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Abstract: The unmanned surface vessel (USV) is an emerging marine tool with its advantages of
automation and intelligence in recent years; the good trajectory tracking performance is an important
capability. This paper proposes a novel prescribed performance fixed-time fault-tolerant control
scheme for an USV with model parameter uncertainties, unknown external disturbances, and actuator
faults, based on an improved fixed-time disturbances observer. Firstly, the proposed observer can not
only accurately and quickly estimate and compensate the lumped nonlinearity, including actuator
faults, but also reduce the chattering phenomenon by introducing the hyperbolic tangent function.
Then, under the framework of prescribed performance control, a prescribed performance fault-tolerant
controller is designed based on a nonsingular fixed-time sliding mode surface, which guarantees the
transient and steady-state performance of an USV under actuator faults and meets the prescribed
tracking performance requirements. In addition, it is proved that the closed-loop control system has
fixed-time stability according to Lyapunov’s theory. Finally, upon conducting numerical simulations
and comparing the proposed control scheme with the SMC and the finite-time NFTSMC scheme,
it is evident that the absolute error tracking performance index of the proposed control scheme is
significantly lower, thus indicating its superior accuracy.

Keywords: unmanned surface vessel; fixed-time; fault-tolerant control; prescribed tracking
performance

1. Introduction

In recent years, the unmanned surface vessel (USV) has been extensively utilized in
ocean sampling, ocean mapping, and maritime rescue owing to its compact size, exceptional
maneuverability, and effective concealment [1]. A requirement of the USV in performing
the above tasks is to be able to arrive and remain precisely on the desired trajectory within
the specified time. However, there are significant challenges in achieving precise trajectory
tracking for the USV. Firstly, the dynamics of the USV exhibit highly nonlinear behavior.
Secondly, the exact model of the USV system is unknown, and working conditions are
often harshly affected by sea winds, waves, and currents [2]. Accurate trajectory tracking is
crucial for the safe and efficient autonomous operation of the USV in different scenarios
and thus has important research value and practical significance.

At present, the trajectory tracking control methods of the USV mainly include the
following: PID control [3], backstepping control [4,5], fuzzy control [6], adaptive control [7,8],
and sliding mode control (SMC) [9–11]. In particular, SMC has been proven to be highly
robust to uncertainties and disturbances in nonlinear systems, and it is widely used in
ship trajectory tracking control. For example, by introducing a disturbance observer to
estimate the disturbance and compensate it in the control law and combining it with SMC,
the trajectory tracking of the USV was implemented in [12]. Similarly, Piao et al. [13]
proposed an adaptive backstepping SMC strategy that used the adaptive law to estimate
the bounds of the external unknown disturbance. But the upper bound of the disturbance
is known and constant. Furthermore, Chen et al. [14] designed an adaptive sliding mode
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controller by combining radial basis function neural networks (RBFNNs), which were used
to approximate and compensate modeling uncertainties, and a disturbance observer to
estimate and compensate external disturbances. However, these SMC methods all choose
a linear sliding surface, which can only guarantee that the tracking error converges to
zero asymptotically, and the convergence rate can be adjusted by adjusting the sliding
mode surface parameters, while the system tracking error cannot converge to zero in finite
time regardless.

In order to speed up the error convergence, finite-time control methods [15–17] have
been widely used in the field of USV motion control. Also of relevance, Xu et al. [18]
proposed a nonsingular fast terminal SMC scheme based on a finite-time extended state
observer (ESO). In [19], the universal approximation property of RBFNNs was used to
estimate the uncertainty of the system, and event-triggered control (ETC) and finite-time
control were combined to solve the problem of system uncertainty and asymmetric input
saturation. Then, Rodriguez et al. [20] designed a finite-time control strategy by combining
adaptive boundary estimation and the integral SMC method. Furthermore, Huang et al. [21]
used RBFNNs to approximate the uncertain system dynamics and used the minimum
learning parameter (MLP) algorithm to reduce the computational complexity. At the same
time, by introducing a finite-time SMC algorithm, the finite-time formation control of the
USV was realized. Notably, it should be pointed out that the tracking error convergence
time in the above control method depends on the control parameters and the initial state of
the system, which indicates that when the control parameters are unchanged and the initial
error of the system tends to infinity, the error convergence time will also increase unbounded.
In order to make the upper bound on the convergence time of the system independent
of the initial state, the fixed-time control was first proposed by the researcher Polyakov
in [22]. Inspired by this, Yao et al. [23] proposed a fixed-time terminal SMC scheme, and the
trajectory tracking error of USV can converge in a fixed time, but this fixed-time terminal
sliding mode surface will produce singularity. In view of this, a nonsingular fixed-time
terminal SMC strategy was proposed in [24]. Additionally, Chen et al. [25] proposed a
nonsingular fixed-time fractional order sliding mode controller and introduced RBFNNs
to estimate external disturbances. However, when using neural networks to approximate
unknown external disturbances, it is a difficult problem to select the weighting matrix and
the number of hidden layer nodes.

In practical engineering applications, it is necessary to consider actuator faults in
order to ensure the performance and reliability of USV tracking control. Actuator fault is
known as one of the most typical cases of input constraints, which may degrade the control
performance, especially for USV motion control systems that require high safety. Therefore,
fault-tolerant control (FTC) techniques must be considered. In [26], actuator faults of the
USV are addressed by auxiliary systems integrated with adaptive techniques. In addition,
Zhang et al. [27] transformed the dynamic model with actuator faults and uncertainties
into a nominal model with equivalent disturbances and tracked by a robust compensator.
In [28], a fault efficiency estimator is constructed based on a fuzzy-aided nonlinear observer.

The above studies have achieved certain results in improving the steady-state accuracy
of USV trajectory tracking, but less consideration has been given to the transient performance
and output constraints of trajectory tracking errors, especially for the transient performance
(such as overshoot) of trajectory tracking under actuator faults. Heshmati-Alamdari
et al. [29] proposed a prescribed performance control (PPC) strategy to achieve trajectory
tracking under prescribed transient and steady-state responses without considering the
model’s uncertainties and external disturbances.

In summary, in order to highlight the difference between this paper and existing related
studies, Table 1 indicates that the controller considers multiple factors. Note that if the
controller satisfies the factor in Table 1, it is marked by ✓, otherwise, by ✕.



J. Mar. Sci. Eng. 2024, 12, 799 3 of 19

Table 1. Advantages and disadvantages of related literature.

Related
Literature

Model
Uncertainties

External
Disturbances

Actuator
Faults

Prescribed
Performance

Limited
Convergence

Time

Convergence
Time Is

Independent of
Initial States

[12] ✕ ✓ ✕ ✕ ✕ ✓

[13] ✓ ✓ ✕ ✕ ✕ ✓

[14] ✓ ✓ ✕ ✕ ✕ ✓

[18] ✓ ✓ ✕ ✕ ✓ ✕

[19] ✕ ✓ ✕ ✕ ✓ ✕

[20] ✓ ✓ ✕ ✕ ✓ ✕

[23] ✓ ✓ ✕ ✕ ✓ ✓

[24] ✓ ✓ ✓ ✕ ✓ ✓

[25] ✓ ✓ ✕ ✕ ✓ ✓

[26] ✕ ✓ ✓ ✕ ✓ ✕

[27] ✓ ✓ ✓ ✕ ✓ ✓

[28] ✓ ✓ ✓ ✕ ✓ ✓

[29] ✕ ✕ ✕ ✓ ✕ ✓

This paper ✓ ✓ ✓ ✓ ✓ ✓

In this work, an improved fixed-time disturbances observer-based prescribed perfor-
mance fixed-time fault-tolerant control (IFxDO-PPFxFC) scheme is proposed to solve the
problem that the tracking control results of the USV are susceptible to the initial states of
the system, unknown external disturbances, model parameter uncertainties, and actuator
faults. Then, the main contributions of this paper are as follows:

(1) An improved fixed-time disturbances observer is proposed. The proposed technique
is significant in that it not only provides faster convergence but also effectively reduces
the chattering phenomenon by introducing the hyperbolic tangent function. In
addition, the bound of the convergence time value can be predicted in advance.

(2) Combining fixed-time SMC, FTC, and PPC theories, a novel IFxDO-PPFxFC scheme
is proposed in this paper. Unlike the finite-time stable control scheme [18–20], The
proposed control scheme enables the USV to accurately track the desired trajectory in
a fixed time, and the convergence time is independent of initial states. Meanwhile, the
advantage of this control scheme is its singularity-free. Furthermore, it can guarantee
the transient and steady-state performance of output errors of trajectory tracking
controller even in the presence of actuator faults; this is of great significance for the
safe navigation of USV.

This paper is organized as follows. Section 2 gives the preliminaries and problem
formulation. Section 3 presents the controller design and stability analysis. Section 4
verifies it through simulation experiments. Finally, Section 5 gives the conclusions.

2. Preliminaries and Problem Formulation

In this section, in order to facilitate the subsequent controller design and stability
proofs, we present the needed notations, definitions, and lemmas for the controller design,
introducing the detailed mathematical model of the USV.

2.1. Preliminaries

Notations: Rn denotes an n × 1 column vector, Rn×m denotes an n × m dimensional
matrix, λmax(·) and λmin(·) denote the minimum and maximum eigenvalue of a matrix,
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diag{·} denotes the diagonal matrix, |·| denotes the modulus of a vector, and ∥·∥ de-
notes the 2-norm of a vector or the induced norm of a matrix, respectively. For a vector
x = [x1, x2, · · · · · · xn]

T
∈ Rn and a positive scalar a, sign(x) = [sign(x1), sign(x2) · · · sign(xn)]

T

[x]a = [|x1|
a sign(x1), |x2|

a sign(x2) · · · |xn|
asign(xn)]

T and xa = [x1
a, x2

a
· · · · · · xn

a)]T,
where sign(x) denotes the signum function.

Definition 1. Consider the following system:

.
y = f (y), y(0) = y0, y ∈ Rn (1)

The origin of the system (1) is said to be fixed-time stable if there exists a bounded constant T∗
which is independent of the initial value such that

lim
t→T∗

∥∥∥y
∥∥∥ = 0,

∥∥∥y
∥∥∥ = 0 f or t > T∗ (2)

Lemma 1 ([30]). For the system (1), assume that there exists a positive definite continuous Lyapunov
function that satisfies

.
V(y) ≤ −λ1Vα(y) − λ2Vβ(y) (3)

where λ1 > 0, λ2 > 0, 0 < α < 1, and β > 1. The system (1) is globally fixed-time stable, ensuring
that the convergence time T∗ satisfies

T∗ ≤ T∗(α, β,λ1,λ2) =
1

λ1(1− α)
+

1
λ2(β− 1)

(4)

Lemma 2 ([31]). For the system (1), assume that there exists a positive definite continuous Lyapunov
function that satisfies

.
V(y) ≤ −aVp(y) − bVq(y) + ε (5)

where a and b are positive constants, 0 < p < 1, q > 1, and 0 < ε < ∞. Then, the system (1) is
practically fixed-time stable, and the system state can converge to the residual set at fixed time lim

y→T∗
y

∣∣∣∣∣∣V(y) ≤ min

a−
1
p

(
ε

1− θ

) 1
p
, b−

1
p

(
ε

1− θ

) 1
q


 (6)

where θ is a positive constant and satisfies 0 < θ < 1. The system convergence time T∗ satisfies

T∗ ≤ T∗(a, b, p, q) =
1

a(1− p)
+

1
b(q− 1)

(7)

Lemma 3 ([32]). If ε1, ε2, . . . , εn ≥ 0, there exists

n∑
i=1

εi
p
≥

 n∑
i=1

εi

κ, 0 < κ < 1 (8)

n∑
i=1

εi
p
≥ n1−p

 n∑
i=1

εi

κ,κ > 1. (9)

2.2. USV Mathematical Model

In general, the motion of the USV in the horizontal plane is regarded as the 3-DOF
motion, namely surge, sway, and yaw. As shown in Figure 1, the kinematic model
parameters of the USV are established based on the earth-fixed OXY and the body-fixed
OEXEYE coordinate frames.



J. Mar. Sci. Eng. 2024, 12, 799 5 of 19
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Figure 2. Trajectory tracking controller framework diagram for USV. 
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Figure 1. The definition of the earth-fixed OXY and the body-fixed OEXEYE frames.

The kinematic and dynamic models of the USV are defined as follows [33]:{ .
η = R(ψ)v
M

.
v = −C(v)v−D(v)v + τ+ b (10)

where η =
[
x y ψ

]T
∈ R3 is the position and heading of the USV in the earth-fixed frame.

v =
[
u v r

]T
∈ R3 is the surge, sway, and yaw velocities of the USV in the body-fixed

frame. τ =
[
τ1 τ2 τ3

]T
∈ R3 is the control input. b =

[
bu bv br

]T
∈ R3 is the external

environmental unknown time-varying disturbance. The rotation matrix R(ψ) ∈ R3×3 is
given as follows:

R(ψ) =


cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (11)

The matrix R(ψ) has the following properties:
.

R(ψ) = R(ψ)S(r), RT(ψ)S(r)R(ψ) =

R(ψ)S(r)R(ψ)T = S(r),
∥∥∥R(ψ)

∥∥∥ = 1. The matrix S(r) is given as follows:

S(r) =


0 −r 0
r 0 0
0 0 0

 (12)

M ∈ R3×3 is the positive definite matrix, and it satisfies M = MT > 0. Its expression is

M =


m11 0 0

0 m22 m23
0 m32 m33

 (13)

where m11 = m−X .
u, m22 = m−Y .

v, m23 = mxg −Y .
r, m32 = mxg −N .

v, and m33 = Iz −N .
r.

C(v) ∈ R3×3 is the Coriolis and centripetal matrix, and it satisfies C(v) = −C(v)T > 0.
D(v) ∈ R3×3 is the damping matrix. They are expressed as follows:

C(v) =


0 0 c13(v)
0 0 c23(v)

−c13(v) −c23(v) m33

, D(v) =


d11(v) 0 0

0 d22(v) d23(v)
0 d32(v) d33(v)

 (14)

where c13(v) = −m11v − m23r, c23(v) = −m11u, d11(v) = −Xu − X
|u|u |u| − Xuuuu2,

d22(v) = −Yv−Y|v|v|v| −Y|r|v|r|, d23(v) = −Yr−Y|v|r|v|−Y|r|r|r|, d32(v) = −Nv−N|v|v|v| −N|r|v|r|,
and d33(v) = −Nr −N|v|r|v| −N|r|r|r|, where m is the mass of the USV, Iz is the moment of
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inertia, and xg is the distance from the center of gravity to the origin on the Y. X∗, Y∗, and
N∗ are the hydrodynamic parameters acting on the USV.

According to the research of Zhang et al. [27], the control input of the USV with
actuator faults can be expressed by the following mathematical method:

τi = τci + f(t−T0i)
((ei − 1)τci + τi) (15)

where τi(i = u, v, r) represents the actual control input acting on the USV, τci is the desired
control forces and moments, τi is the additive uncertain fault input, ei is the thruster efficiency
factor with 0 ≤ ei ≤ 1, and f(t−T0i)

represents the time-varying fault. Its expression is

f(t−T0i)
=

{
0, t < T0i

1− e−ai(t−T0i), t ≥ T0i
(16)

where ai is the unknown fault change rate, and T0i is the fault occurrence time of each
degree of freedom.

In summary, the equivalent control forces and moments of the USV propulsion system
considering the thruster fault constraint is expressed as follows:

τ = τc + F(t−T0)

(
(E− I3)τc +

¯
τ
)

(17)

where F(t−T0) = diag
{

f(t−T0u), f(t−T0u), f(t−T0r)

}
∈ R3×3 is the time-varying fault matrix of the

propulsion system. E = diag{eu, ev, er} ∈ R3×3 is the efficiency matrix of the propulsion

system, τc =
[
τcu τcv τcr

]T
∈ R3 is the desired control forces and moments vector, and

¯
τ =

[
τu τv τr

]T
∈ R3 is the additive fault vector.

In addition, consider the model parameter uncertainties:{
C(v) = C0(v) + ∆C(v)
D(v) = D0(v) + ∆D(v) (18)

where C0(v) and D0(v) denote the nominal values of the Coriolis and centripetal matrix
and the damping matrix, respectively. ∆C(v) and ∆D(v) denote the uncertainty values of
the Coriolis and centripetal matrix and the damping matrix, respectively.

Define an auxiliary velocity vector and let

ω = R(ψ)v (19)

where ω =
[
ω1 ω2 ω3

]T
∈ R3.

Combining Equations (17) and (18), the mathematical model of the USV can be
redefined as follows: { .

η = ω
.
ω = H(η, v) + RM−1τc + d

(20)

where H(η, v) ∈ R3 is the total nominal component, d =
[
d1 d2 d3

]T
∈ R3 is the unknown

lumped nonlinearity (model parameter uncertainties, unknown external disturbances, and
actuator faults) of the system. They are given as follows:

H(η, v) = RM−1(MSv−C0(v)v−D0(v)v) (21)

d = RM−1
(
F(t−T0)

(
(E− I3)τc +

¯
τ
)
+ b− ∆C(v)v− ∆D(v)v

)
(22)
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Assumption 1. The unknown lumped nonlinearity d (22) is limited by ∥d∥ < a, where a is an
unknown constant. The first-order derivative of d is bounded by

∥∥∥∥ .
d
∥∥∥∥ < b, where b is a known

positive constant.

3. Controller Design and Stability Analysis

In this section, Figure 2 presents the trajectory tracking controller framework diagram
for the USV. It is mainly made up of the performance function, an improved FxDO, and a
PPFxF controller. The performance function provides the tracking error transformation. The
improved FxDO can accurately estimate lumped disturbances and faults in a fixed time. The
PPFxF controller makes trajectory tracking errors reach zero at a fixed time and ensures that
the transient performance and steady-state performance meet the specified requirements.

 

Figure 1. The definition of the earth-fixed   and the body-fixed   frames. 

 

Figure 2. Trajectory tracking controller framework diagram for USV. 

 

Figure 4. The lumped disturbance   and the observer's estimated output. 
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Figure 2. Trajectory tracking controller framework diagram for USV.

3.1. Improved Fixed-Time Disturbances Observer

Notably, when the USV performs its mission in the actual ocean environment, its
stability can be seriously affected by unknown disturbances such as wind, waves, and
currents. At the same time, the faults of the actuator cannot be ignored. In view of this, by
combining the mathematical model of the USV, a fixed-time disturbances observer (FxDO)
is applied to estimate and compensate the lumped nonlinearity, including actuator faults,
and the observer is designed accordingly as follows:

ω̃ = ω−
⌢
ω, d̃ = d−

⌢
d

.
⌢
ω = H(η, v) + RM−1τc +

⌢
d + ς1

∣∣∣ω̃∣∣∣α1sign(ω̃) + σ1
∣∣∣ω̃∣∣∣β1sign(ω̃)

.
⌢
d = ς2

∣∣∣ω̃∣∣∣α2sign(ω̃) + σ2
∣∣∣ω̃∣∣∣β2sign(ω̃) + γsign(ω̃)

(23)

Remark 1. In Equation (23), ς1
∣∣∣ω̃∣∣∣α1sign(ω̃), σ1

∣∣∣ω̃∣∣∣β1sign(ω̃), ς2
∣∣∣ω̃∣∣∣α2 sign(ω̃), and

σ2
∣∣∣ω̃∣∣∣β2sign(ω̃) are continuous regardless of the sign function; however, γsign(ω̃) is discon-

tinuous, leading to a chattering phenomenon. The fixed-time observer’s estimate of the centralized
uncertainty will be compensated for in the control input, so the discontinuity term in Equation (23)
will cause discontinuities in the control input, which will lead to the chattering phenomenon.
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To avoid the problem of the chattering phenomenon, the signum function is approx-
imated in this paper by the hyperbolic tangent function. An improved FxDO can be
expressed as follows:

ω̃ = ω−
⌢
ω, d̃ = d−

⌢
d

.
⌢
ω = H(η, v) + RM−1τc +

⌢
d + ς1

∣∣∣ω̃∣∣∣α1sign(ω̃) + σ1
∣∣∣ω̃∣∣∣β1sign(ω̃)

.
⌢
d = ς2

∣∣∣ω̃∣∣∣α2sign(ω̃) + σ2
∣∣∣ω̃∣∣∣β2sign(ω̃) + γtanh(ω̃)

(24)

Theorem 1. If Assumption 1 is satisfied, the improved FxDO (24) is designed to achieve an accurate
estimation of unknown lumped nonlinearity within a fixed time Td.

The estimated errors are given as follows:
.
ω̃ = −ς1

∣∣∣ω̃∣∣∣α1sign(ω̃) − σ1
∣∣∣ω̃∣∣∣β1 sign(ω̃) + d̃

.

d̃ = −ς2
∣∣∣ω̃∣∣∣α2sign(ω̃) − σ2

∣∣∣ω̃∣∣∣β2sign(ω̃) − γtanh(ω̃) +
.
d

(25)

where 0 < α1 < 1, 0 < α2 < 1, β1 > 1, β2 > 1, and γ > b. The options for ς1, ς2, σ1, and σ2 are
as follows:

A =

[
−ς1 1
−ς2 0

]
, B =

[
−σ1 1
−σ2 0

]
(26)

Matrices A and B satisfy the Hurwitz matrix, and it has been proved in [34] that the
estimation error of the system converges to zero at fixed time Td, and it is given as follows:

Td ≤
λ1−a1

max (P1)λmax(P1)

(1− a1)λmin(Q1)
+

λmax(P2)

(b1 − 1)λb1−1
min (P1)λmin(Q2)

(27)

where 1 − c1 < a1 < 1, 1 < b1 < 1 + c2, 0 < c1 < 1, and c2 > 0. P1, P2, Q1, and Q2 are
symmetric positive definite matrixes and satisfy AT

1 P1 +P1A1 = −Q1, AT
2 P2 +P2A2 = −Q2.

3.2. Errors Transformation via Performance Function

The trajectory tracking errors of the USV are defined as follows:{
ηe = η− ηd
ωe =

.
η−

.
ηd

(28)

where ηe =
[
ηeu ηev ηer

]T
∈ R3, ωe =

[
ωeu ωev ωer

]T
∈ R3.

Taking the derivative of Equation (28), the mathematical equation of the tracking errors
of the USV can be written as follows:{ .

ηe = ωe
.
ωe = H(η, v) + RM−1τc + d−

..
ηd

(29)

where ηd =
[
xd yd ψd

]T
∈ R3. ηd is the desired trajectory,

.
ηd and

..
ηd are the first-order

and second-order derivatives of the desired trajectory.

Assumption 2. The desired trajectory of the USV ηd is bounded and derivable, and its deriva-
tives

.
ηd and

..
ηd are smooth and bounded.

In order to ensure that the transient and steady-state performance of the trajectory error
ηei is as shown in Figure 3, a prescribed performance function is introduced to constrain the
tracking error. Select the following performance function

δi(t) = (δ0i − δ∞i) exp(−ξt) + δ∞i, (i = u, v, r) (30)
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where ξ is the index of the rate of convergence; researchers can change this index to obtain
the prescribed transient and steady-state performance according to the specific needs of the
task. δ0i denotes the initial value of the prescribed performance function δi(t), and δ∞i is
the stabilized value after the convergence of the prescribed performance function δi(t).
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eiσ
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Figure 3. Prescribed performance control diagram.

Then, a boundary function is constructed from the performance function to limit the
tracking error of the system as follows:{

− f1δi(t) < ηei < δi(t), ηei(0) ≥ 0
−δi(t) < ηei < f2δi(t), ηei(0) ≤ 0 , (i = u, v, r) (31)

From Equation (31), one has− f1 <
ηei
δi(t)

< 1, ηei(0) ≥ 0

−1 < ηei
δi(t)

< f2, ηei(0) ≤ 0
(32)

Assumption 3. ([35]). The initial states of the USV satisfy −δi(0) < ηei(0) < δi(0).

The transformation is achieved by rewriting the tracking error to the following
equivalent form

ηei = δi(t)Γ(σei) (33)

where Γ(σei) is the unconstrained transformation function, σei is the transformed error, and
δi(t), Γ(σei) need to satisfy the following requirements:

• δi(t) is a monotonically decreasing function;
• Γ(σei) ∈ (−1, 1), Γ(σei) is a strictly increasing function;
• δi(t) > 0, ∀t ≥ 0;
• lim

σei→∞
Γ(σei) = 1, lim

σei→−∞
Γ(σei) = −1.

The transformation function in the form of a hyperbolic tangent is defined as follows:

Γ(σei) =


eσei− f1e−σei

eσei+e−σei , σei ≥ 0
f2eσei−e−σei

eσei+e−σei , σei ≤ 0
(34)

According to the properties of the hyperbolic tangent function, the transformed error
can be expressed as

σei = Γ−1
(
ηei

δi(t)

)
=

1
2

ln
1 + ηei

δi

1− ηei
δi

(35)
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The first-order derivative and the second-order derivative of σei are calculated as
.
σei =

1
2

( .
δi+

.
ηei

δi+ηei
+

.
δi−

.
ηei

δi−ηei

)
..
σei =

1
2

( ..
δi(δi+ηei)−(δi+ηei)

2

(δi+ηei)
2 −

..
δi(δi−ηei)−(δi−ηei)

2

(δi−ηe i)
2

)
+ 1

2

(
δi+ηei

(δi+ηei)
2 −

δi−ηei

(δi−ηei)
2

)
.
ωei

(36)

For the convenience of the subsequent control design, let

..
σei = ℏi + ni

.
ωei (37)

where ℏi =
([ ..
δi(δi + ηei) − (δi + ηei)

2
]
/2(δi + ηei)

2
−

[ ..
δi(δi − ηei) − (δ− ηei)

2
]
/2(δi − ηei)

2
)

ni =
(
(δi + ηei)/

[
2(δi + ηei)

2
]
− (δi − ηei)/

[
2(δi − ηei)

2
]) . (38)

Remark 2. The error transformation by means of a prescribed performance function and the
error ηei also converges if the error σei converges. Meanwhile, −δi(t) and δi(t) limit the maximum
overshooting of ηei , and the decreasing speed of δi(t) affects the convergence speed of ηei.
δ∞i and −δ∞i limit the steady state error of ηei, so that the prescribed performance control
ensures the transient and steady state performance of the error ηei at the same time.

3.3. Fixed-Time Fault-Tolerant Controller Design

In order to realize the accurate tracking of the desired trajectory in a fixed time,
the sliding surface is constructed according to the errors after the transformation of the
prescribed performance function. A nonsingular fixed-time sliding surface s is designed as
follows [36]:

s = σe +
1
λ1

α

[ .
σe + λ2[σe]

β
] 1
α (39)

where s =
[
s1 s2 s3

]T
∈ R3, σe =

[
σeu σev σer

]T
∈ R3, 1/2 < α < 1, β > 1, λ1 > 0, and

λ2 > 0.

Theorem 2. For the nonlinear USV dynamics system (20), in the presence of actuator faults and
model parameter uncertainties given by Equations (17) and (18), if the sliding mode surface is
designed as (39), then the closed-loop system is stable, and the errors σe and

.
σecan converge to zero

at a fixed time Ts.

Proof. When the sliding mold surface s = 0 is reached, which yields

.
σe = −λ1[σe]

α
− λ2[σe]

β (40)

Select the Lyapunov function as follows:

V1 =
1
2
σe

Tσe (41)

The derivative of Equation (41) is taken as follows:

.
V1 = 1

2σe
T .
σe

= σe
T
(
−λ1[σe]

α
− λ2[σe]

β
)

= −λ1|σe|
α+1
− λ2|σe|

β+1

= −λ12(α+1)/2V1
(α+1)/2

− λ22(β+1)/2V1
(β+1)/2

≤ −λ12α/2V1
(α+1)/2

− λ22β/2V1
(β+1)/2

(42)
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Due to 1/2 < α < 1, β > 1, according to Lemma 1, σe,
.
σe will converge to zero at a fixed

time Ts, as shown in the following:

Ts ≤
21−α/2

λ1(1− α)
+

21−β/2

λ2(β− 1)
(43)

Then, taking the derivative of Equation (39), the following can be obtained:

.
s =

.
σe +

1
αλ1

α diag
{∥∥∥∥ .
σe + λ2[σe]

β
∥∥∥∥ 1
α−1

}( ..
σe + λ2βdiag

{
∥σe∥

β−1
} .
σe

)
(44)

Let F(σe,
.
σe) = diag

{∥∥∥∥ .
σe + λ2[σe]

β
∥∥∥∥}, substituting Equation (37) into Equation (44), the

following can be obtained:

.
s =

.
σe +

1
αλ1

α F(σe,
.
σe)

1
α−1(h + diag{ni}

.
ωe + λ2βdiag

{
∥σe∥

β−1
} .
σe

)
(45)

where h =
[
ℏu ℏv ℏr

]T
∈ R3, diag

{
∥σe∥

β−1
}

= diag
{
|σeu|

β−1, |σev|
β−1, |σer|

β−1
}
, and

diag{ni} = diag
{
nu nv ℏr

}
. □

According to Equation (29), Equation (45) can be transformed into

.
s =

.
σe +

1
αλ1

α F(σe,
.
σe)

1
α−1(h + diag{ni}

(
H(η, v) + RM−1τc + d−

..
ηd

)
+ λ2βdiag

{
∥σe∥

β−1
} .
σe

)
(46)

Based on Equation (46), the control inputs to the controller can be expressed in terms
of the equivalent control input τeq and the switching control input τsw, thus τc = τeq + τsw.
They are given as follows: τeq = −MR−1

(
H(η, v) +

⌢
d −

..
ηd

)
− (diag{ni})

−1MR−1
(
λ2βdiag

{
∥σe∥

β−1
} .
σe + αλ1

αdiag
{∥∥∥F(σe,

.
σe)

∥∥∥ 1
α−1

}
σe + h

)
τsw = −(diag{ni})

−1MR−1
(
φ1[s]

µ1 + φ2[s]
µ2

) (47)

where diag
{∥∥∥F(σe,

.
σe)

∥∥∥ 1
α−1

}
= diag

{∣∣∣F(σeu,
.
σeu)

∣∣∣ 1
α−1

,
∣∣∣F(σev,

.
σev)

∣∣∣ 1
α−1

,
∣∣∣F(σer,

.
σer)

∣∣∣ 1
α−1

}
.

0 < µ1 < 1, µ2 > 1, φ1 > 0, and φ2 > 0.

Remark 3. In Equation (47), τeq contains diag
{∥∥∥F(σe,

.
σe)

∥∥∥ 1
α−1

}
, but this will not produce

singularity; in fact, when
.
σei = 0, σei , 0, we can obtain

∣∣∣ .
σei

∣∣∣1− 1
α .
σei ≥

.
σei

2− 1
α , 2− 1

α > 0.

Theorem 3. If Assumptions 1–3 are satisfied, the IFxDO-PPFxFC scheme (47) is designed, which
can make the USV track the desired trajectory quickly and accurately, ensuring that the position and
velocity tracking errors are stable to a small neighborhood around the equilibrium point at a fixed
time, and the convergence time is independent of the initial state of the system, and the convergence
time is satisfied Tmax ≤ Td + Ts + Tr + Tc; Tr and Tc are given as follows: Tr ≤

21−µ1/2

φ1n(1−µ1)/2(1−µ1)
+ 21−µ2/2

φ2(µ2−1)

Tc = (λ1
α)

α
α−1

(48)
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3.4. Stability Analysis

Proof of Theorem 3. Substituting Equation (47) into Equation (46), the following can
be obtained:

.
s =

1
αλ1

α F(σe,
.
σe)

1
α−1(
−φ1[s]

µ1 −φ2[s]
µ2 + diag{ni }̃d

)
(49)

Let χ = diag{χ1,χ2,χ3} =
1

αλ1
α F(σe,

.
σe)

1
α−1
∈ R3×3, then one has

.
s = χ

(
−φ1[s]

µ1 −φ2[s]
µ2 + diag{ni }̃d

)
(50)

Select the Lyapunov function as follows:

V2 =
1
2

3∑
1

si
2 (51)

Take the derivative of Equation (51), then one has

.
V2 =

3∑
1

si
.
si

= χi
3∑
1

si
(
−φ1[si]

µ1 −φ2[si]
µ2 + nid̃i

)
≤ χi

3∑
1

(
−φ1|si|

µ1+1
−φ2|si|

µ2+1 + |si||ni|

∣∣∣∣d̃i

∣∣∣∣)
≤ χi

3∑
1

(
−φ1|si|

µ1+1
−φ2|si|

µ2+1 + Θi
)

(52)

where Θi = |si||ni|

∣∣∣∣d̃i

∣∣∣∣, 0 < Θi < ∞.
According to Lemma 3, one has

3∑
i=1

|si|

µ1+1

≥ n(1−µ1)/2

 3∑
i=1

|si|
2


(µ1+1)/2

,
3∑

i=1

|si|

µ2+1

≥

 3∑
i=1

|si|
2


(µ2+1)/2

(53)

By substituting Equations (51) and (53) into Equation (52), the following can be obtained:

.
V2≤ χ

−φ1n(1−µ1)/2

 3∑
i=1

|si|
2


(µ1+1)/2

−φ2

 3∑
i=1

|si|
2


(µ2+1)/2

+ Θi


≤ χ

(
−φ1n(1−µ1)/22(µ1+1)/2V1

(µ1+1)/2
−φ22(µ2+1)/2V1

(µ2+1)/2 + Θi
) (54)

It is worth noting that when F(σei, σei) , 0, χi > 0. The working state space can be

divided into two areas, namely Ω1 =
{(
σei,

.
σei

)∣∣∣∣χi > 1
}

and Ω2 =
{(
σei,

.
σei

)∣∣∣∣0 < χi < 1
}

for

the above two cases, which we will talk about later.
Step 1. Obviously, when the system states meet Ω1, the following can be obtained:

.
V2 ≤ −φ1n(1−µ1)/22(µ1+1)/2V1

(µ1+1)/2
−φ22(µ2+1)/2V1

(µ2+1)/2 + Θi (55)

Due to µ1 > 1 and 0 < µ2 < 1, according to Lemma 2, the system satisfies the fixed-time
convergence, and the convergence time Tr is bounded by Equation (48).

Step 2. When the system states meet Ω2, F(σei, σei) , 0 can be obtained, and the sliding
mode surface si will approach si = 0. We need to prove that F(σei, σei) = 0 is not attractive
except for the origin. This is proved in [37], so no matter where the initial state is, As soon
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as the s sliding mode surface si = 0 is reached, the system states will reach the origin within
the fixed time T = Tr + Tc, where the convergence time Tc is given by Equation (48).

The total convergence time of the USV trajectory tracking system is satisfied:
Tmax ≤ Td + Ts + Tr + Tc. □

Remark 4. In summary, in terms of controller design, this paper reports two novelties compared to
recent work in the field. (1) An improved fixed-time disturbances observer is designed. The proposed
technique is significant in that it not only provides faster convergence but also effectively reduces
the chattering phenomenon. (2) A prescribed performance fixed-time fault-tolerant controller is
proposed. In fact, the application of fixed-time control in the field of USV trajectory tracking control
is not new, but we consider the case of actuator faults in the model and incorporate the prescribed
performance control to ensure the transient and steady-state performance of the output errors while
meeting the prescribed tracking performance requirements. The whole proposed control scheme is
new to the previous design methods of USV controllers.

4. Numerical Simulations and Analysis

In this section, the simulation study is performed on CyberShip II [33], a 1:70 scale
ship model provided by the Marine Cybernetics Laboratory of the Norwegian University
of Science and Technology. The vessel is 1.255 m long, and the detailed parameters are
given in Table 2.

Table 2. Hydrodynamic parameters of CyberShip II.

m = 23.8000 Yv = −0.8612 X .
u = −2.0

Iz = 1.7600 Y|v|v = −36.2823 Y .
v = −10.0

xg = 0.0460 Yr = 0.1079 Y .
r = −0.0

Xu = −0.7225 N|v|v = 5.0437 N .
v = −0.0

X|u|u|u| = −1.3274 Nv = 0.1052 N .
r = −1.0

Xuuu = −5.8664

In the simulation, the model uncertainties are chosen to be ∆C(v) = 10%C0(v) and

∆D(v) = 10%D0(v). b =
[
18 sin(0.9t + π/2) 7 sin(0.8t + π/3) 3 sin(0.5t + π/5)

]T
is

used to describe the effect of the wind, waves, and current on the USV. The reference

trajectories are chosen to be ηd =
[
2 sin(0.1t) 2 cos(0.1t) 0.1t

]T
, and the initial position

and initial velocity are chosen as η(0) =
[
1 1 π/4

]T
and v(0) =

[
0 0 0

]T
. The observer

gains and parameters are chosen as ς1 = σ1 = 16, ς2 = σ2 = 64, α1 = 5/7, β1 = 7/5,
α2 = 3/7, and β2 = 39/35. The parameters for the controller are chosen as δ0i = 2, δ∞i = 0.1,
ξ = 1.3, λ1 = 3.5, λ2 = 10, α = 0.8, β = 1.4, φ1 = φ2 = 10, µ1 = 4/7, and µ2 = 7/4.

The actuator faults parameters are chosen as E = diag
{
0.85 0.85 0.7

}
, τ =

[
25 25 5

]T
,

a =
[
15 10 5

]T
, and T0 =

[
30 30 30

]T
.

The FxDO and the improved FxDO are numerically simulated in MATLAB R2018b.
Figures 4–6 show that the designed improved FxDO is able to accurately and quickly
estimate and compensate for the closed-loop nonlinearity of the system and converge.
Even when the actuator starts to fail at T0u = T0v = T0r = 30 s, the observer is still able to
accurately track the closed-loop disturbances. In addition, the use of the hyperbolic tangent
function instead of the sign function reduces the chattering phenomenon from the local
zoomed-in plot.
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Figure 7. Tracking performance results. 

Figure 6. The lumped disturbance d3 and the observer’s estimated output.

In order to better prove the superiority and effectiveness of the proposed IFxDO-
PPFxFC scheme, we compare it with Wan et al. [37] proposed SMC scheme and Xu et al. [18]
proposed finite-time NFTSMC scheme. The three control schemes are numerically simulated
in MATLAB R2018b. First, through the circular trajectory tracking experiment, whether
the USV stays on the predetermined circular path with stability ensures the accuracy and
stability of navigation. Second, during the autonomous navigation of the USV, it will
encounter various external disturbances and changes, such as wind and waves, currents,
etc. In addition to this, it may encounter actuator faults, which can test the coping ability
and trajectory retention ability of the USV under these conditions. The simulation results
are shown in Figures 7–13.
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The tracking performance results of the actual and desired trajectories for the three
control schemes are presented in Figure 7. It is evident from the local zoomed-in figure
that our proposed control scheme exhibits a faster convergence rate and higher accuracy.
The tracking of the actual position and heading of the USV are illustrated in Figures 8–10.
All three control strategies successfully achieve a reference position and heading tracking.
In comparison to the other two control strategies, the designed control strategy exhibits
superior tracking speed and robustness during both position and heading tracking processes,
particularly for heading of the USV. The variations in position errors and the heading
error with time are illustrated in Figures 11–13. In comparison to the other two control
strategies, even when considering lumped nonlinearity, including actuator faults, the
tracking error can converge to the specified range more rapidly and meet the designated
tracking performance requirements. The convergence curves of the other two control
schemes may exhibit slight oscillations and a slower convergence rate.
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For further verifying the advantages of the proposed control scheme, IAE indicators
are used to quantify the tracking error, which are expressed as follows:

IAE =

∫ t

0

∣∣∣ie(τ)∣∣∣dτ, (i = x, y,ψ) (56)

where t denotes the simulation time, and the calculation results are shown in Table 3.

Table 3. Performance index IAE of three control schemes.

Control Scheme IAE

SMC IAE (xe ) = 5.7809, IAE (ye ) = 5.4068, IAE (ψe ) = 17.7117
NFTSMC IAE (xe ) = 1.4199, IAE (ye ) = 1.0694, IAE (ψe ) = 7.9170

IFxDO-PPFxFC IAE (xe ) = 0.9943, IAE (ye ) = 1.0003, IAE (ψe ) = 0.7680

In order to more intuitively reflect the superiority of the proposed control scheme, we
transform the absolute error tracking performance index IAE into the histogram shown in
Figure 14.
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5. Conclusions

The trajectory tracking control of the USV is an important research direction in ship
motion control that has important research value and practical significance. In this paper,
we studied the problem of the prescribed performance trajectory tracking control of the
USV under complex conditions, and a novel IFxDO-PPFxFC scheme was proposed based
on the 3-DOF USV mathematical model.

First, we addressed the trajectory tracking problem of the USV under model parameter
uncertainties, unknown external time-varying disturbances. We introduced an improved
FxDO to realize accurate estimation the lumped nonlinearity of system in a fixed-time, and
effectively reduce the chattering phenomenon of the observer’s estimation of the lumped
nonlinearity compensation in the control input. This technique improved the performance
of the controller.
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Second, we addressed the trajectory tracking problem of the USV with prescribed
tracking performance even in the presence of actuator faults. Based on mathematical
model of USV, and by combining fixed-time SMC, FTC, and PPC theories, a prescribed
performance fixed-time fault-tolerant controller was designed to ensure accurately and
safely tracking of the USV with actuator faults in a fixed time, and the proposed controller
was made robust by adding the improved FxDO.

Third, we chose the other two controllers to compare through numerical simulation
experiments, from the circular trajectory tracking experiment results, it can be seen that
the designed control law had a better control effect than the traditional SMC scheme and
finite-time NFTSMC scheme. In addition, for further verifying the advantages of the
proposed control scheme, the performance of the controller was described by adding the
performance index IAE, which is the lowest compared with the other two methods.

Fourth, the constraints of the control inputs of the system had not been considered
yet. in the future, we will consider the case where the input is constrained and extend
the method proposed in this paper to an underactuated USV and combine it with other
state-of-the art control techniques.
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