual-stream model, as shown in Figure 4b, also adopts an encoder–decoder ar-
chitecture. It differs from the single-stream model in that, in the encoding stage, SSH and
SST data are input separately, and this allows for the construction of separate relationship
models between the SSH and the subsurface temperature and between the SST and the sub-
surface temperature, allowing us to explore the impact of different sea surface parameters
on three-dimensional structure inversion. Considering the complex nonlinear features of
mesoscale eddies and the inherent connection between different sea surface parameters, a
data fusion module is introduced to facilitate feature interaction between the SSH and SST.
In the decoding stage, the dual-stream model achieves feature fusion, and skip connections
are used within each layer to reduce the risk of overfitting while integrating features from
the encoding stage.
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Figure 4. Architectures of single-stream and dual-stream models. (a) For the single-stream model
structure, the data input is coupled. (b) For the dual-stream model structure, the input data are
decoupled, and models of the relationship between SSH and the subsurface and the SST and the
subsurface are established separately.

3.4. Triplet Attention

As a standalone U-Net network deepens, it can only acquire feature information at
varying resolutions, thereby exhibiting a comparatively weaker capacity for capturing
relationships between data. Therefore, in this study, Triplet attention is introduced to better
capture the relationship between the input SSH and SST. In this approach, residual changes
are used to establish inter-dimensional dependencies, facilitating effective aggregation of
local key information.

Triplet attention is used here to study cross-dimensional interactions, as shown in
Figure 5. ⊙ denotes broadcast element-wise multiplication and ⊕ denotes broadcast
element-wise addition. The fusion of channel and spatial attention is achieved by capturing
the interaction between the spatial dimensions and the input tensor channel dimensions.
The input tensor X ∈ RC×H×W is passed to the three branches of the Triplet attention
module. In the first branch, the identity residual branch structure is introduced. Z-Pool
is initiated first, integrating the average and max pooling features to achieve dimension
scaling. After a 7 × 7 convolution and batch normalization, attention weights are gener-
ated through the Sigmoid activation function and then multiplied by the identity residual
branch’s output to obtain the first branch’s output. Here, Z-Pool is responsible for con-
necting this dimension’s max pooling and average pooling features, reducing the first
dimensions of the tensor to two and thus retaining the rich features of the actual tensor
while reducing its depth to reduce its weight. The formula for Z-Pool can be expressed as:

Z-Pool(x) = [MaxPool(x), AvgPool(x)] (1)

In the second branch, the input tensor X ∈ RC×H×W is rotated 90◦ counterclockwise
along the W axis, resulting in a transformed tensor, denoted as X ∈ RW×H×C. After
this, the Z-Pool operation is applied to achieve dimension scaling, resulting in an output
represented as X ∈ R2×H×C. Subsequently, the tensor passes through a 7 × 7 matrix and
undergoes normalization to obtain the output denoted as X ∈ R1×H×C. Attention weights
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are generated using the Sigmoid activation function, and then the tensor is rotated 90◦

clockwise along the W axis, resulting in the output denoted as X ∈ RC×H×W.
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Similarly, in the third branch, the input tensor is rotated along the H axis to establish
feature interaction, resulting in an output denoted as X ∈ RC×H×W.

Finally, the outputs of the three branches are averaged and aggregated to obtain the
final result.

4. Experiments
4.1. Evaluation Metrics

Experiments were conducted with a batch size of 64 and 50 epochs. The optimizer
used in the experiments was Adam, and the learning rate was 1 × 10−3. The loss function
was SmoothL1 loss; the formula for the loss can be expressed as:

Loss =
{ 1

2
(
yi − ŷi)

2/beta, i f | yi − ŷi |< beta
| yi − ŷi | − 1

2 ∗ beta, otherwise
(2)

where yi is the target value, ŷi is the predicted value, and beta is the threshold, set to 1.0
by default.

The evaluation criteria for the experiments in this paper include R2, MAE, RMSE, and
the explained variance score. R2 measures the goodness of fit of the predicted data and
takes a value between 0 and 1. A value closer to 1 indicates a better fit of the model to the
data. The formula for R2 can be defined as follows:

R2 =

∑
i

(
yi − ŷi)

2

∑
i
(yi − ȳi)2 , ȳi =

n
∑

i=1
yi

n
(3)

Here, n represents the number of samples, ŷi represents the predicted value, yi repre-
sents the target value, and ȳi represents the average of the observed data.

The Mean Absolute Error (MAE) measures the sum of the absolute differences between
the target and predicted variables. The MAE value ranges from 0 to positive infinity, with
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a larger MAE value indicating a larger prediction error. The formula for the MAE can be
expressed as:

MAE =
∑n

i | yi − ŷi |
n

(4)

Here, | | denotes the absolute value and Σ denotes the summation.
The Root Mean Square Error (RMSE) can reflect the distribution of prediction errors;

its formula is as follows:

RMSE =

√
1
n ∑n

i=1(yi − ŷi)2 (5)

The explained variance score is a metric that measures the degree to which a model
explains the variance in a dataset. It takes values between 0 and 1, with a value closer to 1
indicating better model performance. The formula can be expressed as:

exp lain variance(yi, ŷi) = 1 − var{yi − ŷi}
var{yi}

(6)

where var represents the variance.

4.2. Experimental Results
4.2.1. Comparison of Input of Different Variables

In this study, input parameters were assessed and the model structure was validated
using a single-stream approach. The subsurface temperature inversion for cyclonic and
anticyclonic eddies were compared when only SSH data were used and when both SSH
and SST data were used. Table 2 demonstrates that including the SST in addition to the SSH
data enhances R2 to differing extents for both cyclonic and anticyclonic cases. Specifically,
for cyclonic eddies, there was a 0.09 increase in the R2, while for anticyclonic eddies, there
was a 0.12 increase. The accuracy of cyclonic inversion and anticyclonic inversion increased
by 8.4% and 4.34%, respectively. Additionally, the MAE values decreased by 1 ◦C for
cyclonic eddies and 1.04 ◦C for anticyclonic eddies. The introduction of the SST has played
a positive role in the retrieval of the sub-layer temperature of mesoscale eddies.

Table 2. Comparison of input of different variables.

Input Model R2 MAE Explained_Variance

SSH Cyclonic 0.73 2.17 73.17%
SSH, SST Cyclonic 0.82 1.17 81.57%

SSH Anticyclonic 0.82 1.9 90.39%
SSH, SST Anticyclonic 0.94 0.86 94.73%

4.2.2. Comparison of Different Model

The findings presented in this section provide further evidence to support the effec-
tiveness of the proposed Dual_EddyNet. The subsurface temperature structure is inverted
using the SSH and SST as inputs to compare the results obtained from both the single- and
dual-stream models. According to Table 3, for cyclonic eddies, the dual-stream model ex-
hibits a superior performance over the single-stream model, showing a reduction of 0.16 ◦C
in the MAE and an increase of 0.07 in the R2, yielding an accuracy improvement of 8.93%.
For anticyclonic eddies, the dual-stream model exhibits an enhancement compared to the
single-stream model, indicating a decrease of 0.04 in the MAE and an increase in accuracy
of 0.23%. These experimental findings prove that, for both cyclonic and anticyclonic eddy
data, the dual-stream model outperforms the single-stream model.
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Table 3. Comparison of single- and dual-stream models.

Input Model R2 MAE Explained Variance

Cyclonic Single-stream 0.82 1.17 81.57%
Cyclonic Dual-stream 0.89 1.01 90.50%

Anticyclonic Single-stream 0.94 0.86 94.73%
Anticyclonic Dual-stream 0.94 0.82 94.80%

4.2.3. Ablation Experiments

To better demonstrate the effectiveness of the algorithm proposed in this study, rele-
vant ablation experiments were conducted for cyclonic and anticyclonic eddies. Firstly, for
mesoscale cyclonic eddies, experiments were conducted using only the dual-stream model,
followed by experiments incorporating the dual-stream model with the addition of the
Triplet attention module and the addition of the data fusion module, as shown in Table 4,

√

represents the method used. The results show that the introduction of Triplet attention in
the dual-stream model is beneficial, with a decrease in the MAE of 0.04 ◦C and an increase
in the explained variance score of 0.19%. Furthermore, after the introduction of the data
fusion module, the ultimate proposed model (Dual_EddyNet) exhibited a decline in the
MAE of 0.06 ◦C and an improvement in the explained variance score of 0.75% compared
to the dual-stream model combined with the Triplet attention method. Compared to the
dual model, the R2 increased by 0.02, the MAE decreased by 0.42 ◦C, and the explained
variance score increased by 0.94%. These results indicate that the introduction of the Triplet
attention module and the data fusion module effectively enhances the performance of the
dual-stream model.

Table 4. Ablation experiments for cyclonic eddies.

Dual Stream Attention Data Fusion R2 MAE Explained Variance
√

0.89 1.01 90.50%√ √
0.89 0.97 90.69%√ √ √
0.91 0.59 91.44%

Similarly, the algorithm proposed in this study exhibited an improved performance in
subsurface temperature inversion of anticyclonic eddies to varying degrees, as shown in
Table 5,

√
represents the method used. The method proposed in this study (Dual_EddyNet)

achieved an R2 of 0.95 in subsurface temperature inversion in anticyclonic eddies.

Table 5. Ablation experiments for anticyclonic eddies.

Dual Stream Attention Data Fusion R2 MAE Explained Variance
√

0.94 0.82 94.80%√ √
0.94 0.79 94.96%√ √ √
0.95 0.57 95.25%

4.3. Results and Analyses

The inversion results for cyclonic eddies at depths of 0–1000 m can be seen in Figure 6,
which includes R2, RMSE, and MAE evaluation metrics. The inversion R2 values are all
greater than 0.5, indicating that the inversion results at each depth are within a relatively
good accuracy range. The R2 value reaches a peak at middle depths of 50–500 m and
then falls off. R2 is used to assess the fitting degree of the prediction results to the actual
outcomes. The closer the predicted values are to the real values, the higher the R2 value,
indicating a better data fit. However, the correlation between the surface and deep data
decreases as the depth increases. Shallow ocean data (50–500 m) exhibit a strong correlation
with the surface data, while deep ocean data (500–1000 m) show a weaker correlation
with surface data. Therefore, the R2 value peaks at a depth of 50–500 m before decreasing.
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Furthermore, because the South China Sea is a marginal sea, the adjacent land easily
influences deep sea areas, decreasing the inversion accuracy. The other metrics, the RMSE
and MAE, exhibit a consistent overall trend, showing an initial increase followed by a
decrease. The changes in the shallow sea areas are significant, with relatively high errors,
mainly due to the multitude of influencing factors in the sea surface layer, leading to more
complex water movements.
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Figure 6. Inversion results of cyclonic eddies, including the R2, MAE, and RMSE.

Figure 7 shows the accuracy map of the surface temperature data of mesoscale cyclonic
eddies inverted using the Dual_EddyNet model, which presents the inversion results at
different depths. The horizontal axis (predict) represents the predicted temperature values
of cyclonic eddies inverted by Dual_EddyNet, while the vertical axis (target) represents
the actual temperature values of the reanalysis data. The red line represents the regression
line. The closer the scatter points are to the red line, the higher the inversion accuracy of
Dual_EddyNet. The more aggregated the scatter points, the denser the scatter density, and
the closer the color is to red. From the figure, most scatter points are within a reasonable
error range.
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Figure 7. Inversion scatter map of cyclone eddies.

We investigated an anticyclonic case on 1 January 2020, with Figure 8 showing
the mesoscale eddy subsurface temperature predicted by the proposed algorithm, Dual-
EddyNet, as well as the true temperature from reanalysis data. This figure shows the eddy
temperature state of the cyclonic eddy from 0 to 1000 m. It can be seen that, in cyclonic
eddy inversion, the inversion of the sub surface layer of vortices in the 0–400 m range is
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not very stable; for example, the inversion effect of the temperature at 109.7 m deteriorates
to a certain degree. Corresponding to the eddy inversion diagram in Figure 6, the R2 value
also weakens at this layer. At the same time, it can be seen that the eddy is in a dissipating
state at 380.2 m, and the predicted inversion effect has rebounded to a certain extent. As
the depth increases, the correlation between deep temperature and surface data decreases,
the inversion R2 decreases, and the inversion effect also weakens.
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Figure 8. Comparison between the predicted and actual values of the cyclonic eddy (21.75◦ N, 128◦ E)
on 1 January 2020. The left image in (a) shows the input data SSH, the right image shows the SST,
and (b–h) show the visualization of the predicted and actual vortices at different depths. The left side
shows the predicted performance of the Dual-EddyNet algorithm, and the right image shows the
actual performance.
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Figure 9 shows the inversion results for anticyclonic eddies at 0–1000-m depths, also
showing the R2, RMSE, and MAE evaluation metrics. The inversion R2 values are all
greater than 0.5, indicating that the inversion results at each depth are within a relatively
good accuracy range. However, at mid–shallow depths, the R2 fluctuates significantly,
exhibiting a concave shape, especially where there is a significant temperature change
in the thermocline layer, resulting in a decrease in the R2 and an increase in the RMSE,
highlighting a noticeable decrease in the inversion performance. This is due to the complex
nonlinear characteristics of mesoscale eddies in mid–shallow layers, which are highly
susceptible to the influence of external factors such as tides, El Niño events, and wind fields.
As the depth increases, the R2 tends to decrease slowly, primarily because the complex
dynamic processes in the deeper sea areas are poorly represented by the surface parameters.
Consequently, the inversion performance is not ideal. Additionally, the influence of factors
related to the marginal South China Sea leads to a more pronounced decrease in the R2

in the deep sea areas. However, with an increasing depth, the RMSE and MAE decrease,
the temperature fluctuation in deep-sea areas is minimal, resulting a reduction in the
inversion error.
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Figure 9. Inversion results of anticyclonic eddies, including the R2, MAE, and RMSE.

Overall, at depths of 0–1000 m, the model’s RMSE initially increases and then slowly
decreases, while the R2 shows initial decreases and then gradually grows, but exhibits a
decreasing trend in deeper areas. These results indicate that as the depth increases, the
model’s ability to fit the data deteriorates and its inversion capability weakens, especially
in the marginal sea areas facing the South China Sea, where errors are more likely due
to the influence of deep-sea topographical factors, making the inversion in deeper layers
more complex.

In Figures 6 and 9, the R2, RMSE, and MAE exhibit similar trends. The RMSE and
MAE do not exhibit significant temperature changes in shallow layers (50–100 m), so the
RMSE at this stage is small. The correlation between the input sea surface data and the
shallow sea temperature is high, so the R2 is generally higher and the prediction effect is
better. Due to the influence of other surface factors, there are significant changes in the
middle and shallow layers, and the inversion effect first decreases and then increases. At
higher depths, temperature fluctuations are relatively small, resulting in a lower RMSE.
The correlation between sea surface data and deep surface temperature weakens, leading
to a decrease in the R2.

Figure 10 shows a comparison of temperature visualizations using Dual_EddyNet
prediction and reanalysis data, taking an anticyclonic eddy on 2 January 2020 as a case
study. The left image in Figure 10a shows the input SSH, the right image shows the SST,
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and Figure 10b–h show visualizations of the predicted and actual eddy currents at different
depths. The left image displays the predictive performance of the Dual_EddyNet algorithm,
and the right image shows the actual performance. The inversion effect of the shallow eddy
in the figure is good. As the depth increases, the correlation between the input surface
data (SSH and SST) and the deep surface temperature decreases, and the inversion effect
also weakens.
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Figure 10. Comparison between the predicted and actual performance of the anticyclonic eddy
(19.5◦ N, 125◦ E) on 2 January 2020.

Figure 11 presents a scatter plot of the inversion results for the surface temperature
data of mesoscale anticyclonic eddies using the Dual_EddyNet model at different depths.
The depths selected are 0 m, 222.5 m, 380.2 m, 453.9 m, 763.3 m, and 1062.4 m. Like the
cyclonic eddy results, the model’s accuracy is influenced by the depth, with most scatter
points falling within a reasonable error range.
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Figure 11. Inversion scatter map of anticyclonic eddies.

Furthermore, we compared the inversion capabilities of different models for mesoscale
eddies in the South China Sea (studying 12 depth layers ranging from 0 to 1000 m), including
the Dual_EddyNet proposed in this study (ours), U-net Attention (case 1) proposed by Xie
et al. [20], and the U-net model (case 2), as shown in Figure 12. We compared the inversion
results at different depths over 0–1000 m in 12 layers, and, as shown in the figure, our
method achieved the best experimental results, which proves its effectiveness.
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sults of different algorithms on cyclonic datasets; (b) inversion results of different algorithms on
anticyclonic datasets.
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5. Conclusions

In this study, we investigated a deep learning algorithm for the temperature structure
inversion of mesoscale eddies in the South China Sea. The algorithm explores the influence
of the SSH and SST on the temperature structure inversion of mesoscale eddies. It also
uses different data fusion strategies, namely the inversion effects of single-stream and
dual-stream neural networks. The effectiveness of the Dual_EddyNet algorithm proposed
in this study was verified.

The model has a dual-stream structure, which includes a data fusion module to explore
the correlation between sea surface parameters and achieve data fusion. It also contains a
Triplet attention module, which performs dimension swapping, captures essential informa-
tion about eddies, and improves the model’s accuracy. The main contributions of this study
are as follows: (1) Construction of a dataset for the temperature structure of mesoscale
eddies in the South China Sea. The disadvantages of an uneven distribution, a low spatial
resolution, and incomplete coverage of Argo data are compensated for through reanalysis
of the data. (2) The proposal of a data-driven model (Dual_EddyNet) for the temperature
structure inversion of mesoscale eddies, achieving inversion of the temperature structure
between 0 and 1000 m in the South China Sea. (3) The effectiveness of the dual-stream
model (in contrast to the conventional single-stream model structure) is verified through
experimental comparisons. The proposed model (Dual_EddyNet) demonstrates a good
accuracy in the temperature structure inversion of mesoscale eddies in the South China Sea.
This method is of great significance for improving the accuracy of three-dimensional tem-
perature structure prediction for mesoscale eddies. This method has the advantage of being
lightweight and can be easily deployed on mobile system platforms. At the same time, it
can provide a data reference for assimilations, numerical simulations, and other methods.

However, parameters such as sea surface wind fields and water currents influence
mesoscale eddies. The unreliable eddy detection of the AVISO/CMEMS gridded prod-
ucts [39] is not considered in the dataset used in this study. Therefore, future work will
further optimize this dataset and consider the impact of multi-source parameters on the
inversion of mesoscale eddy fields. The inversion performance under different seasonal
conditions will also be considered to further understand their effects on applicability and
performance. Valuable directions for future work are comparative analyses and research on
dynamic methods such as Surface Quasi-Geostrophic (SQG) methods, as well as the fusion
of deep learning and dynamic-based methods [40].
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