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Abstract: Double unmanned surface vehicles (DUSVs) towing a floating rope are more effective at
removing large floating garbage on the water’s surface than a single USV. This paper proposes a
comprehensive trajectory planner for DUSVs connected with a floating rope for cooperative water-
surface garbage collection with dynamic collision avoidance, which takes into account the kinematic
constraints and dynamic cooperation constraints of the DUSVs, which reflects the current collection
capacity of DUSVs. The optimal travel sequence is determined by solving the TSP problem with an
ant colony algorithm. The DUSVs approach the garbage targets based on the guidance of target key
points selected by taking into account the dynamic cooperation constraints. An artificial potential
field (APF) combined with a leader–follower strategy is adopted so that the each USV passes from
different sides of the garbage to ensure garbage capturing. For dynamic obstacle avoidance, an
improved APF (IAPF) combined with a leader–follower strategy is proposed, for which a velocity
repulsion field is introduced to reduce travel distance. A fuzzy logic algorithm is adopted for
adaptive adjustment of the desired velocities of the DUSVs to achieve better cooperation between
the DUSVs. The simulation results verify the effectiveness of the algorithm of the proposed planner
in that the generated trajectories for the DUSVs successfully realize cooperative garbage collection
and dynamic obstacle avoidance while complying with the kinematic constraints and dynamic
cooperation constraints of the DUSVs.

Keywords: double unmanned surface vehicles (DUSVs); water-surface garbage cleaning; trajectory
planning; cooperative dynamic obstacle avoidance; artificial potential field

1. Introduction

In recent years, water pollution caused by floating garbage has become increasingly
serious and patches of garbage often appear on water surfaces, as shown in Figure 1. It is
very important to clean up the garbage in good time [1–3]. Currently, the main ways for
cleaning water-surface garbage include manual salvage, mechanical salvage, and using
clean-up boats. However, the safety risk of manual salvage is high, and cleaning that relies
heavily on manual operations is inefficient and costly. Therefore, with the development of
advanced technologies, surface garbage cleaning by unmanned surface vehicles [4–6] has
attracted much research interest. In practice, full coverage of the targeted area is generally
required for thorough cleaning, and single USVs are often limited in their capability to
handle the tasks of garbage cleaning of a large area and large patches of congregated
garbage [7–10]. Double USVs connected by a floating rope, as shown in Figure 2a, provide
stronger load capacity and better fault tolerance and hence are more efficient at cleaning
areas where the pollution is serious and garbage appears in patches.
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Figure 1. Garbage cleaning scenarios.
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Figure 2. Floating-rope-connected DUSVs and the scene model for water-surface garbage cleaning.
(a) DUSVs connected by a floating rope; (b) Scene model of garbage cleaning task by DUSVs connected
by a floating rope.

Path planning is a critical part of the autonomous navigation of USVs for ensuring
the safety and efficiency of the whole process of operation. It generally aims to generate
a collision-free path from the starting point to the target position without explicit con-
sideration of the constraints of vehicle dynamics and timing [11,12]. For multiple USVs
conducting cooperative operations, the cooperation constraints between the USVs need
to be taken into account, and certain pose relationships between the USVs need to be
maintained at each moment [13]. In such cases, trajectory planning is necessary, which is
concerned with generating the time-parameterized state trajectories for each USV at each
moment. For water-surface garbage cleaning with cooperative double USVs connected
with a floating rope, the two USVs are required to operate cooperatively to reach the desig-
nated positions for each USV at each time instant; therefore, physical, time, and position
constraints need to be fulfilled simultaneously.

In trajectory planning for cooperative multi-USVs, the objectives considered include
aspects of shortest travel distance, collision avoidance with safety distance, minimum cal-
culation time, trajectory smoothness, and motion-related collaboration constraints such as
collaborative behavior [14]. Collaborative behaviors are categorized into time collaborative
behavior and time-and-position collaborative behavior [15,16]. The former requires that
each USV leaves or reaches the target area at the same time or in sequence, while the latter
requires not only time coordination but also the simultaneous position coordination of each
USV, so that the trajectories meet the predefined time and spatial relationship to the greatest
extent [17]. However, few pieces of research in the literature have worked on collabora-
tive multi-USVs with physical connections while the movement of each USV is relatively
free [18]. Formation control or generating cooperative trajectories for physically connected
cooperative USVs is a much more challenging problem due to the extra constraints imposed
by the physical connection.
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Giron-Sierria et al. [19,20] studied the autonomous double USV towing system for
recovering floating oil spills at sea. The Dubins path was used to generate the trajectories for
the double USVs, which were composed of straight lines and arcs. Zhu et al. [21] proposed a
distance-based cooperative control strategy with dual modes of formation and tracking for
double USVs cleaning Enteromorpha. Factors such as power, torques in the floating rope,
and interference of water flow were all considered in order to achieve intelligent selection
of the operation mode of the double USVs. Jiang Wen [22] proposed a formation method
based on heading information fusion and a trajectory tracking method based on null-space
behavior fusion to deal with the problem of separation and entanglement in cooperative
towing by double USVs. However, the studies mentioned above mainly focused on the
formation control and coordinative behaviors of double USVs and considered only tasks of
collecting a single pollutant target. The problem of planning cooperative trajectories for
double USVs connected with a float rope for the whole task of cleaning a water-surface area
with many garbage targets is yet to be solved. In particular, the influence of the relative
positions of the two USVs on the load capacity of the floating rope need to be addressed.

During the mission of water-surface floating garbage cleaning, the locations of floating
garbage and obstacles such as buoys and water plants change due to environmental
disturbances such as wind, currents, and waves. Furthermore, dynamic obstacles may
also include boats and animals such as ducks. Hence, it is important to take into account
the position changes of garbage targets and obstacles in order to achieve the safe and
efficient operation of the whole cleaning process. The trade-off between distance cost and
computational consumption is one of the main issues in dealing with real-time planning.
In the work by Kong et al. [23] for path planning for a single surface autonomous vehicle
for floating garbage cleaning, path re-planning is conducted when changes in the positions
of garbage areas are detected by the cooperative UAV and the re-planning point is decided
based on a neural network to strike a compromise between distance cost and computational
burden. The artificial potential field (APF) has been extensively used for local path planning,
such as in dynamic obstacle avoidance. It determines the motion of the USV at the next
time step according to the attractive fields of the targets and repulsive fields of obstacles in
the surrounding environment and the current state of the USV. Its advantages are its simple
structure, good real-time performance, and low computational consumption. However,
APF-based methods are not apt at achieving the optimal path in the face of dynamic
obstacles. To this end, Gao et al. [24] introduced into the traditional repulsion field function
the dynamic distance between the robot and the obstacle and the adjustment factor to
solve the problem of unreachable targets. Zhang et al. [25] proposed an improved artificial
potential field by introducing a water flow field to solve the problem of unreachable targets.
However, there is still a problem with dynamic obstacle avoidance, as the robot tends to
bypass the obstacle from the front, leading to longer path lengths and failure in obstacle
avoidance. Few pieces of research have studied APF for the cooperative operations of
DUSVs, while it is found that the garbage collection problem for physically connected
DUSV may be viewed as a special dynamic obstacle avoidance problem to be potentially
solved by APF.

Motivated by the problems mentioned above, this paper studies the trajectory planning
problem for cooperative double USVs connected with a floating rope for multi-floating
garbage collection and dynamic obstacle avoidance. The main challenges to be addressed
include the following: (1) Different from garbage collection by a single USV, which passes
through the garbage, the floating rope connected to the two USVs needs to bypass the
garbage closely from different sides of the garbage separately. (2) For dynamic obstacle
avoidance, the double USVs need to pass from the same side of obstacles within a safe
distance. (3) The distance between the two USVs needs to be dynamically adjusted to
allow enough enclosed area within the floating rope for the current garbage target while
maintaining between the minimum and maximum distance to avoid internal collision
avoidance and garbage escaping.
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Therefore, a comprehensive trajectory planner is proposed for multi-floating garbage
collection and dynamic obstacle avoidance, taking into consideration kinematic constraints
and dynamic cooperation constraints that reflect the time-varying load capacity of the
DUSVs system. The planning assumes prior knowledge of the initial positions of all
garbage areas and obstacles with the possible assistance of an unmanned aerial vehicle
(UAV) and real-time updating of the positions of the encountered garbage and obstacles
based on on-board sensors. An optimal sequence for visiting all the garbage areas is
obtained based on the initial positions of the garbage areas. Then, the trajectories of the
DUSVs for approaching each garbage area and capturing the garbage while avoiding
all encountered obstacles are generated. The main contributions of this paper can be
summarized as follows:

(1) Kinematic constraints of the USV and dynamic cooperation constraint between the
DUSVs are considered. The cooperation constraint in terms of distances between the
two USVs reflects the current garbage collection capacity of the DUSVs.

(2) For garbage collection, a method based on APF combined with a leader–follower
strategy is proposed to ensure each USV bypasses the garbage from different sides in
order to realize garbage capture.

(3) For dynamic obstacle avoidance, a method based on an improved artificial potential
field (APF) combined with a leader–follower strategy is proposed. The velocity
repulsion field between DUSVs and dynamic obstacle is introduced to deal with the
issue of long trajectories.

(4) For precise cooperation between the DUSVs, a speed control method based on a
fuzzy logic algorithm is proposed for adaptive adjustment of the acceleration and
deceleration coefficients for the DUSVs.

2. The Problem Description of DUSVs Garbage Cleaning

Consider the scenario of a water area with multiple large areas of floating garbage
and obstacles, both static and dynamic, such as aquatic plants, buoys, and ships. A scene
model of water-surface garbage collection by floating-rope-connected DUSVs is established.
As illustrated in Figure 2, the DUSVs system (P1, P2) is cooperative in order to perform the
autonomous floating garbage cleaning. It assumes that the initial positions of all garbage
areas and obstacles are known with the assistance of an unmanned aerial vehicle (UAV),
and positions of the encountered garbage and obstacles are updated based on on-board
sensors. It aims to determine the cooperative dynamic trajectories of the underactuated
DUSVs connected with a floating rope for cleaning all the floating garbage without any
collisions with obstacles.

Assume that the start point is S(xs, ys), the end point is E(xE, yE), the center of the
garbage target is Ti(xTi , yTi ), where i = 1, 2 · · · p, p is the number of garbage targets, and the
velocity vector is [vTx , vTy ]. The center of obstacles is Oi(xOi , yOi ), where i = 1, 2 · · · k, k is
the number of obstacles and the velocity vector is [vOx , vOy ].

The objective for the trajectory planning problem of the DUSVs can be described
as generating the two optimal trajectories, τd

i (t) = (xd
i , yd

i , ψd
i , t), i = 1, 2, of the DUSVs,

starting from the launch point, S, capturing each garbage target, Ti, by the DUSVs passing
from different sides of the garbage targets separately, avoiding all obstacles, Oi, by the two
USVs passing from the same side of the obstacle, and finally reaching the end point, E,
while abiding with the kinematic and cooperation constraints. The model of the obstacles
and garbage targets, along with all the constraints, will be discussed in this section.

2.1. The Model of Obstacle and Garbage Target
2.1.1. Obstacle Model

Due to the uncertainty of obstacles on the water’s surface, it is necessary to reserve a
sufficient safe distance between the obstacle and the hull. Therefore, the obstacle is modeled
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as a circle and expanded to ensure a safe distance. The point set of the obstacle area can be
represented as:

ΩO =
{

pO|∥pO − Oi∥2 ≤ (EORO)
2
}

, (1)

where pO denotes any point in the obstacle area, RO represents the radius of the obstacle,
and EO is the expansion coefficient of the obstacle.

2.1.2. Garbage Target Model

As shown in Figure 3, due to the uncertain shape of the surface garbage irregular
garbage is modeled with a circle or an ellipse, which are expanded to ensure that the DUSVs
can safely collect the garbage. The point set of the garbage target area can be expressed
as follows:

ΩT =

{
pT |

[(xT − xTi) cos ϑ + (yT − yTi) sin ϑ]2

(ET Ra)
2 +

[(yT − yTi) cos ϑ + (xT − xTi) sin ϑ]2

(ET Rb)
2 ≤ 1

}
, (2)

where, Ra and Rb are the long and short half axis of the elliptical garbage target; when
Ra = Rb = RT , the model represents a circular garbage target; ϑ is the angle between the
long half axis and the horizontal direction; ET represents the expansion coefficient of the
garbage target.

Garbage target 

expansion area

Garbage area

(xT , yT) RT

ETRT

Circular garbage target

Garbage target 

expansion area

Garbage area

Ra

R
b

E
T
R

b

ETRa

(xT , yT)

(a) (b)

Figure 3. Garbage target area model. (a) Circular garbage target; (b) elliptical garbage target.

2.2. The Kinematic Constraints of USV

Assume that the USVs move on a calm water surface, consider that the pose vector of
the USV expressed in the world coordinate system is η = [x, y, ψ]T , where x and y denote
the position coordinate, and ψ is the heading angle. The velocity vector of the USV in the
body frame is denoted as υ = [u, v, r]T , where u and v are the surge and sway velocities,
and r is the yaw angular velocity. Hence, the three-degree-of-freedom model of the USV in
the horizontal plane can be written as:

η̇ = J(ψ)υ, (3)

where, J(ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

.

On account of the fact that the USVs are underactuated and the sway velocity is
relatively small in calm water, the zero sway velocity is assumed, v = 0. The surge speed,
u, surge acceleration, a, and sway angular velocity, r, must satisfy the following constraints:

∥u∥ ≤ umax, (4)

∥a∥ ≤ amax, (5)

∥r∥ ≤ rmax. (6)
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In addition, the surge velocity and yaw angular velocity of the USV are related by
R = | u

r |, where R is the turning radius. Therefore, the references ud and rd need to meet
the constraint for R,

R ≥ Rmin, (7)

where, Rmin is the minimum turning radius.
Thus, the reference trajectory, τd(t), of the USV can be expressed as: xd

t
yd

t
ψd

t

 =

 xd
t−1

yd
t−1

ψd
t−1

+

 ud
t−1 cos ψd

t−1
ud

t−1 sin ψd
t−1

n · |rd
t−1|

∆t, (8)

where ud and ψd are the expected linear velocity and angular velocity, satisfying constraints
(4)–(6). n is used to explicitly represent the three decisions for steering the USV, i.e.,
n = 1, 0,−1, corresponding to turning right, heading forward, and turning left.

2.3. The Cooperation Constraints of DUSVs

In this section, the dynamic cooperation constraints in terms of the distance between
the two USVs are analyzed. Aspects of internal collision avoidance, garbage escaping,
and dynamic load capacity in terms of distance between the two USVs are considered.

First and foremost, there is the lower bound on distance between the DUSVs set to
avoid internal collisions, and the upper bound set to avoid garbage escaping:

Lmin < L < Lmax, (9)

where L = ∥P1 − P2∥ is the distance between the two USVs.
Figure 4 shows the area, S, enclosed by the DUSVs and the floating rope in two

different states. The state shown in Figure 4a is the desired state, with the two USVs in
parallel and the enclosed area, S, larger than in Figure 4b, which is the undesired state.
In the desired state, the enclosed area, S, is determined by the length of the floating rope,
lp, and the distance, L, between the DUSVs.

x

y

o

P1

S

L

P2

x

y

o

P1

P2

S

(a) (b)

xd

Figure 4. Schematic diagram of the area enclosed by floating-rope-connected DUSVs. (a) Desired
state of DUSVs; (b) undesired state of DUSVs.

Define the current area demand, St, as the sum of the areas of the garbage targets that
have already been collected and the current garbage target to be connected. To allow the
collection of the current garbage target, it is important to adjust L so that:

S > St, (10)

where S is the current enclosed area of the floating rope.
Next, we are to find the relationship between S and L for the desired state. The floating

rope is under tension on the water surface, and the drag of the water causes it to deform.
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The shape of the floating rope can be approximated by a catenary suspended in the air [26].
A coordinate system with its origin fixed at the lowest point of the rope is selected, as shown
in Figure 4a, and the equation that describes the curve of the floating rope is given as:

y = b(cosh
x
b
− 1) b > 0, (11)

where (x, y) denotes any points of the floating rope curve. b is the catenary coefficient and
take b > 0. The length of the floating rope, lp, can be expressed as:

lp = 2b sinh
xd
b

, (12)

where xd denotes the abscissa of the endpoint of the floating rope curve.
To illustrate the relationship between S and L, suppose lp = 16 m. The relationship

between xd and b is depicted in Figure 5a. The endpoint abscissa is considered to be
positive, xd > 0, for ease of analysis. This shows that xd and b are positively correlated.
By integration, the area surrounded by the floating rope, S, is given as follows:

S = 2bxd cosh
xd
b

− 2b2 sinh
xd
b

. (13)

Based on Formulas (12) and (13), the relationship between S and b can be determined
and is shown in Figure 5b. It shows that S reaches its maximum of 39.5 m2 when b = 3.8,
which corresponds to xd = 5.5 and L = 11, as indicated by Figure 5a. Therefore, it can be
concluded that S continuously decreases as L decreases from 11. Therefore, it is reasonable
to select the upper bound of the distance between the DUSVs as Lmax = 11, and L could be
adjusted in real-time according to the current area demand, St.

（3.8，39.5）

xd =8

(a) (b)

S

b

Figure 5. Relationships between b, xd, and S. (a) Relationships between b and xd; (b) relationships
between b and S.

To sum up, the constraints (9) and (10) are the cooperation constraints for the DUSVs.
During mission planning, it is necessary to estimate the total area of all garbage to be
collected and then choose a floating rope of appropriate length to ensure that all garbage
can be collected in one single mission. In the case when the garbage cannot be handled by
one single mission, multiple missions needs to be planned. During the mission, the states
S and St are checked in real-time, and L is adjusted accordingly to make sure that the
cooperation constraints are satisfied.

3. The Structure of the Algorithm

To obtain optimal dynamic trajectories for the DUSVs that can access all floating
garbage targets non-repeatedly while avoiding dynamic obstacles, the first step is to deter-
mine the optimal access sequence of the multiple garbage targets based on the principle



J. Mar. Sci. Eng. 2024, 12, 739 8 of 22

of the shortest travel distance. During the mission, dynamic trajectories are generated
by following the optimal access order. For each garbage target, there are the garbage
approaching phase and the garbage capturing phase. In the garbage approaching phase,
the trajectories are generated based on the guidance of key points around the current target.
For garbage capturing, the APF method and a leader–follower strategy are proposed, and
the garbage capturing phase start once the DUSVs enter the repulsive field of the current
garbage target. When obstacles are encountered, i.e., the DUSVs enter the repulsive field of
an obstacle, trajectories for dynamic obstacle avoidance are generated. A method based on
IAPF and a leader–follower strategy is adopted, which takes into account the relative speed
between the obstacle and the USVs so that the DUSVs bypass the obstacle from the same
side of the obstacle with shorter travel distance. The generated trajectories need to meet
the kinematic constraints and cooperation constraints. A speed control strategy based on a
fuzzy logic algorithm is introduced to keep the DUSVs in good cooperation. A flowchart of
the proposed trajectory planning method is depicted in Figure 6.

Is current visiting 

target the end point?

Load the task

Obstacle encountered?

Optimal visiting sequence 

generation by ACO

Current garbage target 

capturing based on APF and 

leader-follower strategy

The obstacle 

avoidance based on 

IAPF and leader-

follower strategy

Y

N

Current garbage target 

approaching based on the 

guidance of target key points

Switch to the next 

visiting target

Y

N

Fuzzy logic-based 

speed control

u1, u2

Approach the end point

Output the planned 

trajectories

Figure 6. Flowchart of the proposed trajectory planning method.

3.1. The Optimal Access Sequence of Multiple Garbage Targets

There are p garbage areas scattering over the water surface, which are described as{
T1, T2, T3...Tp

}
. The aim is to find the optimal access sequence, Γ = {S, Tc(1), Tc(2) · · ·Tc(p), E},

starting from the launch point, S, through each garbage area only once, and finally reaching
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the end point, E. This problem is established as a traveling salesman problem (TSP) to find
a solution that minimizes the total length of the path:

Γ∗ = arg min
Γ

p+1

∑
i=1

d(Γ(i), Γ(i + 1)), (14)

where d(Γ(i), Γ(i + 1)) is the Euclidean distance between the center of two garbage targets.
An ant colony algorithm [27] is adopted for solving the established TSP to strike a

balance between computational complexity and performance for the problem of water-
surface cleaning. Yang et al. [28] employed the discrete grouping teaching optimization
algorithm (DGTOA) to solve the multi-point path planning problem with many target
points. Jindriska et al. [29] proposed a new improved heuristic method to solve the
sufficiently close enough TSP problem (CETSP) in an environment with obstacles and
many densely distributed targets. Both of the algorithms mentioned above are complex
and computationally costly. In comparison, the TSP problem for water-surface garbage
cleaning has relatively fewer target points. Therefore, the ant colony algorithm is selected
for its advantages of strong global searching ability and easy implementation with less
computational cost.

3.2. DUSV Cooperative Garbage Target Approaching and Capturing

Following the optimal access sequence, the DUSVs approach and capture the garbage
targets one by one while bypassing all obstacles whenever encountered. In this section,
the algorithm for generating trajectories for garbage target approaching and capturing
is presented.

3.2.1. Garbage Approaching Based on the Guidance of Target Key Points

To generate the trajectories for approaching the current garbage target, the headings of
the two USVs are guided by the two key points of the garbage target, i.e., the orientations
from each USV towards the two key points are respectively chosen as the desired headings
for the DUSVs, in order to realize that each USV passes the garbage target from different
sides. The two key points of the current garbage target are selected based on the garbage
model, and the dynamic cooperation constraints as described in Section 2.3 are considered.

The two key points are initially chosen as the resulting tangent points, Ni(xNi, yNi),
i = 1, 2, by making tangents from the current reference position of the two USVs to
the current garbage target modeled as a circle or ellipse, as shown in Figure 7. Then,
adjustment, δ, is made when necessary so that the distance between the two key points
meets cooperation constraints (12) and (13). If δ = 0, the key points are just the two tangent
points of Ni on the circle or ellipse.

Ti

O x

y

1

Potential 

field area

2

N1

N2

T TE R

（x1,y1）

（x2,y2）



Ti

O x

y

2

N2
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N1

1
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Figure 7. Garbage target area approaching. (a) Circular garbage target; (b) elliptical garbage target.
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Therefore, the current expected heading, ψd
i , of the DUSVs is given by:

ψd
i =

π

2
− θi, (15)

where
θi = tan−1[|yN − yi|/|xN − xi|]. (16)

3.2.2. Garbage Capturing Based on APF and Leader–Follower Strategy

When the DUSVs enter within a certain distance of the current garbage target, the sys-
tem enters into the garbage capturing stage. For garbage capturing, the trajectories for
the double USVs need to pass the garbage from different sides without contacting the
garbage. However, during the capturing phase and the phase of switching from the current
garbage target to the next garbage target, there is a risk of colliding with the current garbage
target. To address this issue, APF combined with a leader–follower strategy is proposed to
generate the cooperative trajectory for capturing the garbage target without collision.

The artificial potential field consists of an attractive field and a repulsive field [30].
To prevent collisions with the current garbage target and to take the next garbage target in
the sequence into consideration, a repulsion field is set up for the current garbage target, Ti,
and an attractive field for the next garbage target, Ti+1, as shown in Figure 8.

Ti

P1

P2

Ti+1

Repulsive field

Attractive field

t

iTR

iT1Ti
attF

+

1Ti
attF

+

Ti
repF

Ti
repF

( )
iTF P

( )
iTF P

Figure 8. Potential field in garbage capture area.

The function of the repulsion field of the current garbage target, Urep
Ti
(P), and its

gradient are given as follows:

UrepTi
(P) =

 1
2 η

(
1

ρ(P,Ti)
− 1

ρTi

)2
, ρ(P, Ti) ≤ ρTi

0 , ρ(P, Ti) > ρTi

(17)

∇UrepTi
(P) =

{
η
(

1
ρ(P,Ti)

− 1
ρTi

)
· ∇ρ(P,Ti)

ρ2(P,Ti)
, ρ(P, Ti) ≤ ρTi

0 , ρ(P, Ti) > ρTi

, (18)

where η denotes the repulsion gain coefficient, ρ(P, Ti) = ∥P − Ti∥ is the distance from the
USV to the center of the current garbage target, Ti, as shown in Figure 7, and the distance
of influence of the garbage target, Ti, is given by ρTi . The repulsive field is defined as zero
outside the distance of influence.
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The attractive field function of the next garbage target is given as:

UattTi+1
(P) =

{
1
2 ξρ2(P, Ti+1) , ρ(P, Ti+1) ≤ ρt

ρtξρ(P, Ti+1)− 1
2 ξ

(
ρt)2 , ρ(P, Ti+1) > ρt . (19)

As can be seen, UattTi+1
(P) is divided into two parts by introducing the interim dis-

tance, ρt, to avoid the problem of excessive attractive force due to the long distance to the
next garbage target [31]. The corresponding gradient function is given as follows:

∇UattTi+1
(P) =

{
ξρ(P − Ti+1) , ρ(P, Ti+1) ≤ ρt

ρtξ , ρ(P, Ti+1) > ρt , (20)

where ξ denotes the positive proportional coefficient, ρ(P, Ti+1) = ∥P − Ti+1∥ is the dis-
tance between the USV and the next garbage target, Ti+1, and ρt is the distance of influence
of the next garbage target.

The total potential field and force are the sum of the attractive and repulsive fields and
the sum of the attractive and repulsive forces, respectively:

UTi (P) = UattTi+1
(P) + Urep

Ti
(P) (21)

FTi (P) = FattTi+1
+ FrepTi

, (22)

where FattTi+1
= −∇UattTi+1

(P) and FrepTi
= −∇UrepTi

(P).
When either USV enters the distance of influence of the repulsive field of the current

garbage target, Ti, the system enters the phase for capturing the current garbage target.
The USV that first enters is designated as the leader, and the other USV is in turn the follower.
The expected pose of the leader at the next time instant, τ(t + 1) =

[
xt+1 yt+1 ψt+1

]T ,
is determined by Equation (8), for which we needs to determine n, with n = 1, 0,−1
corresponding to turning right, heading forward, and turning left, respectively. n is chosen
among the three directions and along the greatest descending direction of the potential
field according to Equation (22). The follower takes the opposite turning direction to the
leader to ensure that the two USVs can pass from different sides of the garbage target at the
same time.

Once the leader gets out of the distance of influence of the repulsive field of the current
target, the DUSVs complete the capturing of the current target and switch to the next
garbage target.

3.3. Cooperative Dynamic Obstacle Avoidance Based on IAPF Method and
Leader–Follower Strategy

During the mission, the DUSVs may encounter static as well as dynamic obstacles
on the water surface. In this section, the algorithm for generating trajectories for dynamic
obstacle avoidance is presented. When the DUSVs travel within a certain distance of the
obstacle, the system enters into the phase for obstacle avoidance. The trajectories for DUSVs
need to pass the obstacle from same side of the obstacle without getting the floating rope
entangled with the obstacle. To address this issue, IAPF combined with a leader–follower
strategy is proposed.

To prevent collisions with the encountered obstacle, Oi, while considering capturing
the current garbage target, Ti, the potential field is comprised of the repulsive field of the
current obstacle, Oi, and the attractive field of the current garbage target, Ti, as shown in
Figure 9.
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Figure 9. Potential field in obstacle avoidance area.

By the traditional APF method, the repulsion field function, Urep
Oi
(P), is obtained by:

UrepOi
(P) =

 1
2 η

(
1

ρ(P,Oi)
− 1

ρOi

)2
, ρ(P, Oi) ≤ ρOi

0 , ρ(P, Oi) > ρOi

. (23)

The corresponding repulsive force is given by the gradient function as follows:

∇UrepOi
(P) =

{
η
(

1
ρ(P,Oi)

− 1
ρOi

)
· ∇ρ(P,Oi)

ρ2(P,Oi)
, ρ(P, Oi) ≤ ρOi

0 , ρ(P, Oi) > ρOi

, (24)

where η denotes the repulsion gain coefficient, ρ(P, Oi) = ∥P − Oi∥ is the distance between
the USV to the center of the obstacle, Oi, and ρOi is the distance of influence of the repulsive
force field, within which the repulsive force takes effect.

The traditional APF method can quickly plan collision-free trajectories in the environ-
ment with only static obstacles. However, when dealing with complex dynamic obstacles,
its adaptability decreases, leading to poor performance in obstacle avoidance. To deal with
the issue, we propose to introduce into the repulsion field function an extra term called the
relative velocity repulsive field, which takes into account the relative velocity between the
DUSVs and the obstacles. The improved repulsion field function, U′

repOi
(P), is given as:

U′
repOi

(P) =


UrepOi

(P) + Urepv , ρ(P, Oi) ≤ ρOi ∧ (σ1, σ2 ∈ (0, π))

Urepv ,
(

ρOi < ρ(P, Oi) ≤ ρ′Oi

)
∧ (σ1, σ2 ∈ (0, π))

0 , ρ(P, Oi) > ρ′Oi

, (25)

where Urepv = 1
2

ς|uor |2
ρ(P,Oi)

is the proposed repulsive potential field with regard to relative
velocity between the USV and the obstacle, uori = ui − uo, as shown in Figure 10, ς denotes
the coefficient for the relative velocity repulsive field, and σi denotes the orientation of
uori with respect to POi. When σ1, σ2 ∈ (0, π), the extension line of the speed vector of the
obstacle and the extension lines of the speed vector of the USV intersect, which implies
that the DUSVs are at risk of colliding with the dynamic obstacle in the near future. ρ′Oi
is selected as the distance of influence of the encountered dynamic obstacle on account
of the relative velocity, which is larger and thus more conservative than the distance of
influence, ρOi , for static obstacles. When σ1 and σ2 are beyond (0, π), the USV and the
dynamic obstacle move away from each other; hence, the velocity repulsion is defined as
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zero. In this way, the relative velocity repulsion potential field help the USVs avoid the
dynamic obstacle in time.

The corresponding gradient function, ∇U′
repv(P), is obtained by:

∇U′
repOi

(P) =


η
(

1
ρ(P,Oi)

− 1
ρOi

)
· ∇ρ(P,Oi)

ρ2(P,Oi)
+ ς|uor |

ρ(P,Oi)
, ρ(P, Oi) ≤ ρOi ∧ (σ1, σ2 ∈ (0, π))

ς|uor |
ρ(P,Oi)

,
(

ρOi < ρ(P, Oi) ≤ ρ′Oi

)
∧ (σ1, σ2 ∈ (0, π))

0 , ρ(P, Oi) > ρ′Oi

. (26)

The attractive field, UattTi
(P), of the current garbage target is expressed as:

UattTi
(P) =

{
1
2 ξρ2(P, Ti) , ρ(P, Ti) ≤ ρo

ρoξρ(P, Ti)− 1
2 ξ(ρo)2 , ρ(P, Ti) > ρo . (27)

The corresponding gradient function, ∇UattTi
(P), is obtained by:

∇UattTi
(P) =

{
ξρ(P − Ti) , ρ(P, Ti) ≤ ρo

ρoξ , ρ(P, Ti) > ρo , (28)

where ξ denotes the positive proportional coefficient, ρ(P, Ti) = ∥P − Ti∥ is the distance
between the USV and the current garbage target, Ti, and ρo is the distance of influence of
the current garbage target. In addition, to avoid excessive attractive force caused by a long
distance from the garbage target, UattTi

(P) is divided into two parts [31].

uo

u2

uor2
2

y

x
0

Garbage target

Dynamic obstacle

1

P2P1

uor1

u1

Oi

Ti

iO

iO

Figure 10. Schematic diagram of velocity repulsive potential field.

Within the distance of influence, ρ′Oi
, of the obstacle, the total potential field is the sum

of the repulsive and attractive fields:

UOi (P) = UattTi
(P) + U′

repOi
(P). (29)

The corresponding total force is the sum of repulsive and attractive forces:

FOi (P) = FrepOi
+ FattTi

, (30)

where FrepOi
= −∇UrepOi

(P) and FattTi
= −∇UattTi

(P).
The USV that first enters within the distance of influence, ρ′Oi

, of the obstacle is
designated as the leader, and the other USV in turn becomes the follower, whose heading
is determined according to the leader. The expected pose of the leader at the next time
instant, τ(t + 1) =

[
xt+1 yt+1 ψt+1

]T , is given according to Equation (8), for which n
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needs to be determined, with n = 1, 0,−1, corresponding to the three turning directions
(right, forward, and left), respectively. n is selected among the three directions with the
greatest potential descend based on Equation (30). The follower makes the same turning
as the leader to ensure that the DUSVs can pass from the same side of the obstacle at the
same time.

Once the leader gets out of the obstacle avoidance area, i.e., the distance of influence of
the potential field of the obstacle, ρ(P, Oi) ≥ ρ′Oi

, the trajectories for avoiding the obstacle
are complete and the DUSVs continue with the approaching and capturing of the current
garbage target, Ti, as described in Section 3.2.

3.4. Fuzzy Logic-Based Speed Control Strategy

During the mission, the DUSVs need to keep in good cooperation at a low speed,
ui < 2 m/s. The two USVS in perfect cooperation should reach the two target key points,
N1, N2, of the garbage target, respectively, at the same time. However, an undesired state,
as shown in Figure 4b, may occur when the longitudinal distance between the two USVs
increases, which increases the risk of garbage escaping.

A fuzzy logic-based speed controller is proposed to gradually reduce the longitudinal
distance between the DUSVs for achieving the desired cooperative performance of the
DUSVs. The difference of the distances between the two USVs and their respective target
key points is defined as:

Ldi f = |∥P1 − N1∥ − ∥P2 − N2∥|. (31)

The main principal of the proposed speed control strategy is that when USV P1 is
further away from its target key point, then P1 accelerates and USV P2 decelerates; on the
contrary, P2 accelerates and P1 decelerates to ensure that Ldi f < g, where g is the upper
bound of Ldi f . A tuning coefficient, λ, is introduced for the speed control, as follows:

[
u1(k + 1)
u2(k + 1)

]
=


[

u1(k)
u2(k)

]
+

[
λ
−λ

]
∆u, Ldi f > 0[

u1(k)
u2(k)

]
+

[
−λ
λ

]
∆u, Ldi f < 0

, (32)

where λ represents the tuning coefficient for acceleration and deceleration of the USVs; ∆u
denotes the speed increment for a sampling period, h, with the prescribed acceleration; a,
u1(k), and u2(k) are the surge velocities of the DUSVs; and u1(k + 1) and u2(k + 1) are the
surge velocities at the next time instant. A simple speed compensator with the same λ for
different Ldi f has poor performance, resulting in garbage escape and poor coordination
between the DUSVs. A fuzzy logic algorithm is seen as an effective method for parameter
adaptation [32,33]. Therefore, a fuzzy logic algorithm is adopted for adaptive adjustment
of the tuning coefficient, λ, according to Ldi f .

Hence, the distance difference, Ldi f , is taken as the input of the fuzzy speed controller.
Four fuzzy subsets (N, M, F, and VF) are defined over the value interval [0, 10] of Ldi f .
The output of the fuzzy speed controller is the coefficient λ, which takes values in the range
of [0, 3], and four fuzzy subsets (S, M, B, and VB) are defined over this range. The Gaussian
function is chosen as the membership functions for all variables. The specific description of
fuzzy rules is shown in Table 1.

Table 1. Fuzzy rules for the speed control method.

Number Input Ldi f Output λ

1 N S
2 M M
3 F B
4 VF VB
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3.5. Section Summary

In summary, during mission planning, with the information of initial locations of
the garbage targets, a floating rope of appropriate length is chosen and the optimal ac-
cess sequence of the garbage targets is determined. After that, the DUSVs are launched.
During the mission, dynamic trajectories are planned for the DUSVs, involving cooper-
ative garbage target approaching, garbage capturing, and dynamic obstacle avoidance.
The integration of the APF/IAPF method and multi-strategies including target key point-
based guidance, a leader–follower strategy, dynamic cooperation constraint, and fuzzy
logic-based speed control strategy help to generate the desired trajectory. To facilitate the
understanding of the trajectory generation process, the pseudo-code of the algorithm is
presented in Algorithm 1.

Algorithm 1 DUSV cooperative dynamic trajectory planning based on improved artificial
potential field fusion multi-strategy

Input: Locations of obstacles Oi and garbage Ti, initial states η and υ of DUSVs,
constraints umax, amax, Lmin, and Lmax, and the optimal visiting sequence Γ =
{S, Tc(1), Tc(2) · · · Tc(p), E};

Output: Optimal trajectories of DUSVs τd(t);
1: Initialization; Choose the current visiting target as Tc(i), i = 1
2: while True do
3: if Ldi f > h then
4: Adjust the speed u1, u2 of DUSVs to improve the coordination of the DUSVs so

that Ldi f < g and constraint (9) are satisified.
5: end if
6: if P1, P2 are outside of the field range ρTi or ρ′Oi

of of the current garbage or any
obstacle, respectively then

7: Approach Tci , adjust the key points N1, N2 by constraint (9) and (10). Generate
the next moment trajectory points P1(t + 1), P2(t + 1).

8: else
9: if Either P1 or P2 enter the range ρTi of repulsion field of the current target Tc(i)

then
10: Assign the leader and the follower; Generate the trajectories for the leader

based on APF method;The follower takes the opposite turning direction;
11: if the leader gets out of ρTi then
12: Capturing of garbage Tci completes; Switch to the next visiting target

i = i + 1;
13: end if
14: else if Either P1 or P2 enters the range ρ′Oi

of the relative velocity repulsion field
of the any obstacle and σ1, σ2 ∈ (0, π) then

15: Assign the leader and the follower; The local trajectory for the leader is
generated by IAPF; the follower takes the same turning direction;

16: if the leader gets out of obstacle avoidance region ρ′Oi
then

17: Obstacle avoidance completes, break;
18: end if
19: end if
20: end if
21: if the current visiting target is the end point then
22: Approach the end point; The trajectories τd(t) completes, the task is completed,

break;
23: end if
24: end while
25: Output optimal trajectories τd(t).
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4. Simulation and Discussion

In this section, a simulation is conducted to verify the performance of the proposed
trajectory planning algorithm, specifically, the effectiveness of garbage collection, dynamic
obstacle avoidance, and the satisfaction of the cooperation constraints in terms of speed
and distance coordination between the two USVs.

4.1. The Simulation Configurations

An environmental map of 50 m × 50 m is set up with starting and ending points at
different positions. Within this map, multiple large areas of garbage with a radius between
1–2 m and obstacles of radius between 2–3 m are randomly generated. Details of the
configurations of the simulation are listed in Table 2.

Table 2. Configurations parameters of the simulation scenarios.

Scence Centric
Position

Long Half
Shaft × Short
Half Shaft/m

Radius/m Bevel Angle/° Time Step Velocity/m/s

S (10, 0)
E (40, 0)
T1 (16, 20) 1.5 × 1 90 t = 0 [−0.1, −0.1]
T2 (25, 30) 1 t = 16 [0.1, −0.2]
T3 (44, 10) 1.5 t = 38 [0.3, 0]
T4 (38, 36) 1 t = 25 [0, −0.1]
T5 (46, 25) 1.5 t = 31 [0.1, 0]

To verify the effectiveness of the proposed algorithm for solving dynamic trajectory
planning problems, both static obstacles and dynamic obstacles are added to the simulations.
The relevant parameters are set as shown in Table 3.

Table 3. Parameters of static and dynamic obstacles.

Obstacles Start Point Radius/m Velocity/m/s

Environment
O1 (17, 28) 2 [0.2, −0.2]
O2 (17, 10) 3
O3 (38, 18) 2 [0.2, 0]

The settings of the parameters of the trajectory planner used in the simulations are
shown in Table 4.

Table 4. Parameter settings for the simulations.

Parameter Name Parameter Setting

Problem model

The length of the floating rope, lp 16 m
The lower bound on distance between DUSVs, Lmin 2 m

Total garbage area 8π
The maximum enclosed area of the floating rope 39.5 m2

Dynamic obstacle avoidance
phase

Attractive proportional coefficient, ξ 1
The distance of influence, ρo , of the garbage target, Ti 4 m

Repulsion gain coefficient, η 400
The distance of influence, ρO, of the obstacle, Oi 4 m

Relative velocity repulsion field coefficient, ς 2
Relative velocity repulsion field range, ρ′O 6 m

Garbage capturing phase

Attractive proportional coefficient, ξ 1
The distance of influence, ρt, of the garbage target, Ti+1 5 m

Repulsion gain coefficient, η 400
The distance of influence, ρT , of the garbage target, Ti 0.2 m

4.2. The Simulation Results

The simulation results are analyzed from the following two parts. Firstly, the whole
generated reference trajectories of the DUSVs are shown in Figure 11 to visually verify
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effective garbage approaching, capturing, and obstacle avoidance. The effectiveness of
the improved method in dynamic obstacle avoidance is stressed with results in Figure 11
and Table 5. Secondly, the changes of the relevant state variables over time, including the
speed of the DUSVs, distances as well as distance differences to the key points between the
DUSVs, and the resulting area capacities, are shown in Figure 12, which are to verify the
satisfaction of cooperation constraints.
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Figure 11. Cooperative trajectories of the DUSVs for surface garbage cleaning in the mixed obstacle
environment. (a) Trajectories under TAPF method; (b) Trajectories under IAPF method.

Figure 11 shows the generated reference trajectories of the DUSVs for cooperative
surface garbage cleaning in the environment with static and dynamic obstacles. The results
obtained by the proposed algorithm using the IAPF method is compared with that using
the traditional APF method. The trajectories are generated as discrete reference positions
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and orientations for the DUSVs with time intervals of 0.1 s. The triangles appearing at time
intervals of 1s represent the time-varying poses of the DUSVs. In particular, the coordinates
and time of the trajectories are shown when the DUSVs enter the garbage target capture
area. The black dotted arrows and red arrows near the obstacles and garbage targets
indicate the motion direction of the corresponding obstacles and garbage targets. The gray
and pink shaded wide trails indicate the trajectories of the obstacles and the garbage targets.

（32，2.4）

（33，1.9）

（38，3.3）

（42，2）

（39，30.9）

（39.2，34.1）

（40，30）

（40.5，32.6）

（44.2，23）
（47.3，25.6）

（43.7，16.7）

（47.5，17.7）

32s

33s

38s

42s

USV1

USV2

USV1 trajectory

USV2 trajectory

Task points

Task points

Obstacles

(a)

（25，1.81）

（29，1.87）

（32，2.00）

（35，1.9）

（39，3.38）

（47，0.2）

（24.8，30.6）

（31.5，33.1）

（37.8，32）

（40.9，28.2）

（47.2，26）

（44.3，23.3）

（46.4，10.4）（42.9，9.6）

（41.6，31.3）

（37.3，34.2）

（27，29.7）

（47，0.2）25s

29s
32s

35s

39s

47s

USV1

USV2

USV1 trajectory

USV2 trajectory

Task points

Task points

Obstacles

(b)

(c) (d)

（16，2.67）（25，2.89）

（31，2.18）

（38，4.14）

（46，3.34）

Figure 12. Variation of cooperative variables of the DUSVs as functions of time. (a) Speed of DUSVs
under the proposed speed control strategy; (b) Speed of DUSVs under simple speed compensator;
(c) Distance between the DUSVs; (d) Area demand, St, and current enclosed area, S.
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This shows that the computed optimal access sequence of the garbage targets is
{S, T1, T2, T4, T5, T3, E}. Both algorithms have shown their capability to generate the tra-
jectories for the DUSVs to capture all the garbage while avoiding all the obstacles. In the
beginning, the DUSVs travel towards the current garbage target, T1; the distance between
the DUSVs is gradually increased to ensure safety as well as to meet the current area de-
mand of T1. When entering the distance of influence of the potential field of T1, the DUSVs
pass from different sides of T1, so that the garbage can be captured by the floating rope
while being attracted towards the next garbage, T2. Following that, dynamic obstacle O1 is
encountered and the DUSVs pass from the same side of the obstacle under the guidance of
the repulsive potential field and the attractive potential of the current garbage target, T2.
When the DUSVs leave the repulsive potential field of O2, they carry on to approach the
current target, T2, and the distance between the two USVs is adjusted to meet the current
area demand, i.e., the sum of areas of T1 and T2. When T2 is captured, the DUSVs switch to
approach the next target, T4, and so on until they finish with the final target, T3, and travel
to the finishing point, E. During the whole process, the speeds of the DUSVs are adjusted
by a fuzzy logic-based speed controller to keep the DUSVs in parallel.

In addition, the trajectories around t = 21 s and t = 43 s are plotted separately to
compare the performance for dynamic collision avoidance. It is observed that the algorithm
with IAPF is effective in reducing the length of trajectories for bypassing the dynamic
obstacles compared to the algorithm with traditional APF.

Table 5 presents the total trajectory length and navigation time by the two algorithms.
It can be seen that the algorithm with IAPF provides shorter trajectory lengths and costs
less navigation time to complete the task, which indicates its efficiency in scenarios with
dynamic obstacles.

Table 5. Algorithm data in dynamic environment under different algorithms.

Simulation Environment Algorithm Trajectory Length Navigation Time

Environment TAPF 177 m 55 s
IAPF 174.3 m 54 s

Figure 12 shows the changes in relevant state variables of the DUSVs over time to
verify the effectiveness of the proposed algorithms in meeting the cooperation constraints.
Figure 12a,b show the changes in speed of the DUSVs, u1 and u2, and distance difference,
Ldi f , over time under the proposed fuzzy logic-based speed controller and simple speed
compensator, respectively. For both cases, it shows that, in the beginning, the two USVs
travels in parallel at the same speed, which gradually increases to the maximum 2 m/s.
In the finishing period, the DUSVs also travel at the same speed, which gradually decreases
until the end of the mission. Figure 12a shows that between 32–33 s and 38–42 s, there
are obvious variations in u2. The distance difference, Ldi f , surpasses the threshold of 2 m
and reaches 3.3 m at 38 s. This is due to the fact that USV1 turns from the outside of T4 to
capture T4 and thus lags behind USV1. With the proposed speed controller, USV2 slows
down and Ldi f is effectively reduced within 4 s. Figure 12b shows that between 25–29 s,
32–35 s, and 39–47 s, there are obvious variations in u2 and the distance difference between
the DUSVs and the target key points is greater than 2 m. Especially between 39–47 s, it
takes 8 s to reduce the distance difference down below 2 m, indicating poor performance of
the simple compensator. Therefore, it can be concluded that the proposed speed control
strategy effectively improves the cooperation of the DUSVs.

Figure 12c shows the changes in the expected distance, L, between the DUSVs over
time. It shows that the initial expected spacing of the DUSVs is 2 m. During the whole
process, L is always between the lower bound of 2 m and the upper bound of 11 m. This
effectively prevents internal collision between the DUSVs. The values of L are marked at
the particular time instants, which correspond to the marked positions of the DUSVs in
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Figure 11b. It was found that L is gradually increased to prevent any collision with the
garbage targets and ensure no escape of garbage.

Figure 12d shows the changes in current area demand St and the current enclosed
area of the floating rope, S, over time. It can be seen that at current capacity, S can always
accommodate the demand, St. At 46 s, when the DUSVs start to approach the final garbage,
T3, the demand, St, reaches its maximum and S is gradually increased until reaching the
demand at 49 s. It should be noticed that constraint (10) is conservative as the estimated
garbage area with the circular or elliptical model is larger than the actual garbage area. This
implies that the enclosed areas have well satisfied the actual area demands over time.

In summary, the above results indicate that the proposed comprehensive trajectory
planner for the floating-rope-connected DUSVs for water surface garbage cleaning is satis-
fying in generating cooperative trajectories for the two USVS that meet the requirements
for garbage collection with good coordination for preventing garbage escaping and internal
collision while avoiding dynamic obstacles with a shorter travel distance

5. Conclusions and Future Work

To address the problem that a single USV has difficulty in effectively collecting large
floating garbage, a comprehensive trajectory planner for DUSVs connected with a floating
rope for surface garbage collection with dynamic obstacle avoidance is proposed, which
considers the kinematic constraints of the under-actuated USV and time-varying cooper-
ation constraints of the DUSVs. The DUSVs approach the garbage targets based on the
guidance of the target key points, which consider the cooperation constraints. The APF
method combined with the leader–follower strategy is proposed for cooperative garbage
capturing, and an improved APF with the inclusion of a velocity repulsion field combined
with the leader–follower strategy is adopted for dynamic obstacle avoidance with shorter
travel distance. Cooperation between the double USVs is ensured through the proposed
fuzzy logic-based speed controller. The simulation results show the effectiveness of the
proposed algorithm in generating satisfactory trajectories for cooperative garbage collection
and dynamic obstacle avoidance while meeting all the constraints. This implies that more
efficient and effective cleaning could be achieved in practice with the proposed planner
than conventional methods that have not taken the practical issues, i.e., size and shape and
the dynamic nature of floating garbage, into account.

The proposed planner is limited by its assumption of full prior knowledge of the initial
positions of all garbage areas and obstacles with an UAV and real-time updating of the
actual locations of garbage areas and obstacles through on-board sensors. Future work
would take into account the uncertainties in positions of the garbage areas and obstacles
due to actual communication and sensing.
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