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Abstract: In the contemporary tramp shipping industry, route optimization and scheduling are
directly linked to enhancements in operations, economics, and the environment, making them key
factors for the effective management of maritime transportation. To enhance effective ship-to-cargo
matching and the refinement of maritime transportation itineraries, this paper introduces a time
efficiency and carbon dioxide emission multi-objective optimization algorithm named ETE-SRSP
(efficiency–time–emission multi-optimization algorithm). ETE-SRSP incorporates several factors,
including the initial positions of ships, time windows for loading and unloading operations, and
varying sailing speeds. Within the ETE-SRSP framework, pioneering an approach that integrates
ballast and laden sailing velocities as decisional parameters, it employs a multi-objective optimization
technique to investigate the intricate interplay between temporal efficiency and carbon dioxide
emissions. Additionally, the model’s proficiency in mitigating emissions and managing costs is clearly
demonstrated through the optimization of these objectives, thereby offering a robust framework for
decision support. The experimental results show that the optimal sailing speeds derived from the
ETE-SRSP, under typical time-weight scenarios, can achieve an optimal balance between emission
reduction and cost control. In summary, this study underscores the optimization strategy’s potential
to effectively address the maritime sector’s need for economic growth and ecological conservation,
showcasing its practical value in the industry.

Keywords: tramp shipping industry; scheduling; multi-objective optimization algorithm; carbon
dioxide emissions

1. Introduction

With the expansion of the global economy and international trade, maritime trans-
portation, especially tramp shipping, has become increasingly vital to the global logistics
network [1]. Serving as the primary conduit for bulk commodities like grain, coal, iron ore,
and natural gas, tramp shipping stands out for its operational flexibility [2]. This flexibil-
ity not only cements its pivotal role in maritime transport but also endows the shipping
industry with a competitive edge unmatched by other modes of transportation [3].

Managing a fleet with varying characteristics, from transport capacity and cruising
speed to loading efficiency and operating costs, presents numerous challenges [4]. External
shocks such as the COVID-19 pandemic [5], along with geopolitical factors, intensify these
challenges, making the resolution of ship routing and scheduling problems (SRSP) more
difficult. Although this diversity offers strategic advantages, it also introduces operational
complexities [6].

In the fluctuating world of the general cargo shipping market, freight rate volatility
significantly impacts ship operators’ ability to negotiate effectively, exacerbated by the
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unpredictable nature of global commerce influenced by geopolitical unrest and stringent
environmental policies [7,8]. These factors contribute to the complexity of shipping opera-
tions, necessitating frequent adjustments to routes and demand. Shipping companies must
implement cost-efficient scheduling, meet the increasing demand for transportation, and
improve operational efficacy [9,10]. The management of fuel consumption, a critical com-
ponent of operating costs, plays a pivotal role in ensuring a company’s financial health [11].
To navigate these challenges, shipping enterprises are compelled to adopt sophisticated
management practices. These include fine-tuning cargo ship configurations, optimizing
routing, and adjusting sailing speeds to enhance cost efficiency. Such strategies require a
deep insight into market dynamics, the ability to adapt operations swiftly, and strategic
planning capabilities to thrive in the ever-changing global shipping arena.

Sailing time efficiency is a critical factor for shipping companies, directly influencing
their service quality, customer satisfaction, and market competitiveness [12]. This holds
true not only for container ships but also for tramp ships, which operate without fixed
schedules or routes, responding to spot market demands. These companies aim to enhance
navigational safety and reliability through precise route planning and scheduling optimiza-
tion. However, deliberate speed reductions to cut operating costs can lead to prolonged
transportation times. This creates challenges for consignors requiring timely deliveries,
impacting the reliability of shipping services and customer satisfaction. Voyage charter
contracts often include specific time clauses to manage uncertainties and align the interests
of carriers and consignors. While tramp ships offer flexibility in responding to demand,
the emphasis on time efficiency varies among stakeholders. Prolonged sailing times can
increase consignor costs, diminish satisfaction, and disrupt the shipping company’s opera-
tional timeline, leading to lower ship turnover rates, reduced operational efficiencies, and
elevated journey costs [13].

In an era marked by heightened global environmental consciousness, the imperative
for shipping companies to cut down carbon dioxide (CO2) emissions has never been more
critical [14]. This effort transcends mere compliance with international ecological mandates;
it is a stride toward fulfilling the broader ambitions of environmental sustainability. Tramp
shipping firms, in particular, are tasked with devising and executing strategies that yield
tangible reductions in emissions, with a special focus on the refinement of sailing velocities
and the strategic planning of navigational routes [15]. The adoption of cutting-edge tech-
nologies for optimizing route schedules stands as a pivotal measure, enabling a significant
curtailment of fuel usage and, by extension, a reduction in CO2 emissions. Such measures
not only elevate the environmental stewardship of these enterprises but also propel the
entire maritime sector toward a more ecologically responsible future. Aligning with sustain-
able practices not only meets regulatory expectations but also enhances market presence by
appealing to eco-conscious stakeholders, thereby strengthening their competitive position
in the international maritime domain.

In the context of the current tramp shipping sector, the adept coordination of route
planning and scheduling emerges as a pivotal factor in elevating operational efficacy, secur-
ing financial benefits, and fostering ecological sustainability. The principal achievements of
this study include:

• Addressing the intricate decision-making and multifaceted challenges inherent in
achieving sustainable maritime transportation, we introduce an innovative model
named ETE-SRSP (efficiency–time–emission multi-optimization algorithm). This
model incorporates a comprehensive approach, accommodating various constraints to
streamline the optimization process.

• The ETE-SRSP model is engineered for the precise alignment of ship-to-cargo matching
and the refinement of shipping schedules, factoring in a multitude of conditions such
as total cargo load, ship capacity, initial positioning of ships, distances across ports,
and the timing of loading and unloading operations. This approach innovatively
determines effective sailing routes for the fleet.
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• Leveraging the NSGA (non-dominated sorting genetic algorithm) for multi-objective
optimization, our strategy adeptly mediates between the objectives of sailing time
efficiency and CO2 emission reduction. This detailed exploration of the interplay
between these objectives and operational expenses substantially improves the model’s
utility and adaptability for addressing the complex challenges of shipping logistics, un-
derscoring the significance of simultaneous multi-objective optimization in maritime
operational management.

• Innovatively including both ballast and fully loaded sailing speeds as variables in
the decision-making process, we ascertain optimal speeds that exhibit a capacity for
emission reduction while managing expenses effectively. Particularly under typical
temporal considerations, this methodology serves as an impactful fleet management
method, facilitating the pursuit of both financial and environmental objectives. Experi-
ments demonstrate the effectiveness of the ETE-SRSP algorithm in optimizing sailing
speed, particularly evident when adjusted to typical weights, where it successfully
strikes a balance between operating cost control and emission reduction. This finding
offers fleet management a viable strategy that considers environmental protection
while pursuing economic benefits.

The remainder of this paper is structured as follows. Section 2 is the literature re-
view. Section 3 describes the problem of tramp ship route and scheduling along with
the mathematical algorithm pertinent to this research. Section 4 details the ETE-SRSP
algorithm model. Section 5 presents the analysis results and comparative evaluation of the
experiments. Finally, Section 6 concludes the paper and outlines directions for future work.

2. Literary Review

This study focuses on three key aspects identified in the literature: the routing and
scheduling of tramp ship fleets, the integration of CO2 emission considerations, and the
development of modeling approaches pertinent to these areas. Consequently, this segment
endeavors to offer an exhaustive overview of scholarly contributions within these specified
realms. Within the context of maritime logistics research, existing studies have shown
that researchers not only focus on developing mathematical models capable of optimizing
shipping operations but also demonstrate significant interest and effort in addressing
problems related to carbon emissions. Thus, by conducting an in-depth analysis of the
existing literature in these domains, this paper seeks to showcase an understanding and
application of modern methods and strategies for enhancing shipping efficiency and
reducing environmental impact.

In recent years, the problem of ship route selection and scheduling has been a broad
topic of research. Hemmati et al. introduced a benchmark model for industrial and tramp
ship routing and scheduling issues, which includes a wide range of benchmark instances
representing realistic planning problems in various shipping domains [16]. Lee and Kim
proposed a mixed-integer programming model and a heuristic algorithm based on adaptive
large neighborhood search, effectively reducing operational costs [17]. Charlotte et al.
developed a mixed-integer programming formulation for the optimal routing, scheduling,
and bunkering of a fully loaded tramp fleet [18]. Min et al. introduced mixed-integer linear
programming and set partitioning approach, demonstrating significant profit enhancement
and sensitivity to fuel prices based on real data [19]. Charlotte et al. addressed the liner
shipping route and scheduling problem with voyage interval requirements through the
introduction of a new exact branch-and-price procedure, significantly enhancing profit
maximization and inventory cost minimization [20]. Norstad and others optimized sailing
speeds and determined routes using local search algorithms with voyage as a decision
variable [21]. Research by Jiang et al., Yu et al., and Gao et al. all proposed improved
ship routing and scheduling schemes through various mathematical programming and
optimization methods, achieving significant cost-saving effects [12,22,23]. Furthermore,
Gao et al. and Henrik et al. aimed to maximize profits [1,24]. Gao et al. developed a
mixed-integer programming model for ship scheduling, route optimization, and speed
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decisions in dry bulk shipping, demonstrating the effectiveness of their method through
numerical experiments [1]. Henrik et al. proposed a mathematical formulation and three
solution approaches to handle the complexity of routing and scheduling for unique cargoes
with coupling and synchronization constraints, achieving maximum revenue [24].

As awareness of environmental protection has grown, some research has begun to
integrate considerations of CO2 emissions into the cost-minimization shipping optimization
problem. Studies by Arijit et al., Li et al., Fan et al., and Wang et al. explored how to reduce
the environmental impact of shipping activities while ensuring operational cost efficiency
by incorporating carbon emission considerations [14,15,25,26]. These approaches not only
took into account traditional cost-saving factors such as fuel consumption, ship speed,
and route selection but also considered the impact of potential environmental policies like
carbon taxes on shipping strategies. Furthermore, Wen et al. investigated the routing and
scheduling of general cargo ships at variable speeds. Their paper introduced a branch-
and-price algorithm with efficient data preprocessing and heuristic column generation,
optimizing engines to reduce emissions [27]. Wang et al. proposed a new method for
optimizing sailing routes and speeds under complex conditions, achieving a reduction
of approximately 4% in fuel consumption and CO2 emissions [28]. The comparison and
classification of the aforementioned related works are shown in Table A1 in the Appendix A.

Research in the area of tramp ship routing and scheduling has historically been domi-
nated by studies focusing on singular objectives, specifically either the reduction of cost
or the mitigation of emissions. These focuses, while integral to refining shipping opera-
tions, do not entirely encapsulate the multifaceted nature of the decision-making process,
which necessitates a blend of quantitative and qualitative analyses. As emphasized by
Mansouri et al., decision-makers dedicated to planning and implementing green maritime
strategies must balance numerous variables in a highly complex environment to devise
effective solutions [29,30]. Consequently, when the task of routing and scheduling tramp
ships involves a multitude of operational goals and limitations, conventional methods
targeting a single objective might not fully capture the intricate trade-offs among diverse
goals, thus falling short of delivering holistic decision support [29,31]. Within this frame-
work, leveraging multi-objective optimization techniques emerges as a vital strategy to
enhance the depth and scientific precision of decision-making processes.

In light of these considerations, this research presents the ETE-SRSP, a novel multi-
objective optimization algorithm model designed for tramp ship routing and scheduling,
incorporating constraints related to time windows. This model is engineered to serve as
a rigorous decision-making method in tramp ship logistics, delving into critical aspects
such as the optimal match of ships with cargo, selection of transport routes, and timing
of loading and unloading operations. It uniquely applies multi-objective optimization
methods to scrutinize the dynamics between sailing efficiency and CO2 emissions, along
with their collective influence on operational expenditures. By adopting this methodology,
the model equips shipping firms with the ability to make informed and logical choices
in the face of evolving market and environmental conditions, illustrating the feasibility
of satisfying the intricate demands of shipping logistics by simultaneously prioritizing
operational efficiency and environmental conservation.

3. Background

In this section, we provide a detailed discussion of the proposed multi-objective
optimization ETE-SRSP algorithm model for tramp ship routing and scheduling with time
window constraints. The analysis will cover the key issues addressed by the model and the
corresponding mathematical formulations.

3.1. Description of the Tramp Ship Routing and Scheduling Problem

This study details a sophisticated multi-objective optimization approach for tramp ship
routing and scheduling, accommodating time window constraints and a fleet with diverse
ship characteristics, such as varying sizes, capacities, fuel efficiencies, and other operational
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specifics. Importantly, this model allows ships to traverse multiple routes at different
speeds, as long as those speeds fall within an acceptable range. Given the continuous
operation of these ships, they may be engaged in preceding assignments at the scheduling
outset, thereby necessitating the consideration of each ship’s service availability timing
(starting at varied initial moments) and its location at the time of availability (originating
from distinct ports). The suitability of each ship for certain cargoes and ports is determined
by these individual characteristics. Similarly, cargo considerations include time window
constraints, volume requirements, and specific port loading and unloading stipulations.
To further illuminate the complexities of scheduling in tramp shipping, the paper shows a
case diagram illustrated in Figure 1, showcasing that the fleet has two idle ships ready for
deployment on the 2nd and 6th days, amid three cargoes awaiting transport across five
ports. Assuming these two ships are adequately capacitated for the demands, operators
face the task of aligning each cargo with appropriate loading and unloading timelines. Ship
1 is allocated to cargoes 1 and 2, and Ship 2 to cargo 3, with the subsequent step involving
the identification of viable transport routes for each cargo, factoring in both ballast and
laden journey speeds.

Figure 1. Tramp ship routing and scheduling scenario diagram.

3.2. Mathematical Formulations

Based on the description of the tramp ship routing and scheduling problem out-
lined above, we define the related basic elements as a spatial relation network structure
G = (P, X). Assuming the shipping company’s fleet of ships as the set S = {1, 2, 3 . . . ..},
with the current ship as s, s ∈ S; The quantity of goods to be transported is denoted by N. If
the current cargo is n and the loading port i, the corresponding unloading port is n + i; The
ports are represented by the set P = {1, 2, 3 . . . ..}, with PL as the set of loading ports and
PU as the set of unloading ports. i, j, n + i ∈ P = PL ∪ PU ; xijs are defined as 0,1 variables
for the ship’s sailing from port i to port j. The fuel consumption of ships has a nonlinear
relationship closely related to sailing speed and effective payload, as described by Psaraftis
and Kontovas in their mathematical representation [32]:

fw,v = G(P + vT)(W + E)2/3 (1)

wherein the daily fuel consumption (in tons/day) of the ship fw,v; G > 0, P ≥ 0, T ≥ 3;
all three are constants related to the ship; v (in knots) is the ship’s speed; W (in tons) is
effective payload, and E (in tons) is the modified ‘lightship weight’, which is the weight of
the empty ship;
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For a ship owning a voyage route l for transporting the current cargo, its ship sail-
ing time Tl (in hours) is composed of ballast sailing time and fully loaded sailing time,
expressed by the following formula:

Tl = ∑
k,i∈P

dki(vBasllast
kis )

−1
xkis + ∑

i,j∈P
dij(vFull

ijs )
−1

xijs (2)

vBasllast
kis represents the ballast speed of the ship s from the previous port k to port i;

vFull
ijs represents the fully loaded speed of the ship s from port i to port j; dij (in nautical

miles) is the sailing distance from port i to port j.
The fuel consumption is composed of the sum of the fuel consumption on the ballast

route and the fuel consumption on the fully loaded route, expressed as:

f l
s = ∑

k,i∈P
ηvBasllast3

kis Ws
2/3dki(vBasllast

kis )
−1

xkis + ∑
i,j∈P

ηvFull3

ijs (Ws + Es)
(2/3)dij(vFull

ijs )
−1

xijs (3)

f l
s (in tons) is the fuel consumption for the voyage route l of the ship; η is a constant; xijs is

defined as a 0,1 variable for ship completing the voyage from i to j.
Therefore, with set as the emission factor, the CO2 emissions are represented as COl

2
(in tons), and its formula is:

COl
2 = α f l

s (4)

Additionally, consider the operating costs of the ship, including fuel consumption cost
and fixed costs, which are as follows:

COSTl = Pf uel f l
s + ∑

k,i∈P
Pf ixdki(vBasllast

kis )
−1

+ ∑
i,j∈P

Pf ixdij(vFull
ijs )

−1
(5)

wherein Pf uel (in $/ton) represents the fuel price; Pf ix (in $/day) represents the daily
fixed cost.

4. Proposed Model

To describe the time efficiency and emission multi-objective optimization algorithm
model ETE-SRSP, which adheres to multiple constraints, this section first identifies the
parameters and variables required for the model. It then introduces the assumption
conditions, the logic for route generation, objective functions, and the algorithmic process.

4.1. Preparation of Parameter and Variable Sets

The parameters and variables used in the model are shown in Table 1. This step lays
the foundation for the construction of the model, ensuring the accuracy and consistency of
the concepts and calculations involved.

Table 1. Parameter and variable sets.

Tag Description

Set
S Set of ships, S = 1, 2, 3. . .
P Set of ports, P = 1, 2, 3. . .

PL Set of loading ports
PU Set of unloading ports
N Set of cargoes
L Set of feasible voyage routes, L = 1, 2, 3. . .
Es Set of empty weights for ship s
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Table 1. Cont.

Tag Description

Parameters
f l
s Fuel consumption for voyage route l of ship

α Emission factor, a constant
η A constant

Ws Cargo weight carried by ship s
o(s) Initial position of ship s
d(s) Destination node in the solution or the destination port of the ship s

ETW load
n Earliest loading time for cargo n

LTW load
n Latest loading time for cargo n

ETWunload
n Earliest unloading time for cargo n

LTWunload
n Latest unloading time for cargo n

Pf uel Fuel price
Pf ix Daily fixed cost
dij Distance from port i to port j
m Number of ships, a constant

Variables
xijs Variable defining ship s sailing from i to j as 0,1

Ttotal Total sailing time for the fleet
Tl Sailing time for the current voyage

vBallast
ijs Ballast speed of ship s

vFull
ijs Fully loaded speed of ship s

COSTl CO2 emissions for voyage route l of the ship
COSTtatal Operating costs for ship

COl
2 CO2 emissions for voyage route l of the ship

CO2total Total CO2 emissions for the fleet

4.2. Description of Assumptions

The construction of the model is based on the following conditions:

1. The shipping company operates a heterogeneous fleet, each ship characterized by
specific attributes such as effective payload, ballast speed, full load speed, lightship
weight, initial port, and initial time [25].

2. The current market’s cargo properties include required weight, loading port, unload-
ing port, and time windows [23,31].

3. Ships may visit a port multiple times, and cargo must remain undivided, necessitating
its transportation in entirety by a single ship [1,25].

4. Throughout their voyage, each ship must adhere to established speed ranges for
ballast or meet speed requirements under fully loaded conditions [23].

5. Within the consideration period of the model, fuel prices are assumed to be constant
to eliminate the impact of fuel cost fluctuations on shipping economics, allowing the
model to concentrate on optimizing routes and schedules.

4.3. Route Generation

The mechanism for generating routes is paramount in the planning process of tramp
shipping schedules. Utilizing the principles of genetic algorithms, this method embarks on
an exploration of possible solutions by creating a variety of individuals, each symbolizing
potential strategies for routing and cargo allocation. Every individual within this context is
defined by a unique sequence of cargo placements alongside the planned navigational paths
for the ships. The primary objective here is to devise a scheme where all cargoes reach their
intended destinations within their prescribed time frames while adhering to the constraints
regarding the ships’ capacities and velocities. In the initial phase, the algorithm initializes
a population with each member representing a distinct, randomly generated sequence
of cargo assignments. For every member of this population, the algorithm proceeds to
allocate cargo to ships based on this pre-determined sequence. A ship is chosen at random
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and evaluated against the list of cargoes awaiting shipment, to ascertain its capability to
transport a given cargo. This assessment includes calculating the travel time required
for the ship to move from its current location to the cargo’s port of loading, ensuring the
journey complies with the specific time windows allocated for loading and unloading the
cargo. If the ship satisfies all stipulated criteria (including time windows and load capacity),
the cargo is assigned to it, leading to an update in the ship’s itinerary and status. Following
a successful cargo assignment, the item is removed from the queue, and the ship’s status
is updated accordingly. Each potential solution is scrutinized to confirm it provides a
viable shipping arrangement for all cargoes within the constraints of their time windows.
Only those solutions fulfilling the requirements are kept within the population for further
evaluation and refinement. Solutions that fail to allocate all cargoes appropriately are
discarded, ensuring the population solely consists of feasible routing plans. Through
iterative refinement and evaluation within this algorithmic framework, the process seeks to
identify the most efficient or near-optimal routing and scheduling configurations for tramp
shipping operations.

4.4. Objective Function and Constraints

Under the mathematical relational framework proposed in Section 3.2, this part fur-
ther develops a multi-objective optimization model focused on the routing and scheduling
problem of tramp ships. The model aims to minimize both sailing time and CO2 emis-
sions, reflecting a comprehensive optimization objective that considers both transportation
efficiency and environmental impact.

Objective function as follows:

min F1 =
m

∑
s=1

∑
l∈L

Tl
s (6)

min F2 =
m

∑
s=1

∑
l∈L

COl
2s (7)

Equations (6) and (7) represent the two objective functions of the model, where (6)
is the total sailing time for all ship routes, and (7) is the total CO2 emissions from all
ship voyages.

Constraint conditions as follows:

∑
s∈S

∑
i,j∈P

xijs = 1, i, j ∈ P (8)

∑
i,j∈P

xijs − ∑
i,j∈P

xjis = 0, s ∈ S (9)

∑
j∈P

xo(s)js = 1, s ∈ S (10)

∑
i∈P

xid(s)s = 1, s ∈ S (11)

∑
i,j∈P

xijs − ∑
i,j∈P

xj,i+n,s = 0 (12)

xijs(TWis + dij/vijs − LTWjs) ≤ 0 (13)

vbBallast
min <= vBallast

ijs <= vbBallast
max (14)

vbFull
min <= vFull

ijs <= vbFull
max (15)

ETW load
is <= TWis <= LTW load

is (16)

ETWunload
js <= TWjs <= LTWunload

js (17)
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Equation (8) ensures that each batch of cargo is transported by only one ship;
Equations (9) to (11) define the network trajectory of the voyage on the route of the ship s;
Equation (12) ensures that the loading and unloading nodes for cargo must be completed
by the same ship; Equation (13) ensures that the service start time of ship s from node i to
node j cannot be earlier than the departure time from node i plus the sailing time between
the two nodes; Equations (14) and (15) constrain the ballast and fully loaded speeds of ship
s to be within the specified speed range; Equations (16) and (17) ensure that ships meets
the time window requirements at the loading and unloading ports.

4.5. Model Logic

Facing the complex decisions and multifaceted challenges involved in sustainable
maritime transportation, a time efficiency and emission multi-objective optimization al-
gorithm model, ETE-SRSP, adhering to multiple constraints, is proposed. Its workflow is
illustrated in Figure 2. Additionally, Algorithm 1 provides more detailed information about
the algorithm in the form of pseudocode.

Figure 2. Workflow Diagram of ETE-SRSP Algorithm.
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Algorithm 1: The procedure of ETE-SRSP Algorithm.

1: Initialization: Ship collection S, port collection P, cargo collection N. . .. . .
2: Input: Parameter settings of ETE-SRSP; Parameter settings of ETE-SRSP: see Table 1
3: Constructing ship route scheduling environment to generate route network topology
4: Repeat n
5: Evaluate the fitness of each individual
6: for m = 1: individual
7: if check_time_e(i) < ship_time(k,s) + sailing_time(k,i) < check_time_l(i)
8: check_time(i) < ship_time(i,s) + sailing_time(i,j) < check_time(j)
9: W(s) < ship(s)_capacity
10: Constraint
11: end
12: Update route, cargo, ship
13: end
14: Repeat end
15: Generate the set of optimal true_routes
16: Define the objective function using calculate Objectives (), true_routes, shipData, cargoData,

Distances, alpha, lambda, fuel cost
17: Execution of multi-objective algorithm
18: For each solution in the optimal solution
19: Visualize the Pareto front and the optimal solution
20: end
21: Return

5. Experimental Results and Analysis

In this section, we refer to the grain transportation data samples shown in the litera-
ture [23] to validate the effectiveness of the irregular ship routing and scheduling ETE-SRSP
algorithm, and then comparatively analyze the practicality of the proposed study.

5.1. Environment and Data

The shipping company currently owns four Handysize bulk carriers with different
technical parameters. The data for each ship include its initial port, initial time, speed
range, cargo capacity, empty ship weight, and daily operating costs, as detailed in Table 2.
Currently, 11 batches of cargo on the market need to be transported. The data for each
batch of cargo include the loading port, unloading port, loading time window, unloading
time window, transportation cost, and cargo weight, as detailed in Table 3. The parameters
for the ETE-SRSP algorithm are configured as follows: the population size is set at 300 to
ensure comprehensive exploration of the solution space, and the number of generations is
established at 100 to facilitate robust convergence to the Pareto front. The Pareto fraction is
maintained at 0.4, and the crossover fraction is set at 0.8, optimizing the balance between
diversity and solution quality. Furthermore, a fuel cost assumption of $600 per ton is
employed.

Table 2. Ship data information.

Ship ID Initial Port
Initial Time

(H)

Speed Range (Knots) Capacity
(Tons)

Empty Weight
(Tons)

Daily Cost ($)
Min Max

1 Sydney 288 11.5 17 31,760 13,382 5200
2 Belem 96 11 16 32,800 14,295 5800
3 New Orleans 24 11 17 31,770 11,936 5300
4 Rotterdam 168 10 16 34,650 14,273 6200
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Table 3. Cargo data information.

Cargo
ID

Cargo Weight
(Tons) Load Port Unload Port Load Time

Start (H)
Load Time

End (H)
Unload Time

Start (H)
Unload Time

End (H)
Charter Cost

(K$)

1 27,050 Sydney Ho Chi Minh 270 298 572 667 872
2 24,728 Rotterdam Fujairah 150 220 576 693 633
3 24,814 Belem Qingdao 94 144 815 1026 926
4 29,304 New Orleans Le Havre 22 126 330 422 437
5 30,576 Vancouver Dalian 843 1063 1182 1485 517
6 24,975 Vancouver Guangzhou 2011 2481 2392 2561 581
7 31,733 Dunkerque Port Klang 983 1023 1528 1881 755
8 29,862 Seattle Tokyo 1529 1921 1813 2270 409
9 30,616 Sydney Fujairah 867 1031 1330 1605 639

10 28,879 Vancouver Ningbo 1160 1447 1516 1866 511
11 27,365 Seattle Guangzhou 1855 2298 2229 2573 550

Utilizing the dataset above, our study aims to demonstrate how the proposed opti-
mization model can effectively plan ship routes and schedules to meet cargo transportation
needs while optimizing transportation efficiency and reducing environmental impact. To
validate the performance of this approach, relevant simulation experiments are conducted
in Matlab2022b, implemented on a configuration with an Intel Core i7-9750H CPU @
2.6 GHz and 32 GB RAM.

5.2. Results

Figure 3 displays the Pareto frontiers for four ships, highlighting the trade-offs between
sailing time and CO2 emissions. Pareto charts are utilized to represent non-inferior solutions
in multi-objective optimization, where each point indicates a feasible solution. Solutions are
color-coded: yellow points for lower emissions but longer sailing times, green for moderate
levels of both, and purple for higher emissions with shorter times. This differentiation
illustrates the inverse relationship between the objectives, clearly showing that reducing
emissions typically extends transit times. Moreover, the shape of the Pareto frontier reveals
a set of optimal solutions, emphasizing that any improvement in one objective requires a
compromise in the other. This information is crucial for optimizing ship route scheduling,
balancing environmental impacts with operational efficiency.

Figure 3. Cont.
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Figure 3. (a) Pareto frontier based on sailing time and CO2 emissions for ship 1; (b) Pareto frontier
based on sailing time and CO2 emissions for ship 2; (c) Pareto frontier based on sailing time and CO2

emissions for ship 3; (d) Pareto frontier based on sailing time and CO2 emissions for ship 4.

The weighted sum method is used in the Pareto frontier to find the optimal solutions.
Firstly, each dimension in the dataset is normalized to ensure that each feature has a mean
of 0 and a standard deviation of 1. This process is achieved by subtracting the mean value of
each feature from each data point and then dividing it by its standard deviation. Secondly,
weights are allocated to the two optimization objectives of CO2 emissions and sailing time.
Finally, the normalized values of each objective are multiplied by their respective weights
and summed to obtain a weighted score. This score reflects all objectives comprehensively,
whereas a lower score indicates a more advantageous solution. The points marked on the
Pareto frontier represent solutions that minimize sailing time, while the topmost points
represent solutions that minimize CO2 emissions. The Pareto frontier between these two
points represents all possible optimal trade-off solutions, allowing schedulers to choose the
most suitable operation point based on specific business needs and environmental policies.

With the help of the model, this study has developed a set of routing schemes
for the scheduling of a tramp ship fleet and collected corresponding operational data.
Table 4 exhaustively lists the operational efficiency data for ships on various routes, in-
cluding voyage routes, speeds, fuel consumption, CO2 emissions, sailing times, and their
costs, providing us with in-depth insights into the operational efficiency of ships on dif-
ferent routes. Figure 4 visually presents the simulated actual sailing routes for Ship 1 as
an example.

Table 4. Detailed analysis of the ship’s operational efficiency.

ID Route Cargoes Ballast Speed
(Knots)

Full Load
Speed (Knots)

Fuel
Consumption

(Tons)

CO2 Quantity
(Tons) Time (H) Time Cost (K$) Fuel Cost (K$)

1 1-1-8 1 - 12.7 427.7 1154.7 347 141.82 256.60
1 8-1-9 9 14.9 12.4 925.5 2498.9 855 348.99 555.30
2 3-3-10 3 - 13 1048.8 2831.7 849 325.39 629.26
2 10-5-16 10 14.8 12.5 795.1 2146.7 747 286.33 477.05
2 16-7-13 11 14.7 12.3 840.0 2268.1 818 313.58 504.02
3 4-4-11 4 - 12.4 389.3 1051.0 377 135.16 233.56
3 11-5-12 5 14.9 12.3 828.4 2236.7 928 332.65 497.04
3 12-7-15 8 14.9 12.1 621.1 1676.9 700 250.98 372.65
4 2-2-9 2 - 12.3 604.9 1633.2 505 237.84 362.94
4 9-6-14 7 14.7 12.3 1236.6 3338.9 1075 506.12 741.99
4 14-5-13 6 14.8 12.6 1064.6 2874.5 946 445.20 638.78

Sydney: 1; Rotterdam: 2; Belem: 3; New Orleans: 4; Vancouver: 5; Dunkerque: 6; Seattle: 7; Ho Chi Minh: 8;
Fujairah: 9; Qingdao: 10; Le Havre: 11; Dalian: 12; Guangzhou: 13; Port Klang: 14; Tokyo: 15; Ningbo: 16.
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Figure 4. Simulation of the actual route of the ship concerning ship 1.

The data analysis from Table 4 indicates that each ship in the fleet has been allocated
cargo transportation tasks, and each cargo has been properly arranged. Ship 1 transports
cargoes 1 and 9, following the route R1 (number for ship number): [1, 8, 1, 9]. Ship 2 carries
cargoes 3, 10, and 11, with its route R2: [3, 10, 5, 16, 7, 13]. Ship 3 is responsible for
cargoes 4, 5, and 8, navigating the route R3: [4, 11, 5, 12, 7, 15]. Ship 4 handles cargoes
2, 7, and 6, via the route R4: [2, 9, 6, 14, 5, 13]. Further analysis reveals that both the ballast
and fully loaded speeds of the ships have been assigned reasonable speeds. There are
slight differences in speeds, which may stem from individual differences in ship design
and variations in cargo load weights. Taking route 8-1-9 of Ship 1 as an example, its sailing
time and CO2 emissions are calculated to be 347 h and 427.7 tons, and the cost of sailing
time and fuel cost is $141.82 K and $256.60 K, respectively. The recorded sailing times
and CO2 emissions provide a quantitative basis for evaluating the operational efficiency
and environmental impact of the ships. Notably, there is a significant correlation between
sailing time and cost.

Table 5 provides an overview of the operating costs for ships, detailing fuel consump-
tion, CO2 emissions, operational time, and associated costs. Each row corresponds to a
specific ship, summarizing both individual and cumulative metrics for all observations.
In a case study involving 4 ships and 11 cargoes, total CO2 emissions are recorded at
23,711.4 tons, combined sailing time at 8147 h, and overall operational costs at $8593.2 K.
The table also illustrates the breakdown of fuel and time costs within the total expenditures,
highlighting the relationship between CO2 emissions and operational costs.

Table 5. Summary of ship operating costs.

ID Fuel Consumption (Tons) CO2 Quantity (Tons) Time (H) Time Cost (K$) Fuel Cost (K$) Total Cost (K$)

1 1353.2 3653.6 1202 490.8 811.9 1302.7
2 2683.9 7246.5 2414 925.3 1610.3 2535.6
3 1838.7 4964.6 2006 718.8 1103.2 1822.0
4 2906.2 7846.7 2526 1189.2 1743.7 2932.9

Total 8782.0 23,711.4 8147 3324.1 5269.2 8593.2

5.3. Comparative Experimental Analysis
5.3.1. Multi-Speed

To examine the effects of different sailing speeds on CO2 emissions, sailing time, and
operational costs of tramp ship route scheduling, we conducted a comparative analysis
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using the ETE-SRSP algorithm. This analysis focused on speeds between 12 and 15 knots,
termed the ‘slow steaming’ strategy [32,33]. Relevant data are detailed in Tables 6 and 7.

Table 6. CO2 emissions, sailing time, and operating costs at speeds 12 & 13 knots data table.

Speed 12 Knots Speed 13 Knots Operating Speed

ID CO2 (Tons) Time (H) Cost (K$) CO2 (Tons) Time (H) Cost (K$) CO2 (Tons) Time (H) Cost (K$)

1 3167.6 1313 1240.1 3717.5 1212 1321.0 3653.6 1202 1302.7
2 6088.8 2675 2378.6 7145.9 2470 2534.6 7246.5 2414 2535.6
3 4194.4 2244 1736.1 4922.5 2071 1836.1 4964.6 2006 1822.0
4 6719.7 2789 2806.2 7886.3 2574 2964.5 7846.7 2526 2932.9

Table 7. CO2 emissions, sailing time, and operating costs at speeds 14 & 15 knots data table.

Speed 14 Knots Speed 15 Knots Operating Speed

ID CO2 (Tons) Time (H) Cost (K$) CO2 (Tons) Time (H) Cost (K$) CO2 (Tons) Time (H) Cost (K$)

1 4311.4 1126 1417.7 4949.3 1050 1528.8 3653.6 1202 1302.7
2 8287.6 2293 2720.7 9513.8 2140 2934.6 7246.5 2414 2535.6
3 5709.0 1923 1957.8 6553.7 1795 2099.6 4964.6 2006 1822.0
4 9146.3 2390 3157.9 10,499.6 2231 3383.6 7846.7 2526 2932.9

Data from Tables 6 and 7 indicate that with the increase in sailing speed, the CO2
emissions of all ships generally rise, especially when increasing from 14 knots to 15 knots,
where the increase in emissions is most significant. Although sailing at lower speeds results
in reduced CO2 emissions and operating costs for the four ships, it significantly increases
the sailing time. However, under optimized speed settings, the CO2 emissions of each ship
significantly decrease, approaching the emission levels at lower speeds. Taking Ship 1 as
an example, the CO2 emissions increase from 3167.6 tons to 4949.3 tons when the speed
increases from 12 knots to 15 knots, a 56.25% increase. In contrast, under optimized speed,
the emissions are 3653.6 tons, 26.18% lower than at 15 knots, highlighting the effectiveness
of precisely adjusting sailing speeds to reduce environmental impacts.

To visually display the changes in data, a comparison of the performance of each
vessel at different speeds is provided, as shown in Figures 5–8. It is observed that with
an increase in ship speed, both operating costs and CO2 emissions increase dramatically.
This demonstrates the principle that fleet operations are not suited for high speeds, and
that fuel is a critical determinant of operating costs. In Figure 7, the reduction in sailing
time for Ship 3 is more gradual relative to other variables, indicating that with increased
speed, the efficiency of time savings decreases. This might mean that at higher speeds,
the time efficiency of this ship has diminishing returns. Figure 7 also shows that Ship 4’s
operating costs increase sharply at higher speeds, indicating that this ship’s operational
expenses are particularly sensitive to speed changes, possibly due to fuel cost or other
factors. Furthermore, it is evident that after optimizing speeds, the fleet’s four ships
find an optimal balance between CO2 emissions and sailing time, mitigating the growth
trend of CO2 emissions while also preventing an increase in sailing time and operating
costs. This suggests that choosing an optimal moderate speed can shorten travel time and
control operating costs, offering a compromise solution considering both environmental
and cost factors.

By integrating analyses of CO2 emissions, sailing time, and operating costs, we find
that optimized speeds provide an ideal balance of performance indicators for each ship. For
example, as shown in Table 8 and Figure 6, for Ship 2, the CO2 emissions (7246.5 tons) at
optimized speed are reduced by 23.83% compared to the emissions at 15 knots (9513.8 tons),
and the operating costs ($2535.6 K) is also reduced compared to the cost at 15 knots
($2934.6 K). This confirms that optimizing speed can reduce environmental impact while
controlling operating costs based on ensuring sailing efficiency and achieving sustainability
in maritime operations.
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Figure 5. Performance of ship 1 under multi-speed sailing conditions.

Figure 6. Performance of ship 2 under multi-speed sailing conditions.
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Figure 7. Performance of ship 3 under multi-speed sailing conditions.

Figure 8. Performance of ship 4 under multi-speed sailing conditions.

Table 8. Decision options table.

Keys
Option

Decision 1 Decision 2 Decision 3 Decision 4

CO2 (Tons) 16,948.8 17,480.1 19,131.0 23,711.4
Time (H) 9841 9624 9071 8147
Cost (K$) 7779.5 7804.2 7951.9 8593.2
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Figure 9 displays the relative percentage changes in the entire fleet’s CO2 emissions,
sailing time, and operating costs at different sailing speeds. The data are represented
in percentage form, offering a comprehensive view of different operational indicators.
The figure shows that with an increase in sailing speed, the percentage of the fleet’s
CO2 emissions notably increases, likely due to decreased fuel efficiency at higher speeds.
Moreover, the percentage of operating costs also rises with increased speed, reflecting
higher fuel consumption and related expenses. In contrast, the decline in the percentage
of sailing time indicates that an increase in speed results in shorter journey times. The
comprehensive efficiency index is calculated based on the three parameters and shows
different trends at different speeds. This index decreases at lower speeds and begins to
rise after increasing to a certain extent, suggesting the existence of an optimal sailing
speed point where economic benefits and environmental impacts are balanced. Under the
condition where the x-axis represents optimized speed values, the composite efficiency
index is at its lowest compared to feasible speed values, confirming the effectiveness of the
ETE-SRSP algorithm.

Figure 9. Analysis of fleet performance indicators under multi-speed sailing conditions.

5.3.2. Multi-Decision

To conduct a comprehensive analysis of the impacts of time weight adjustments on
sailing time, CO2 emissions, and operating costs, and to explore how to optimize the overall
performance of the fleet under different time preference settings. Figure 10 illustrates the
changes related to CO2 emissions and sailing time as a function of time weight, as well as
the trends in corresponding operating costs. This facilitates a deeper analysis and trade-off
between different operational objectives, thereby providing enhanced data support for
decision-making in fleet operations.

The data indicate that from a weight of 0.1 to 0.5, the CO2 emissions increase relatively
slowly, from 16,948.8 tons to 23,711.4 tons. This suggests that at lower time weights, the
increase in CO2 emissions is moderate. However, when the time weight jumps from
0.6 to 0.9, emissions sharply increase from 28,131.3 tons to 31,081.6 tons. This significant
jump reflects the accelerated pace of emissions increase as a higher weight is placed on
time efficiency. Sailing time decreases from 9840 h at a weight of 0.1 to 7272 h at a weight of
0.9, showing the significant impact of improved time efficiency on reducing sailing time.
Operating costs gradually rise from $7779.5 K at a weight of 0.1 to $9870.4 K at a weight of
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0.9. This shows that cost increases as the weight on time efficiency rises, but the trend of
cost increase is relatively gentle.

Figure 10. Sailing time, CO2 emissions, and operating costs with different time weights.

While pursuing time efficiency, a higher cost is incurred, but the cost growth is not
as pronounced as the increase in CO2 emissions. This means that emphasizing time
efficiency in operational decisions may lead to a disproportionate growth in environmental
costs. This phenomenon might reflect the diminishing marginal utility of increased sailing
speeds, where the pursuit of shorter sailing times incurs higher economic costs and a
greater environmental impact. In summary, when the time weight is below 0.5, operational
strategies may lean towards slower sailing speeds to control emissions and cost. This also
aligns with the scheduling strategies of shipping companies, and Table 8 provides detailed
data on low operating costs. Moreover, beyond a time weight of 0.6, decision-makers need
to pay special attention to the significant increase in CO2 emissions.

6. Conclusions and Future Work

This study introduces the ETE-SRSP, a novel model designed to address the complex
decisions and multifaceted challenges of achieving sustainable maritime transport. Our
results demonstrate that the ETE-SRSP model excels in optimizing sailing speeds, managing
emissions effectively, and controlling operational costs under various cargo loads and
sailing conditions. Notably, the model integrates ballast and full-load speeds as variables,
enabling the determination of optimal speeds that significantly reduce emissions while
managing costs effectively. The experiments highlight the ETE-SRSP algorithm’s capability
to balance cost control and emissions reduction, particularly when adjusted to typical
weight settings, which is crucial for fleet management, benefiting both economic and
environmental aspects.

In contrast, existing studies have also considered CO2 emissions; however, most
proposed SRSP model algorithms like PSO-CP [15], VNGSA [25], and VSRIP [34] treat CO2
as a cost component, essentially creating single-objective models. These models do not
dynamically adapt based on changes in CO2 levels, thus offering limited practical value.
Our proposed Equation (7), which incorporates CO2 directly as an input variable, allows the
ETE-SRSP to solve multidimensional optimization equations. The results, validated through
the Pareto frontier, align with the initial settings and expected optimization strategies,
enhancing the robustness and applicability of the outcomes, and thus providing high
reference and practical value.

Nonetheless, this investigation acknowledges certain limitations, including a lack of
consideration for various operational dynamics such as different ship types, cargo diver-
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sities, and fluctuating maritime weather conditions. In future work, we will enhance our
model through the introduction of an advanced weather impact and energy consumption
analysis module (AWIECA) in 2 ways: (1) This module will incorporate a dynamic weather
system that adjusts predicted routes and speeds based on real-time and forecasted condi-
tions, utilizing historical data to train predictive algorithms. This will allow for optimal
navigational adjustments during adverse weather, thus enhancing both safety and opera-
tional efficiency. (2) The module will feature a sophisticated computational approach to
quantitatively analyze ships’ energy consumption and emissions under various scenarios,
such as different speeds, cargo loads, and weather conditions. By establishing a comprehen-
sive data platform for ship routing and scheduling, this enhancement will facilitate more
accurate predictions, enabling ship operators to make informed decisions that comply with
environmental regulations and optimize cost efficiency.
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Appendix A

Table A1. Organization of relevant literature.

ID Reference Objectives Method

1 Lee and Kim. [17] Min (Cost)
A mixed-integer programming model and an adaptive large neighborhood

search-based heuristic algorithm are proposed, effectively reducing
operating costs.

2 Charlotte et al. [20] Min (Cost)
To introduce a novel exact branch-and-price procedure incorporating voyage
separation requirements for tramp ship routing and scheduling, significantly

enhancing profit maximization and inventory cost minimization

3 Min et al. [19] Min (Cost)
To study a proposed mixed-integer linear programming and set packing

method, demonstrating significant profit improvements and sensitivity to
fuel prices based on real-life data.

4 Jiang et al. [22] Min (Cost)
To present a mixed-integer linear programming model that optimizes liner

shipping routes and schedules by incorporating port time windows,
resulting in significant improvements in total operating costs.

5 Yu et al. [23] Min (Cost)
and Satisfaction

To propose a bi-objective model that simultaneously optimizes minimum
operating costs and maximum shipper satisfaction, as well as determines the

optimal speed on each leg of a given ship route.

6 Gao et al. [1] Max (Profits)

To develop a mixed-integer programming model for optimizing ship
scheduling, routing, and sailing speeds in dry bulk shipping to maximize
operational revenue, demonstrating its effectiveness through numerical

experiments on both illustrative.
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Table A1. Cont.

ID Reference Objectives Method

7 Hemmat et al. [16] Min (Cost) To develop a benchmark suite for industrial and tramp ship routing and
scheduling problems

8 Arijit et al. [14] Min (Cost) and
consideration of CO2

This research introduces a mixed-integer non-linear programming (MINLP)
model for sustainable ship routing and scheduling.

9 Fan et al. [25] Min (Cost) and
consideration of CO2

To establish a multi-type tramp ship scheduling and speed optimization
model considering carbon emissions to minimize total shipping cost.

10 Li et al. [15] Min (Cost) and
consideration of CO2

A two-stage stochastic programming model is proposed, considering
potential carbon tax schemes to evaluate its impact on CO2 emission

reduction and gross margin improvement.

11 Wang et al. [26] Min (Cost)
To introduce a voyage optimization method combining dynamic

programming and genetic algorithms to optimize ship engine power for fuel
and emissions reduction.

12 Wen et al. [27] Min (Cost) and
consideration of CO2

To develop a branch and price algorithm and a constraint programming
model that incorporate factors like fuel consumption, fuel price, freight rate,

and cargo inventory cost

13 Wang et al. [28] Min (Cost) and
consideration of CO2

This paper presents a new method that optimizes the sailing route and speed
under complex conditions, achieving a reduction of approximately 4% in

fuel consumption and CO2 emissions.

14 Henrik et al. [24] Max (Profits)
A mathematical formulation and three solution methods are proposed to
address the complexity of routing and scheduling unique cargoes with

coupling and synchronization constraints, achieving maximum revenue.

15 Gao et al. [23] Min (Cost)
A branch-and-price framework is used for effective solutions, and

computational experiments validate the method’s effectiveness and practical
benefits.

References
1. Gao, Y.; Sun, Z. Tramp ship routing and speed optimization with tidal berth time windows. Transp. Res. Part E Logist. Transp. Rev.

2023, 178, 103268. [CrossRef]
2. Homsi, G.; Martinelli, R.; Vidal, T.; Fagerholt, K. Industrial and Tramp Ship Routing Problems: Closing the Gap for Real-Scale

Instances. arXiv 2018, arXiv:abs/1809.10584. [CrossRef]
3. Ksciuk, J.; Kuhlemann, S.; Tierney, K.; Koberstein, A. Uncertainty in maritime ship routing and scheduling: A Literature review.

Eur. J. Oper. Res. 2023, 308, 499–524. [CrossRef]
4. De, A.; Choudhary, A.K.; Tiwari, M.K. Multiobjective Approach for Sustainable Ship Routing and Scheduling with Draft

Restrictions. IEEE Trans. Eng. Manag. 2019, 66, 35–51. [CrossRef]
5. Gavalas, D.; Syriopoulos, T.; Tsatsaronis, M. COVID–19 impact on the shipping industry: An event study approach. Transp. Policy

2021, 116, 157–164. [CrossRef] [PubMed]
6. Wang, S.; Alharbi, A.; Davy, P. Liner ship route schedule design with port time windows. Transp. Res. Part C Emerg. Technol. 2014,

41, 1–17. [CrossRef]
7. Monge, M.; Romero Rojo, M.F.; Gil-Alana, L.A. The impact of geopolitical risk on the behavior of oil prices and freight rates.

Energy 2023, 269, 126779. [CrossRef]
8. Han, D.; Pan, N.; Li, K.C. A Traceable and Revocable Ciphertext-Policy Attribute-based Encryption Scheme Based on Privacy

Protection. IEEE Trans. Dependable Secur. Comput. 2022, 19, 316–327. [CrossRef]
9. Wen, X.; Chen, Q.; Yin, Y.Q.; Lau, Y.Y.; Dulebenets, M.A. Multi-Objective Optimization for Ship Scheduling with Port Congestion

and Environmental Considerations. J. Mar. Sci. Eng. 2024, 12, 114. [CrossRef]
10. Chen, C.; Han, D.; Shen, X. CLVIN: Complete language-vision interaction network for visual question answering. Knowl. Based

Syst. 2023, 275, 110706. [CrossRef]
11. Yan, R.; Wang, S.; Psaraftis, H.N. Data analytics for fuel consumption management in maritime transportation: Status and

perspectives. Transp. Res. Part E Logist. Transp. Rev. 2021, 155, 102489. [CrossRef]
12. Yu, B.; Peng, Z.; Tian, Z.; Yao, B. Sailing speed optimization for tramp ships with fuzzy time window. Flex. Serv. Manuf. J. 2019,

31, 308–330. [CrossRef]
13. Aydin, N.; Lee, H.; Mansouri, S.A. Speed optimization and bunkering in liner shipping in the presence of uncertain service times

and time windows at ports. Eur. J. Oper. Res. 2017, 259, 143–154. [CrossRef]

https://doi.org/10.1016/j.tre.2023.103268
https://doi.org/10.1016/j.ejor.2019.11.068
https://doi.org/10.1016/j.ejor.2022.08.006
https://doi.org/10.1109/TEM.2017.2766443
https://doi.org/10.1016/j.tranpol.2021.11.016
https://www.ncbi.nlm.nih.gov/pubmed/35039721
https://doi.org/10.1016/j.trc.2014.01.012
https://doi.org/10.1016/j.energy.2023.126779
https://doi.org/10.1109/TDSC.2020.2977646
https://doi.org/10.3390/jmse12010114
https://doi.org/10.1016/j.knosys.2023.110706
https://doi.org/10.1016/j.tre.2021.102489
https://doi.org/10.1007/s10696-017-9296-4
https://doi.org/10.1016/j.ejor.2016.10.002


J. Mar. Sci. Eng. 2024, 12, 817 21 of 21

14. De, A.; Mamanduru, V.K.; Gunasekaran, A.; Subramanian, N.; Tiwari, M.K. Composite particle algorithm for sustainable
integrated dynamic ship routing and scheduling optimization. Comput. Ind. Eng. 2016, 96, 201–215. [CrossRef]

15. Li, M.; Fagerholt, K.; Schütz, P. Stochastic tramp ship routing with speed optimization: Analyzing the impact of the Northern Sea
Route on CO2 emissions. Ann. Oper. Res. 2022. [CrossRef]

16. Hemmati, A.; Hvattum, L.M.; Fagerholt, K.; Norstad, I. Benchmark Suite for Industrial and Tramp Ship Routing and Scheduling
Problems. INFOR Inf. Syst. Oper. Res. 2014, 52, 28–38. [CrossRef]

17. Lee, J.; Kim, B.I. Industrial ship routing problem with split delivery and two types of vessels. Expert Syst. Appl. 2015, 42,
9012–9023. [CrossRef]

18. Vilhelmsen, C.; Lusby, R.; Larsen, J. Tramp ship routing and scheduling with integrated bunker optimization. EURO J. Transp.
Logist. 2014, 3, 143–175. [CrossRef]

19. Wen, M.; Ropke, S.; Petersen, H.; Larsen, R.; Madsen, O. Full-shipload tramp ship routing and scheduling with variable speeds.
Comput. Oper. Res. 2016, 70, 1–8. [CrossRef]

20. Vilhelmsen, C.; Lusby, R.M.; Larsen, J.B. Tramp ship routing and scheduling with voyage separation requirements. OR Spectr.
2017, 39, 913–943. [CrossRef]

21. Norstad, I.; Fagerholt, K.; Laporte, G. Tramp ship routing and scheduling with speed optimization. Transp. Res. Part C Emerg.
Technol. 2011, 19, 853–865. [CrossRef]

22. Jiang, X.; Mao, H.; Zhang, H. Simultaneous Optimization of the Liner Shipping Route and Ship Schedule Designs with Time
Windows. Math. Probl. Eng. 2020, 2020, 3287973. [CrossRef]

23. Gao, J.; Wang, J.; Liang, J.P. A unified operation decision model for dry bulk shipping fleet: Ship scheduling, routing, and sailing
speed optimization. Optim. Eng. 2023, 25, 301–324. [CrossRef]

24. Andersson, H.; Duesund, J.M.; Fagerholt, K. Ship routing and scheduling with cargo coupling and synchronization constraints.
Comput. Ind. Eng. 2011, 61, 1107–1116. [CrossRef]

25. Fan, H.; Yu, J.; Liu, X. Tramp Ship Routing and Scheduling with Speed Optimization Considering Carbon Emissions. Sustainability
2019, 11, 6367. [CrossRef]

26. Wang, H.; Lang, X.; Mao, W. Voyage optimization combining genetic algorithm and dynamic programming for fuel/emissions
reduction. Transp. Res. Part D Transp. Environ. 2021, 90, 102670. [CrossRef]

27. Wen, M.; Pacino, D.; Kontovas, C.; Psaraftis, H. A multiple ship routing and speed optimization problem under time, cost and
environmental objectives. Transp. Res. Part D Transp. Environ. 2017, 52, 303–321. [CrossRef]

28. Wang, K.; Li, J.; Huang, L.; Ma, R.; Jiang, X.; Yuan, Y.; Mwero, N.A.; Negenborn, R.R.; Sun, P.; Yan, X. A novel method for joint
optimization of the sailing route and speed considering multiple environmental factors for more energy efficient shipping. Ocean
Eng. 2020, 216, 107591. [CrossRef]

29. Mansouri, S.A.; Lee, H.; Aluko, O. Multi-objective decision support to enhance environmental sustainability in maritime shipping:
A review and future directions. Transp. Res. Part E Logist. Transp. Rev. 2015, 78, 3–18. [CrossRef]

30. Han, D.; Zhu, Y.; Li, D.; Liang, W.; Souri, A.; Li, K.-C. A Blockchain-Based Auditable Access Control System for Private Data in
Service-Centric IoT Environments. IEEE Trans. Ind. Inform. 2022, 18, 3530–3540. [CrossRef]

31. Chen, C.; Han, D.; Chang, C.C. MPCCT: Multimodal vision-language learning paradigm with context-based compact Transformer.
Pattern Recognit. 2023, 147, 110084. [CrossRef]

32. Psaraftis, H.N.; Kontovas, C.A. Ship speed optimization: Concepts, models and combined speed-routing scenarios. Transp. Res.
Part C Emerg. Technol. 2014, 44, 52–69. [CrossRef]
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