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Abstract: Artificial reefs are man-made structures submerged in the ocean, and the design of these
structures plays a crucial role in determining their effectiveness. Precisely measuring the configuration
of artificial reefs is vital for creating suitable habitats for marine organisms. This study presents
a novel approach for automated detection of artificial reefs by recognizing their key features and
key points. Two enhanced models, namely, YOLOv8n-PoseRFSA and YOLOv8n-PoseMSA, are
introduced based on the YOLOv8n-Pose architecture. The YOLOv8n-PoseRFSA model exhibits
a 2.3% increase in accuracy in pinpointing target key points compared to the baseline YOLOv8n-
Pose model, showcasing notable enhancements in recall rate, mean average precision (mAP), and
other evaluation metrics. In response to the demand for swift identification in mobile fishing
scenarios, a YOLOv8n-PoseMSA model is proposed, leveraging MobileNetV3 to replace the backbone
network structure. This model reduces the computational burden to 33% of the original model while
preserving recognition accuracy and minimizing the accuracy drop. The methodology outlined in
this research enables real-time monitoring of artificial reef deployments, allowing for the precise
quantification of their structural characteristics, thereby significantly enhancing monitoring efficiency
and convenience. By better assessing the layout of artificial reefs and their ecological impact, this
approach offers valuable data support for the future planning and implementation of reef projects.

Keywords: artificial reefs; YOLOv8; key point detection; pose estimation

1. Introduction

The construction of artificial reefs aims to restore damaged coral reef ecosystems,
protect and enhance fisheries resources, contribute to the restoration and improvement
of marine ecological environments, and mitigate the impacts of human activities on the
natural environment [1]. Recent studies have shown that artificial coral reefs exhibit
numerous advantages. In 2020, da Silva G. V. et al. demonstrated that artificial reefs can
effectively deflect longshore currents, alter sediment pathways, and thus induce long-term
morphological changes [2]. Similarly, in 2020, Glarou M. et al. found that artificial coral
reefs can significantly increase fish species diversity, enhance coral cover and biomass, and
facilitate interactions among marine organisms, all with positive effects [3]. Moreover, in
2023, Firth L. B. et al. discovered that while diving resources hold economic value, excessive
exploitation may harm ecosystems like coral reefs [4]. In addition to environmental benefits,
artificial reefs offer direct economic advantages. Acarli D. et al. analyzed the species
composition and distribution percentages of a lobster-designed artificial reef model in
the Inderkum Bay area along the Turkish Mediterranean coast in 2020 [5]. Their results
revealed that artificial coral reefs can enhance regional species diversity. Artificial reefs
can also provide effects similar to those of natural coral reefs. Zhang R. et al. found in
2021 that artificial reef areas can support nutritional structures and pathways similar to
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those of natural reefs [6]. The most common designs for artificial reefs are cubes and
complex structures made up of various shapes, mostly composed of concrete (79%), and
placed in the ocean to create a coral reef environment [7]. The majority of artificial reefs are
submerged at depths of less than 50 m, with most located between 10 and 20 m [8].

Studying and monitoring artificial coral reefs long-term is crucial to enhance our
understanding of their impact on marine ecosystems and to promote sustainable marine
ecological management [9]. In 2022, Lymperaki et al. emphasized the importance of
conducting long-term research and monitoring on artificial coral reefs [10]. Furthermore,
in 2021, Brochier et al. found that successful artificial coral reefs require consideration
of factors such as local economic conditions, governance capacity, and illegal fishing,
suggesting the establishment of long-term monitoring systems and adjustments in design
and location for sustainable management [11]. Paxton et al. in 2022 further underscored
the significance of artificial coral reefs in marine ecosystem restoration and biodiversity
enhancement, proposing their inclusion in marine planning to drive sustainable marine
ecological management [12]. In a study by Hemery et al. in 2022, various monitoring
technologies were compared, with the conclusion that COTS 360-degree video cameras are
suitable for monitoring artificial reefs (AR) and fish aggregating devices (FAD) efficacy in
marine energy facilities [13].

The increasing recognition of the importance of coral reef ecosystems and their de-
pendent ecosystems has led researchers to use deep learning technology for automatic
annotation and monitoring of coral reefs. In recent years, various deep learning meth-
ods have been proposed and proven crucial in coral reef detection, classification, and
conservation. Back in 2016, Mahmood et al. introduced a method using deep learning
technology for automatic annotation of coral reefs, aiming to efficiently and accurately
annotate new coral reef images by training neural networks to recognize different types of
coral reefs [14]. In a recent review by Paxton et al. in 2020, the environmental threats faced
by coral reefs, their significance, and the application of machine learning in conservation
were discussed [15]. Gonzalez-Rivero et al. explored the role of artificial intelligence in
coral reef monitoring in 2020, highlighting the improved accuracy and repeatability in
estimating underwater biodiversity, along with the reduced time and cost required for data
processing and reporting using deep learning convolutional neural networks (CNN) on
coral reef datasets [16]. Xiong et al. designed a deep learning model based on Faster-RCNN
and SSD to address the limitations of traditional algorithms in artificial reef recognition
in 2021 [17]. Moreover, Sharan et al. presented an automatic coral classification system
based on convolutional neural networks (CNN) and image enhancement in 2021 [18].
Experimental results demonstrate the effectiveness of the proposed method in learning
and predicting accurately, showing potential for automatic coral classification that can be
applied to large-scale datasets. In recent years, there has been a growing trend toward using
deep learning technology for artificial reef detection. Deep learning not only facilitates
efficient and precise annotation and monitoring of coral reefs but also plays a pivotal role in
conservation and sustainable fisheries development [19]. This study presents an automated
method for detecting and estimating the orientation of artificial reefs using deep learning
technology. Through the use of advanced visual models, this method successfully recog-
nizes artificial reefs, enhancing detection speed and accuracy. It provides technical support
for marine biology research, conservation efforts, and sustainable fisheries development,
thereby promoting the application and management of artificial reefs in marine ecosystems.
The key innovations of this study are outlined below:

1. The introduction of a novel method based on sonar images for artificial reef recogni-
tion. By identifying key points to determine the posture of artificial reefs, this study
proposes an innovative approach for estimating reef posture.

2. The construction of a dataset of artificial reefs based on Oculus sonar is the focus of
this study.
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3. Adoption of the YOLO v8n-pose framework [20] in the model design, incorporating
various techniques to enhance model performance, accuracy, and efficiency while also
considering constraints related to model size and computational power.

This paper is structured into five sections. First, it introduces the research back-
ground and related studies. Subsequently, a method for artificial fish reef posture recog-
nition is proposed, along with a detailed explanation of the dataset construction pro-
cess. Then, discussions on the experimental improvements based on YOLOv8n-pose are
conducted, proposing two enhanced algorithms, namely, YOLOv8n-RFCA-SEGNEXT
and YOLOv8 N-MONET-RFCA, based on precision requirements and computational con-
straints, followed by ablation experiments. Furthermore, a comprehensive discussion of the
research findings is presented, concluding with a summary and future research directions,
exploring the potential applications of deep learning in artificial fish reef sonar image
posture recognition.

2. Materials and Methods
2.1. Data Collection for Artificial Reefs

The study used Oculus sonar to gather data on artificial fish reefs. Oculus is a multi-
beam sonar system consisting of an array of receivers that collect echoes from a single
transmitted pulse and synthesize sonar images through mathematical transformations. The
Oculus sonar can produce multiple images per second and allows real-time viewing similar
to a camera’s output.

The Oculus sonar system is capable of detecting more than one target ahead. As sound
pulses reflect off different targets, they return to the receiver at varying time intervals.
The receiver records all these echo signals, covering a time span approximately twice the
maximum operational range. These echoes are merged into a single received signal, with
their positions on the time axis proportional to the distance of the targets and the signal
intensity dependent on the reflectivity of the target surfaces. Targets with different densities,
such as gas/air or rock/concrete, exhibit distinct reflection characteristics, resulting in echo
signals of varying intensities. For instance, materials like concrete produce strong echoes,
while materials like mud, silt, sand, and vegetation produce weaker echo signals [21].
Therefore, the sonar system’s acoustic “illumination” range for targets made of concrete
is limited, only displaying targets within the sonar beam, as shown in Figure 1a. Targets
outside the beam will not appear on the sonar display.
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boat along with its operational concept.
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We installed the Oculus sonar device on the bottom of the boat at a tilt angle of
45 degrees, as illustrated in Figure 1b. As the vessel moved forward, the sonar device
scanned the seafloor images. The data were collected from a nearshore area with a water
depth of approximately 20 m. The Oculus ViewPoint software v1.21.276 provided by
Oculus allowed us to view and export the sonar image data as mp4 videos.

2.2. Artificial Reef Attitude Estimation Methods
2.2.1. Reef Attitude Estimation Methods

In Table 1, the symbols and definitions related to the mathematical modeling process
of attitude estimation for artificial fish reefs are presented.

Table 1. Symbols and definitions.

Symbols Definitions Symbols Definitions

p1 The first marker of a coral reef. p4 The fourth marker of a coral reef.
p2 The second marker of a coral reef.

→
X The seabed plane.

p3 The third marker of a coral reef.
→
Y Perpendicular to the seabed plane.

The mathematical modeling of the data collection process involving the horizontal
and vertical axes of the ship’s direction is presented in this study, as shown in Figure 2a.

The perpendicular line on the seabed plane represents the
→
Y axis, and the

→
X axis is deter-

mined by identifying the seabed. The vertical axis,
→
Y , is constructed in the sonar image

perpendicular to the seabed, establishing a two-dimensional Cartesian coordinate system
as illustrated in Figure 2b.
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Figure 2. The schematic diagram of a three-dimensional coordinate system is shown in Figure 2.
(a) and (b), respectively, illustrate the methods of constructing the coordinate system from different
viewing perspectives, with (b) being a magnified view of a section of (a).

Using this model, we assessed the orientation of artificial reefs. Based on the identifica-
tion results of different categories, we established the estimation method for the orientation
of artificial reefs, as shown in Table 2.
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Table 2. Pose estimating method.

Marker Label Angle Attitude Estimation Paradigm

Reef monomer (fuzzy) Angle

Right angle
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→
Y axis

as the pose direction. The calculation method is illustrated in Formula (1), where
−−→
p2p1⊥

denotes the normal vector of the vector
−−→
p2p1.

→
Vangle =

−−→
p2p1⊥ (1)

In cases where individual fish reefs can be clearly identified, we use the vector formed
by the identified points P4 and P2 to determine the orientation of the fish reef, calculating the
angle, as shown in Equation (2). This approach takes into account variations in identification
conditions to enhance the accuracy and stability of posture estimation.

→
Vree f =

−−→
p2p4 (2)

The pseudocode implementation of the pose estimation method is shown in Table 3.

Table 3. Pseudocode of the attitude estimation method.

Pseudocode of Attitude Estimation Method
→
Y=

→
X⊥

If class_label == “angle”:

if ∠|
−−−→
p2p1 ,

→
Y | > ∠|

−−−→
p2p3 ,

→
Y |:

→
V=

−−−→
p2p1⊥

Else:
→
V=

−−−→
p2p3⊥

If class_label == “reef”:
→
V=

−−−→
p2p4
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In this study,
→
V represents the predicted orientation of artificial reef fish, while

→
X⊥

denotes the normal vector of vector
→
X. The angle between vectors

→
X and

→
Y is shown

as ∠|
→
X,

→
Y|.

2.2.2. A Method for Estimating the Subsidence Area of an Artificial Reef

Measuring the settlement area can provide another perspective on the positional and
postural changes of artificial reefs. Artificial reefs may experience sinking due to the impact
of tidal flushing, and long-term erosion and sedimentation can lead to settlement of the
reef body, resulting in a reduction in volume. To detect the settlement areas, the area of
settlement can be calculated by determining the region between key points and the seabed
plane. The method of assessing the area, as shown in Figure 3, can involve taking the area
between the identified settlement region and the seabed plane as the settlement area.
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The calculation formula for the settling area in Figure 3 is represented as Formula (3),

where p5 and p6 refer to the projection points of p1 and p4 along the
→
Y-axis on the

→
X-axis, respectively.

Spit = Sp1 p2 p3 p4 p5 p6 (3)

2.3. Artificial Reef Dataset
2.3.1. Data Annotation Methods

We have developed an artificial reef dataset based on the pose acquisition method
described in Section 2.2. For the annotation task of artificial reefs, we used Labelme 5.3.1
software. The annotation process consists of two steps: object localization and key point
annotation. In the object localization step, we employed bounding boxes to mark the
position of each reef accurately. The bounding boxes should precisely enclose the entire
reef. Subsequently, in the key point annotation step, we annotated the key points following
the principles of left to right and top to bottom. Key points were labeled according to the
features of the target, leading to four categories of annotation targets.

In Table 4, four categories are annotated with sonar images. The first category consists
of clearly visible cube-shaped fish reefs. For these reefs, it is necessary to draw target
boxes during the object localization phase and mark key characteristic points during the
feature point annotation phase. The second category includes fish reefs, where only one
corner of the square is vaguely visible. In these cases, target localization and feature point
annotation are also required, with a focus on marking the corner points of the square. The
third category comprises concave areas around the fish reefs. These concave areas may
be connected to the fish reefs, so it is important to ensure they are included in the target
box during the localization phase. The fourth category is the seabed plane. For the seabed
plane, a complete image serves as the target identification annotation box to indicate the
presence of a seabed plane target in the image. Subsequently, annotation is performed
by marking the two ends of the seabed plane. Following these steps, we can accurately
annotate different types of targets in artificial fish reef sonar images, as shown in Figure 4.
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Table 4. Artificial reef sonar image annotation category.

Label Target Dimension
Label Explain Image

Reef monomer
(clear) Reef

You can clearly
identify the cube

reef
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Figure 4. Complete annotation results of artificial reef.

A subset of the collected videos was processed to extract frames, resulting in 2630 images.
These images were randomly divided into training, testing, and validation sets at an
8:1:1 ratio. Following the division, the training set comprised 2103 images, the validation
set contained 263 images, and the testing set included 264 images. Such data partitioning
aids in ensuring that the model accounts for various sample scenarios during training,
validation, and testing phases, thereby enhancing the model’s generalization ability and
accuracy. The target quantities in each dataset after partitioning are presented in Table 5.
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Table 5. Number of targets in the dataset.

Dataset Bottom Angle Reef Pit

Train 2103 3873 1415 483
Val 263 452 190 69
Test 264 542 203 62

2.3.2. Data Enhancement Methods

In the process of model training, we used the data augmentation methods integrated
within the YOLO v8 framework to randomly enhance the pre-segmented dataset. These
data augmentation techniques include Mosaic, Random Affine, and MixUp, which play
a crucial role in enhancing the model’s understanding of scenes and its ability to learn
details. Particularly, the Mosaic method, derived from the YOLO v4 framework [22],
can concatenate multiple images to form a single “Mosaic” image. This type of data
augmentation helps enrich the training data and improve the model’s generalization
capability. In each batch, we concurrently applied various data augmentation techniques
such as random cropping, composition, and rotation to further enhance the diversity
and complexity of the training images. By transforming original images into suitable
training images through data augmentation methods, as shown in Figure 5, the model in
the training process will learn more features and patterns under different circumstances,
thereby enhancing its performance in various application scenarios.
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Figure 5. Image after data enhancement.

After data augmentation, the training images provide the model with a greater variety
of samples to learn from, enabling it to better tackle various data changes and details. This
training approach effectively enhances the model’s generalization ability and adaptability,
leading to more robust and efficient performance in practical applications.

2.4. Estimation of Artificial Reef Pose

In the process of estimating the posture of artificial reefs, the first step involves
processing the sonar images obtained and using the keypoint detection model to identify
the seabed plane, individual reef structures, and their corresponding key points. This initial
procedure aids in determining the position and shape of the reefs, laying the groundwork
for subsequent posture estimations. Subsequently, a two-dimensional coordinate system is
established based on the identified seabed plane, enabling a more accurate description of the
reefs’ positions and orientations. By employing this coordinate system in conjunction with
the key point information of the reef structures, the posture of the reefs can be calculated
using the estimation methods provided in Table 2. The crux of the entire process lies in
transforming sonar images into coordinate information, followed by posture estimation
integrating target recognition and keypoint extraction results. Through this process, a
more precise understanding of the morphological characteristics of artificial reefs can be
achieved, offering vital data support for subsequent research and analysis. The specific
implementation process is illustrated in Figure 6.
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2.4.1. Key Point Recognition Method Based on Deep Learning

Recently, there has been rapid development in deep learning technology in the field of
image processing, especially in tasks such as image classification, object detection, semantic
segmentation, and instance segmentation. Key point detection, as an extension of object
detection, involves identifying key points within the detected objects, enabling machines to
gain a deeper understanding of the structure and boundary features of the detected objects.
Deep learning models for key point detection recognize key points within the detected
object area, aiding machines in comprehensively grasping the content of the image. The
process of recognition is illustrated in Figure 7.
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In practical applications, deep learning models are trained by learning from a large
volume of image data to precisely detect key points within images. The model’s workflow
typically encompasses data preprocessing, feature extraction, model training, and inference
steps. By continuously optimizing both the model structure and parameters, contemporary
deep learning algorithms have shown outstanding performance in image processing tasks,
playing a vital role in diverse practical applications.

Based on the artificial reef sonar image dataset established previously, this study
employs the YOLOv8-pose model within the YOLOv8 framework to accomplish the task
of artificial reef posture recognition. The choice of the YOLOv8n-pose model is based on its
robust engineering framework in the field of object recognition and its high efficiency on
edge devices. The YOLOv8 series models are recognized for their exceptional performance
and straightforward deployment, with YOLOv8n being particularly popular for seamless
integration on edge devices. This facilitates the estimation of artificial reef poses during
navigation using sonar. Additionally, significant research has been dedicated to optimizing
operators and exploring practical deployment scenarios of YOLO series algorithms on
edge devices. Therefore, YOLOv8npose has been selected as the model for key point
recognition. Although not the absolute optimal choice, it stands out as one of the most
practical models for engineering applications and deployment. YOLOv8npose, an extension
of the YOLO series models, has been widely applied across various domains and has
undergone numerous optimization enhancements by researchers, specifically tailored for
key point recognition [23–27].
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2.4.2. YOLOv8-Pose Model Structure

The YOLOv8-Pose model is a keypoint detection model based on the YOLO object
detection algorithm. This model combines the real-time capabilities and efficiency of the
YOLO algorithm, enabling rapid and accurate detection of keypoints in images or videos. It
has demonstrated high performance in human pose detection, providing reliable technical
support for real-time pose analysis. In this study, the YOLOv8-Pose model is applied to the
task of detecting artificial reef sonar images. Figure 8 illustrates the standard structure of
the YOLOv8-Pose model.
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Considering the limited computing capabilities of mobile devices in the marine fishing
vessel environment, we opted to experiment and enhance the YOLOv8n-Pose model, which
has a small size of only 6.2 M and requires a computational power of just 8.4 GFLOPs.
Figure 9 illustrates the results of the artificial reef posture estimation.
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2.5. YOLOv8n-Pose Model Improvement Method
2.5.1. Accuracy Improvement

In 2022, Guo et al. introduced SegNext, emphasizing the superiority of convolutional
attention as a more effective and efficient context encoding mechanism in the field of
semantic segmentation compared to the self-attention mechanism in transformers [27]. The
structure of SegNext Attention is illustrated in Figure 10. Building on this insight, they
developed a novel convolutional attention network architecture called SegNext Attention.
As the colors in sonar images are primarily uniform and the features capture the intensity
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variations of the returned sound waves, highlighting the boundaries between different
objects in artificial reef sonar images is crucial. Therefore, the integration of SegNext
Attention in the field of semantic segmentation is expected to significantly enhance the
model’s ability to accurately identify artificial reef targets.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 20 
 

 

variations of the returned sound waves, highlighting the boundaries between different 
objects in artificial reef sonar images is crucial. Therefore, the integration of SegNext At-
tention in the field of semantic segmentation is expected to significantly enhance the 
model’s ability to accurately identify artificial reef targets. 

 
Figure 10. SegNext_Attention structure diagram. 

In 2023, Zhang et al. introduced a novel attention mechanism known as Receptive 
Field Channel Attention (RFCA), which enhances the convolutional structure RFCAConv 
as illustrated in Figure 11. RFCA focuses not only on spatial features within the receptive 
field but also provides effective attention weights for large convolutional kernels [28]. 
YOLOv8n, a prominent model in object detection, follows a one-stage detection approach 
that combines fast inference speed with high accuracy. By integrating the RFCAConv 
structure, YOLOv8n can access richer contextual and spatial information, thereby improv-
ing the model’s perceptual capability and detection accuracy. 

 
Figure 11. RFCAConv structure diagram. 

The improvement of the YOLOv8n-Pose model was achieved by integrating the 
strengths of Guo et al.’s SegNext Attention and Zhang et al.’s RFCAConv algorithms. By 
incorporating the convolutional attention mechanism of SegNext Attention, the model can 
better encode contextual information, enhancing the accuracy of artificial reef recognition. 
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In 2023, Zhang et al. introduced a novel attention mechanism known as Receptive
Field Channel Attention (RFCA), which enhances the convolutional structure RFCAConv
as illustrated in Figure 11. RFCA focuses not only on spatial features within the receptive
field but also provides effective attention weights for large convolutional kernels [28].
YOLOv8n, a prominent model in object detection, follows a one-stage detection approach
that combines fast inference speed with high accuracy. By integrating the RFCAConv struc-
ture, YOLOv8n can access richer contextual and spatial information, thereby improving
the model’s perceptual capability and detection accuracy.
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The improvement of the YOLOv8n-Pose model was achieved by integrating the
strengths of Guo et al.’s SegNext Attention and Zhang et al.’s RFCAConv algorithms. By
incorporating the convolutional attention mechanism of SegNext Attention, the model can
better encode contextual information, enhancing the accuracy of artificial reef recognition.
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Additionally, the integration of RFCAConv’s receptive field attention mechanism effec-
tively addresses the challenge of shared convolutional kernel parameters, providing more
accurate attention weights for large kernel sizes. This combination brings richer spatial
and contextual information to the model, further enhancing its perceptual capabilities
and detection accuracy in object detection tasks. By combining these advanced structures
with the YOLOv8n-Pose model, the enhanced model is expected to achieve significant
improvements in performance and accuracy on the artificial reef dataset. We introduce
our model as the YOLOv8n-PoseRFSA, where ‘RF’ stands for RFCAConv structure and
‘SA’ stands for SegNext Attention structure. The architectural diagram of this model is
illustrated in Figure 12.
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2.5.2. Miniaturization Improvement

MobileNetV3 [29] is a lightweight neural network architecture particularly well-suited
for real-time object detection and recognition tasks on mobile and embedded devices,
as illustrated in Figure 13. Using MobileNetV3 as the backbone network for YOLOv8
enables a faster and lighter object detection algorithm, which has been proven in many
enhanced models of YOLOv8. MobileNetV3 reduces model parameters and computational
complexity while maintaining high detection accuracy, making the enhanced YOLOv8n-
PoseRFSA model suitable for deployment on mobile or embedded devices.
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The replacement of the YOLOv8n-PoseRFSA backbone network with the MobileNetV3
model is depicted as the YOLOv8n-PoseMRFSA model in Figure 14, where ‘M’ stands for
MobileNetV3 structure.
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In the YOLOv8n-PoseMRFSA network, MobileNetV3 demonstrates excellent efficacy
in feature extraction. However, when integrated into the YOLOv8n-PoseRFSA model,
specifically designed for artificial reef recognition, it is crucial to evaluate MobileNetV3’s
influence on the feature extraction process. Therefore, conducting comprehensive ablation
experiments is essential to enhance the model and mitigate any potential decrease in the
accuracy of the YOLOv8n-PoseRFSA model resulting from potential changes in feature
extraction structures.

3. Results
3.1. Ablation Experiments
3.1.1. Evaluation Indicators

In the field of object detection, commonly used evaluation metrics include the following:

1. Precision (P): Precision is defined as the number of true positive predictions made by
the model divided by the total number of positive predictions made by the model. It
measures the accuracy of the model in predicting positives. Here, TP represents true
positives, and FP represents false positives.

P =
TP

TP + FP
(4)

2. Recall (R) is defined as the number of true positive instances correctly predicted by
the model divided by the total number of actual positive instances in the dataset. It
quantifies the model’s ability to correctly identify all relevant instances. Here, FN
represents false negatives.

R =
TP

TP + FN
(5)

3. Metric/mAP50, short for mean average precision at 50, is a commonly used evaluation
metric in object detection tasks such as YOLOv8. It calculates the average precision of
a model at various confidence levels, considering only the top 50% of detection results
with the highest confidence scores. Here, N represents the number of classes, and
AP50

i denotes the average precision of the i-th class on the top 50 detection results.

metrics/mAP50 =
1
N

N

∑
i=1

AP50
i (6)
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4. The metrics/mAP50-95, which stands for the mean average precision at different
IoU thresholds ranging from 0.5 to 0.95, are another evaluation measure for object
detection models. It computes the average precision of the model across a range of
IoU thresholds, providing a comprehensive assessment of the model’s performance at
various levels of intersection between predicted and ground truth bounding boxes.
Here, AP50–95

i represents the average precision for the i-th class within the threshold
range of 50 to 95.

metrics/mAP50-95 =
1
N

N

∑
i=1

AP50–95
i (7)

5. GFLOPs (giga floating point operations per second) is a commonly used metric for
assessing the computational load of a model. It indicates the number of billion floating-
point operations performed per second and is used to evaluate the computational
complexity and efficiency of a model. When evaluating model performance, GFLOPs
are frequently employed to measure the computational resources required during the
training or inference stage, aiding in the selection of appropriate hardware devices or
optimizing model structures.

3.1.2. Ablation Experimental Results

Experimentation through ablation is a commonly used approach in research aimed
at elucidating the significance and functionalities of individual components or features
within deep neural network models, with the ultimate goal of enhancing model perfor-
mance or optimizing model architecture. In this study, three models were compared:
YOLOv8n-Pose, YOLOv8n-PoseRFSA, and YOLOv8n-PoseMRFSA, and ablation experi-
ments were conducted on each enhanced model. The software environment comprised
the Python 3.9 programming language, the PyTorch 2.0.0 deep learning framework, the
CUDA 11.4 operating platform, and Anaconda 23.1.0 environment management software,
all operating on the Ubuntu 18.04.5 LTS system with a Tesla V100S 32G graphics card.
During model training, all images were resized to 640 × 640 dimensions using the AdamW
optimizer with lr = 0.00125 and momentum = 0.9, and the maximum number of epochs
was set to 400. Results from the ablation experiments can be found in Table 6.

Table 6. Ablation experiment results.

Model
Box Pose

GFLOPs
P R mAP50 mAP50-95 P R mAP50 mAP50-95

YOLOv8n-Pose 0.886 0.868 0.926 0.712 0.871 0.856 0.907 0.839 8.4
YOLOv8n-PoseSA 0.906 0.89 0.949 0.715 0.891 0.876 0.926 0.86 9.1
YOLOv8n-PoseRF 0.903 0.898 0.942 0.715 0.895 0.889 0.924 0.865 8.7

YOLOv8n-PoseRFSA 0.909 0.904 0.944 0.72 0.892 0.888 0.92 0.857 9.2
YOLOv8n-PoseM 0.868 0.855 0.918 0.675 0.862 0.847 0.895 0.792 2.8

YOLOv8n-PoseMRF 0.867 0.884 0.919 0.676 0.842 0.881 0.901 0.786 2.8
YOLOv8n-PoseMSA 0.918 0.818 0.924 0.689 0.908 0.809 0.901 0.793 3

YOLOv8n-PoseMRFSA 0.854 0.853 0.899 0.653 0.834 0.834 0.882 0.751 3.1

The bolded content represents the best result for this comparison.

Through ablative experiments, we systematically removed specific components from
the model to investigate their impact on overall performance, thereby gaining a deeper
understanding of the model structure and the contributions of individual components.
According to the experimental results in Table 5, the YOLOv8n-PoseRFSA model showed
improvements in various evaluation metrics compared to the YOLOv8n-Pose model, with
an approximately 10% increase in computational load. In this model, the precision of
the box increased by 0.023, the recall by 0.036, and both Map50 and Map75 improved
by 0.018 and 0.008, respectively. In terms of pose detection, precision increased by 0.021,
recall by 0.032, and Map50 and Map75 by 0.013 and 0.018, respectively. Moreover, in the
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improved YOLOv8n-PoseMSA model, the performance of the YOLOv8n-PoseMSA model
stood out. Although there was a slight decrease in the Map metric for this model, both
precision and recall showed improvements. Most importantly, the computational load of
the YOLOv8n-PoseMSA model was only 33% of the YOLOv8n-Pose model, aligning with
the optimization goal of significantly reducing model computation while accepting a slight
decrease in accuracy.

3.2. Model Validation

To evaluate the practical recognition performance of the model, this study conducted
a comparative verification experiment between the model’s recognition results and manual
counting. The data for the verification experiment were obtained from sonar videos of
artificial reefs used to construct the dataset. Twenty images with varying numbers of reef
structures were randomly selected from the images containing reefs. In the comparative ver-
ification experiment, manual counting, the YOLOv8n-Pose model, the YOLOv8n-PoseRFSA
model, and the YOLOv8n-PoseMRFSA model were used to count the reef structures in
these 20 sonar images of artificial reefs. The recognition parameters were set to conf = 0.25
and iou = 0.7, following the default parameters of the YOLOv8n-Pose model. The target
reef structures were identified as the sum of the detected reference and proxy markers,
with the results of the verification experiment presented in Table 7.

Table 7. Validation of experimental results.

Number\Reef
Target

Manual
Counting

YOLOv8n-
PoseRFSA

YOLOv8n-
PoseMSA YOLOv8n Number\Reef

Target
Manual

Counting
YOLOv8n-
PoseRFSA

YOLOv8n-
PoseMSA YOLOv8n

1 1 1 1 1 11 3 4 4 3
2 5 5 5 7 12 1 1 1 1
3 4 5 4 4 13 3 3 3 2
4 3 3 3 3 14 6 5 6 7
5 5 5 9 7 15 6 5 6 5
6 4 3 6 2 16 4 6 5 5
7 8 7 8 6 17 2 3 2 3
8 6 6 7 6 18 3 5 4 4
9 8 9 10 6 19 4 5 6 3

10 6 5 5 5 20 1 1 1 1

In order to more specifically measure the differences between different models, vari-
ance was employed to compare YOLOv8n-pose with the improved model against manually
recognized results. The statistical findings are presented in Table 8.

Table 8. Statistical results.

Model Variance

YOLOv8n-Pose 0.81
YOLOv8n-PoseMSA 0.5625
YOLOv8n-PoseRFSA 0.49

The variance between the YOLOv8n-PoseRFSA model and the manual counting
results was minimized at the highest level by YOLOv8n-Pose, a finding that aligns with
the outcomes of the ablation experiments.

4. Discussion
4.1. Dataset Acquisition

The dataset of artificial reefs collected in this study was obtained through scanning
and image capture of the seabed with the Oculus sonar system installed on the bottom
of the vessel. The sonar system is capable of receiving echo signals from targets, thereby
displaying the distances and features of different targets. In contrast to the side-scan sonar
dataset used by Xiong et al. in 2014, the data used in this study were acquired from an
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imaging sonar, allowing for a more accurate determination of the orientation of artificial
reefs. Within the detection range of sonar, it is possible to distinguish artificial reefs from
other seabed environments relatively accurately. Compared to using cameras to capture
underwater environments, sonar images have the advantage of distinguishing different
materials, better showcasing the material characteristics of underwater objects, and not
being restricted by the light sources used in camera shots.

During the data annotation process, challenges were faced when annotating artificial
reefs with significant overlap, where only a fragment of the square shape of the reef is
visible due to the overlapping. This poses challenges as the human eye can only identify the
top layer, making it relatively easy to annotate reefs with distinct square features. In cases
where there is significant overlap of complete reef structures, sonar images may struggle to
clearly differentiate them.

4.2. Attitude Estimation Method for Artificial Reefs

The method for estimating the posture of artificial reefs based on sonar images is
constructed using YOLOv8n-Pose recognition results. While pose recognition introduced
by YOLOv8 is primarily used for identifying human key points, in this study, it has been
successfully applied to identifying key points of artificial reefs. By successfully identifying
the key points of artificial reefs, we have established a method for estimating the posture
of artificial reefs. It should be noted, however, that this method is based on 2D images
generated by sonar imaging. As a result, it can only, to some extent, accomplish the task
of estimating the posture of artificial reefs. In comparison to previous assessments of
artificial reefs through side-scan sonar, which only identified the quantity of reefs and
the approximate height of reef clusters, the posture estimation method developed in this
paper can better track the posture, laying a foundation for more detailed research on
artificial reefs.

However, compared to completing a full 3D modeling of artificial reefs for posture
estimation, this method has certain limitations in terms of the posture data it provides, as it
can only estimate the angles of artificial reefs. Although it is comparatively challenging
to conduct comprehensive 3D modeling of reefs underwater, given that artificial reefs
typically have regular shapes, our method can accomplish the task of estimating the posture
of artificial reefs under relatively simple conditions. Further research and discussion are
needed on how to combine more advanced image processing technologies and algorithms
to enhance the accuracy and comprehensiveness of posture estimation on artificial reefs. In
recent years, numerous scholars have emphasized the importance of artificial coral reefs
in ocean ecosystem restoration and biodiversity enhancement. Therefore, exploring how
to integrate sonar images and other sensor data to achieve a more comprehensive and
accurate estimation of artificial reef postures will be one of the directions for future research.
Through continuous optimization and improvement of methods, we can better understand
and monitor artificial reefs, providing more support and data for the conservation and
management of marine ecosystems.

4.3. Experimental Results
4.3.1. Ablation Experiments

In this ablative experiment, we conducted an in-depth study and evaluation of the
refined model by systematically removing specific components from the model. Among
them, the YOLOv8n-PoseRFSA model and the YOLOv8n-PoseMRFSA model performed
exceptionally well. The YOLOv8n-PoseRFSA model combines the RFCAConv and Seg-
Next_Attention modules, resulting in improvements in various evaluation metrics compared
to the base YOLOv8n model, despite an increase of approximately 10% in computational
complexity. This model achieved significant performance gains in both object detection
and pose estimation tasks, manifesting improvements in precision, recall, and various Map
metrics. The synergistic integration of the RFCAConv and SegNext_Attention modules in
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this composite model, as opposed to the introduction of individual modules, had a more
pronounced effect, playing a pivotal role in enhancing the overall model performance.

On the other hand, the YOLOv8n-PoseMSA model incorporates the RFCAConv mod-
ule into the MobileNetV3 backbone network. Although this model exhibited a slight
decrease in Map metrics, it demonstrated notable improvements in precision and recall.
Notably, the computational complexity of this model is only one-third of the base YOLOv8n
model, significantly reducing computational costs while maintaining a certain level of accu-
racy, aligning with the optimization goal of balancing accuracy and efficiency. Overall, the
YOLOv8n-PoseRFSA and YOLOv8n-PoseMSA models showcased favorable performance
in this experiment. The successful validation of these refined models emphasizes the
significant impact of incorporating new perceptual modules, attention mechanisms, and
integrating lightweight network backbones on model performance.

4.3.2. Validation Experiments

In most cases, the difference in recognition performance between the two models
in Table 7 is minimal, with an error margin of only one to two coral colonies compared
to manual identification. Therefore, these models can effectively substitute human effort
for accurately counting artificial coral reefs. However, there are certain differences in the
recognition process between the YOLOv8n-PoseRFSA model and the YOLOv8n-PoseMSA
model. One of the most noticeable examples is image No. 5 in Table 7, where the recognition
results using different models for image No. 5 are shown in Figure 15.
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terms of pose estimation methods, it can be observed from image No. 5 that, when cor-
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Figure 15. Recognition results of image No. 5 on different models. (a) displays the pose estimation
results for image No. 5 using the YOLOv8n-PoseRFSA model, and (b) shows the pose estimation
results for image No. 5 using the YOLOv8n-PoseMSA model. The arrow indicates the direction of
the artificial reef posture identified by the method.

In the recognition of the objects in image No. 5, the YOLOv8n-PoseRFSA model
produced results consistent with manual counting, while the YOLOv8n-PoseMSA model
showed a higher frequency of duplicate recognitions, indicating its lower robustness. In
terms of pose estimation methods, it can be observed from image No. 5 that, when correctly
identifying the coral reefs, the estimated poses by the method closely align with human
judgment. However, for the coral reefs erroneously recognized by the YOLOv8n-PoseMSA
model, significant orientation discrepancies are evident. This may arise from the standard
cuboid composition of coral reefs, where the model might mistake the internal framework
of artificial reefs for the reef outline.

5. Conclusions

This paper focuses on artificial reef posture recognition, introducing a novel method
based on sonar imaging to determine the posture of artificial reefs. Initially, an artificial
reef dataset was constructed using Oculus sonar, and the YOLOv8n-Pose framework was
employed in model design. Various model enhancement techniques were implemented
to increase accuracy and efficiency. The method for artificial reef posture recognition was
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proposed, detailing the dataset construction process, discussing experiments on YOLOv8n-
Pose enhancements, and presenting two improvement algorithms. By exploring a novel
approach to artificial reef posture recognition, the study aims to advance technology and
address pertinent issues. The proposed method for automated detection of artificial reefs
in this study enables real-time monitoring of deployment status and quantification of
their posture information, significantly enhancing monitoring efficiency and convenience.
Notably, this method allows for a more precise assessment of the layout of artificial reefs
and their impact on marine ecosystems, providing additional data support for future reef
design and deployment.

6. Outlook

The proposed method for artificial reef attitude estimation in this paper uses sonar
images to estimate the attitude of artificial reefs on the seabed. However, improvements are
needed in various aspects, including data collection, estimation methods, data processing,
and visualization.

1. Addressing the challenge of overlapping angles of artificial reefs on the seabed that
may go undetected by a single sonar system, future research could focus on exploring
the principles of 3D modeling and reconstruction by integrating data from multiple
sonar perspectives, similar to the methodologies employed in radar for 3D modeling.

2. The latest YOLOv9 model on the COCO dataset for object detection demands
26.4 GFLOPs, significantly higher than that of YOLOv8n (8.7 GFLOPs). Despite
the absence of a YOLOv9 model with computational requirements akin to YOLOv8n
or the release of YOLOv9s in this paper and source code, this study abstained from
experimenting with YOLOv9. Nonetheless, given the comparable performance of
YOLOv9 at a similar scale, it showcases extensive potential applications.

3. When using sonar for artificial reef detection, it is advantageous to integrate the exam-
ination of fish and other organisms’ distribution within the artificial reef deployment
zones. This necessitates simultaneous data collection and analysis in conjunction
with optical devices to effectively enhance the conservation and administration of
marine ecosystems.
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