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Abstract: The performance of long baseline (LBL) positioning systems is significantly impacted by the
distribution and positional calibration accuracy of underwater acoustic beacon arrays. In previous
calibration methods for beacon arrays based on autonomous underwater vehicle (AUV) platforms,
the slant range information of each beacon was processed independently, and each beacon was
calibrated one at a time. This approach not only decreases the calibration efficiency but also leaves
the positional calibration accuracy of each beacon highly susceptible to the navigation trajectory of
the AUV. To overcome these limitations, an equivalent virtual LBL (EVLBL) positioning model is
introduced in this paper. This model operates by adjusting the positions of each beacon according
to the dead reckoning increments computed during the AUV’s reception of positioning signals,
effectively forming a virtual beacon array. Consequently, the AUV is capable of mitigating LBL
positioning errors that arise from its motion by simultaneously receiving positioning signals from
all beacons. Additionally, an overall calibration method for beacon arrays based on particle swarm
optimization (PSO) is proposed. In this approach, the minimization of the deviation between the
EVLBL trajectory and the dead reckoning trajectory is set as the optimization objective, and the
coordinates of each beacon are iteratively optimized. The simulation results demonstrate that the
proposed EVLBL-based PSO algorithm (EVPSO) significantly enhanced the calibration efficiency
and positional accuracy of the beacon array. Compared with conventional methods, the estimation
error of the beacon positions was reduced from 6.40 m to within 1.00 m. After compensating for the
beacon array positions, the positioning error of the LBL system decreased from approximately 5.00 m
(with conventional methods) to around 1.00 m (with EVPSO), demonstrating the effectiveness of the
proposed approach.

Keywords: underwater navigation; long baseline (LBL) acoustic positioning system; underwater
acoustic beacon; calibration; particle swarm optimization (PSO)

1. Introduction

With the booming development of the marine economy, the exploitation and utilization
of marine resources have increasingly garnered people’s attention. Against this backdrop,
the fields of underwater geological archaeology and geomorphological surveying [1], oil
and gas exploration [2], underwater pipeline construction and maintenance [3,4], and
underwater target rescue [5] have witnessed a growing demand for efficient and accurate
underwater navigation technologies.

The long baseline (LBL) acoustic positioning system utilizes multiple acoustic beacons
deployed underwater to calculate the position of vehicles by measuring the propagation
time of acoustic signals from each beacon to the target [6]. Owing to its exceptional
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positioning accuracy, stability, and scalability, an LBL plays an increasingly crucial role
in underwater navigation applications [7,8]. Despite the numerous advantages of LBL
positioning technology, it still faces several challenges in engineering applications. Among
them, the deployment and positional calibration of underwater beacons have the most
significant impact on the LBL positioning accuracy [9,10].

Floating LBLs have been widely used in underwater positioning practice due to
their ability to accurately obtain global positioning system (GPS) information through
buoys [11]. However, the positions of the buoys are susceptible to the water current,
making them unsuitable for providing stable positioning services to underwater targets for
extended periods. Furthermore, in scenarios requiring high concealment, the use of buoys
is not advisable.

Underwater beacons are typically released from a workboat on the surface and sub-
sequently come to anchor on the seabed at an unknown location. Due to the influence of
water currents and other factors, there is often a significant horizontal deviation between
the anchoring position of the beacon and its release position. Therefore, it is necessary to
calibrate its actual position. During the conventional calibration process, the workboat
sails on the water surface above the beacon release position, following a preset trajectory
with the release position as the center. The vessel’s GPS position and slant range data
are recorded, and then the estimated position of each beacon is obtained through a least
squares calculation based on geometric relationships [12]. This method necessitates consid-
erable time to calibrate each beacon, thus limiting the operational efficiency. Furthermore,
the method may fail to effectively mitigate ranging errors that arise from variations in
sound speed, thereby compromising the desired accuracy. To enhance the calibration
accuracy, Zhang et al. proposed underwater transponder calibration methods based on
a Gauss–Newton iteration algorithm [13] and adaptive fault-tolerant Kalman filters [14].
Similarly, a calibration method based on M-estimation is proposed in reference [15] and
was verified for subsea wellhead positioning. Building on this, a calibration method that
integrates the interactive multiple model with the unscented Kalman filter is proposed in
reference [16]. This method enables the efficient calibration of beacon positioning errors
while also accounting for installation errors in the strapdown inertial navigation system
(SINS) and the transceiver of the ultra-short baseline (USBL) acoustic positioning system.
Although the aforementioned methods have significantly improved calibration accuracy
compared with conventional approaches, the use of a USBL for beacon calibration in
large-scale applications still inevitably leads to insufficient calibration accuracy due to
limitations in the ranging precision. Consequently, the utilization of an LBL for beacon
calibration continues to be the prevalent approach in current practices. Distinguishing from
other methods, a perpendicular intersection-based approach that utilizes analytic geometry
and least squares methods to achieve beacon calibration is proposed in reference [17]. A
relatively comprehensive error model for beacon calibration using an LBL that innovatively
incorporates beacon position errors into the state variables is presented in reference [18].
This approach enables the simultaneous estimation of the target position while calibrating
the beacon positions. Xu et al. dedicated their efforts to exploring ways to improve the
calibration accuracy and efficiency of underwater beacons without the support of depth sen-
sors. They successively proposed calibration methods based on local area segmentation and
an improved salp swarm algorithm [19,20], achieving high-precision depth estimation. In
reference [21], a beacon calibration method based on extended competitive particle swarm
optimization is proposed. While certain algorithms demonstrated success in enhancing the
calibration accuracy of underwater acoustic beacons, they still adhere to the conventional
calibration mode, requiring the workboat to navigate a fixed trajectory. Consequently,
there remains considerable potential for further optimizing and elevating the calibration
efficiency. Addressing this issue, Ji et al. proposed a novel method for beacon calibration
using an autonomous underwater vehicle (AUV) [22,23]. This method integrates the slant
range information from the beacons with a SINS, leveraging the extended Kalman filter
technique to simultaneously localize the AUV and calibrate the beacon positions. On this



J. Mar. Sci. Eng. 2024, 12, 825 3 of 16

basis, factor graph optimization was applied to underwater acoustic beacon calibration in
reference [24]. In this method, a Doppler velocity log (DVL), a SINS, a depth gauge, and
beacons were abstracted as factors within the optimization framework, enabling simultane-
ous AUV localization and acoustic beacon estimation. Although the efficiency and accuracy
of the aforementioned methods have improved, they still essentially belong to the method
of calibrating each beacon’s position individually, which inevitably results in the calibration
accuracy of beacon positions being affected by their distance from the AUV. In other words,
in a beacon array, the position calibration accuracy of beacons is generally better for those
that are closer to the AUV’s navigation trajectory and lower for those that are farther from
it. In addition, the impact of the LBL positioning error caused by the movement of the AUV
on the beacon position calibration was not taken into account by previous methods.

In this study, the equivalent virtual LBL (EVLBL) positioning method is proposed
to address the issue of inaccurate position estimation caused by AUV motion during the
LBL position calculation process. In this method, the position of each beacon is virtually
translated according to the dead reckoning increment after its positioning signal reaches
the AUV, and finally forms an equivalent virtual beacon array when calculating the LBL po-
sition. Through this method, the slant range error of each beacon caused by the movement
of the AUV is eliminated, thereby effectively improving the positioning accuracy of the LBL
system. On this basis, an overall calibration method for underwater acoustic beacon arrays
is proposed. Distinct from previous related studies that process the slant range data of each
beacon individually and calibrate the beacons one by one, this method treats all beacons as a
unified entity and abstracts them into a state variable. The EVLBL-based trajectory derived
from this state variable is then compared with the dead reckoning trajectory. With the aim
of minimizing the deviation between the two trajectories, the particle swarm optimization
(PSO) algorithm is employed for iterative optimization. Once the deviation reaches its
minimum value, the optimal estimates of the positions of each beacon can be obtained.

The structure of this paper is organized as follows. In Section 2, the LBL positioning
error model is established, and the positioning errors that arise from AUV motion are
analyzed. Based on this, the EVLBL positioning model is constructed. In Section 3, the
underwater acoustic beacon array calibration method based on PSO is explained, along
with its optimization using the EVLBL positioning model. The simulation test in Section 4
verifies the effectiveness and accuracy of the proposed method. The conclusions are
presented in Section 5.

2. Model of EVLBL

In comparison with underwater acoustic transponders, the employment of periodic
sound source beacons for passive acoustic positioning offers notable improvements in
both the concealment and safety of AUVs. Furthermore, by eliminating the requirement
for transmitting transducer configurations, this approach effectively manages the costs,
providing a more economically viable and efficient solution for marine exploration and po-
sitioning applications [25]. Despite these advantages, however, the adoption of this method
also necessitates the consideration of LBL positioning errors induced by AUV motion.

2.1. Analysis of LBL Positioning Errors Caused by AUV Motion

Figure 1 depicts a schematic diagram illustrating the LBL positioning process of
AUVs based on an acoustic beacon array, which consists of three synchronized sound
source beacons. Each beacon broadcasts positioning information to the surrounding area at
predetermined time intervals T0. This positioning information should include critical data,
such as the unique identifier of the beacon, the precise time of signal transmission, and the
current position of the beacon. In a certain LBL positioning cycle, all beacons synchronously
broadcast positioning information at time t0. After the signals propagate through the water,
they are captured by the AUV at positions PA1, PA2, and PA3 at t1, t2, and t3, respectively.
As the AUV remains stationary during this period, it follows that PA1 = PA2 = PA3.
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Figure 1. Schematic diagram of the LBL positioning process employing a sound source beacon array.

The slant range between the AUV and beacon k can be expressed as

rk = (tk − t0)vs (1)

where k = 1, 2, 3 represents the beacon index; rk denotes the slant range from beacon k to
the AUV; and vs represents the average speed of sound signal propagation in water, as
measured by a sound velocity profiler.

To facilitate the problem exposition, this paper assumes t1 < t2 < t3. Thus, upon
the reception of positioning signals from all the beacons by the AUV, the current position
can be determined using the trilateration model. Considering that AUVs are commonly
equipped with depth sensors for acquiring precise vertical position data, this study primar-
ily concentrated on estimating the horizontal position. The specific calculation formula is
outlined as follows:

P̂A3 = A−1B (2)

A =

[
xB1 − xB3
xB2 − xB3

yB1 − yB3
yB2 − yB3

]
(3)

B =

[ 1
2 (s1 − s3)− (zB1 − zB3)ẑA3
1
2 (s2 − s3)− (zB2 − zB3)ẑA3

]
(4)

sk = (xBk)
2 + (yBk)

2 + (zBk)
2 − (rk)

2 (5)

where P̂A3 = [x̂A3, ŷA3]
T represents the estimation value of the horizontal position of the

AUV by the LBL system at t3, PBk = [xBk, yBk, zBk]
T represents the position coordinates of

beacon k in the Cartesian coordinate system, and ẑA3 represents the depth measurement of
the AUV at t3.

When the AUV moves during the positioning process, as depicted in Figure 2, the
reception positions of the positioning signals from each beacon (PA1 and PA2) do not
coincide with the LBL-calculated position (PA3). Consequently, there exists a deviation
between the actual slant ranges r′k and the calculated slant ranges rk based on Equation (1).
If the position estimation of the AUV is still based on Equations (2)–(5), there will inevitably
be positioning errors.

To simplify this issue, it is considered that the AUV moves solely in the horizontal
direction, i.e., constant depth navigation is conducted. Taking beacon 1 as an example,
the calculation of the actual slant range r′k between each beacon and the AUV at PA3 is
as follows:

r′1 = ∥PB1 − PA3∥ = ∥PB1 − (PA1 + ∆PA13)∥ (6)

where ∥∥ denotes the operation of calculating the Euclidean distance. ∆PA13 represents
the dead reckoning positional increment of the AUV from times t1 to t3, which can be
expressed as follows:
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∆PA13 =

t3∫
t1

VA(t)dt (7)

where VA(t) =
[
vAx(t), vAy(t)

]T represents the velocities of the AUV along the x-axis and
y-axis at time t. Then, r′1 can be further expressed as(

r′1
)2

= (r1)
2 + (∆xA13)

2 + [∆yA13]
2 + 2∆xA13(xB1 − xA1) + 2∆yA13(yB1 − yA1) (8)

∆xA13 =

t3∫
t1

vAx(t)dt (9)

∆yA13 =

t3∫
t1

vAy(t)dt (10)

Figure 2. Schematic diagram of LBL positioning process under AUV motion.

The actual slant range r′2 of beacon 2 can be similarly obtained based on Equation (8).
Using P̂′

A3 =
[
x̂′A3, ŷ′A3

]
to represent the estimated position of the AUV based on the

actual slant ranges for LBL calculation, the process of the trilateration calculation can be
expressed as

P̂′
A3 =

[
xB1 − xB3
xB2 − xB3

yB1 − yB3
yB2 − yB3

]−1[ 1
2 (s

′
1 − s′3)− (zB1 − zB3)ẑA3

1
2 (s

′
2 − s′3)− (zB2 − zB3)ẑA3

]
(11)

s′k = (xBk)
2 + (yBk)

2 + (zBk)
2 −

(
r′k

)2 (12)

Combining the above equations, the positioning error of the AUV can ultimately be
expressed as

δPA3 = P̂′
A3 − P̂A3

= −1
2

A−1

[
(∆xA13)

2 + [∆yA13]
2 + 2∆xA13(xB1 − xA1) + 2∆yA13(yB1 − yA1)

(∆xA23)
2 + [∆yA23]

2 + 2∆xA23(xB2 − xA2) + 2∆yA23(yB2 − yA2)

]
(13)

As depicted in Equations (8) and (13), the positioning error induced by the AUV
motion involves multiple interrelated variables, primarily including the AUV’s velocity
and trajectory and the configuration of the beacon array. These variables are interrelated
and difficult to separate for quantitative analysis. Only a rough description can be provided
based on the equations: the further the deviation of the AUV’s trajectory from the center of
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the beacon array and the faster the AUV’s velocity, the larger the positioning error of the
LBL will be.

2.2. EVLBL Positioning Model Based on Dead Reckoning

Due to the high complexity and decoupling difficulty of the LBL positioning error
model described in Equation (13), compensating for these errors in practical applications
presents significant challenges. Therefore, conventional methods that rely on compensating
for positioning errors based on range information were not utilized in this study. Instead,
an innovative strategy that involves equivalent translation acoustic beacons is proposed.
This approach entails constructing a virtual beacon array for the LBL calculation, thereby
effectively eliminating the positioning error.

When directly using rk as the slant range from beacon k to the AUV for the LBL
position calculation, this implies that the corresponding beacon position moves from PBK to
P̃Bk = [x̃Bk, ỹBk, z̃Bk]

T. This results in the construction of a virtual beacon array composed
of one real beacon located at PB3 and two virtual beacons located at P̃B1 and P̃B2 at time t3,
as shown in Figure 3. Taking beacon 1 as an example, the equivalent virtual translation can
be represented as

P̃B1 = PB1 + ∆PB1 (14)

where PB1 is the actual position of beacon 1. P̃B1 represents the position of beacon 1 in the
virtual beacon array after the equivalent translation. ∆PB1 is the position translation of
beacon 1, which is equal to the dead reckoning positional increment ∆PA13 of the AUV
from times t1 to t3. In summary, the position of beacon 1 in the virtual beacon array can be
represented as

P̃B1 = PB1 +

t3∫
t1

Cn
b (t) · Vb(t)dt (15)

where Vb(t) represents the velocity of the AUV in the body coordinate system at time t, as
measured by the DVL. Cn

b (t) represents the direction cosine matrix at time t, as computed
from attitude angles measured by the compass.

Figure 3. Schematic diagram of EVLBL.

The position of beacon 2 in the virtual beacon array can be similarly obtained according
to Equation (15). The calculation process for the AUV position based on the EVLBL
positioning model can be expressed as follows:

PEVLBL =

[
x̃B1 − xB3
x̃B2 − xB3

ỹB1 − yB3
ỹB2 − yB3

]−1[ 1
2 (s̃1 − s3)− (z̃B1 − zB3)ẑA3
1
2 (s̃2 − s3)− (z̃B2 − zB3)ẑA3

]
(16)

s̃k = (x̃Bk)
2 + (ỹBk)

2 + (zBk)
2 − (rk)

2 (17)
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3. Overall Calibration Method for Acoustic Beacon Array
3.1. Calibration Method Based on Trajectory Deviations

Figure 4 illustrates the schematic diagram of the overall calibration method for the
beacon array based on the extent of the overlap between the dead reckoning trajectory and
the LBL trajectory. The method primarily consists of three parts: dead reckoning trajectory
calculation, LBL trajectory calculation, and beacon position optimization iteration. Within
the dead reckoning module, the position increment of the AUV is computed based on
measurements from the compass and DVL. Subsequently, a trajectory TDR is generated
based on the known initial position, as illustrated in Equation (18). Within the LBL trajectory
calculation module, the LBL position of the AUV is computed based on the beacon array
coordinates and measurements of the slant range data. Subsequently, the trajectory TLBL is
generated as depicted in Equation (19). Within the beacon position optimization iteration
module, the extent of overlap between TDR and TLBL is first computed, and minimizing
this value is set as the optimization objective. Subsequently, the coordinates of each beacon
are iteratively adjusted until the optimal solution is achieved.

Figure 4. Block diagram of the beacon array calibration method based on the extent of the overlap
between the dead reckoning trajectory and the LBL trajectory.

TDR =
[
PDR(ts1), PDR(ts2), · · · , PDR

(
tsj
)
, · · · , PDR(tsN)

]
(18)

TLBL =
[
PLBL(ts1), PLBL(ts2), · · · , PLBL

(
tsj
)
, · · · , PLBL(tsN)

]
(19)

where j = 1, 2, · · · , N denotes the index of the positioning signals emitted by each beacon
in the array toward the AUV at a fixed interval starting from the moment the calibration
algorithm is executed; N represents the total number of positioning signals emitted by the
beacon array throughout the entire calibration process; tsj represents the moment when the
AUV fully receives the j-th set of positioning signals and conducted the trilateration calcula-
tion; and PLBL

(
tsj
)

and PDR
(
tsj
)
, respectively, represent the LBL-calculated position and the

dead reckoning position of the AUV at time tsj, as obtained from Equations (16) and (20).

PDR
(
tsj
)
= PDR

(
ts(j−1)

)
+

tsj∫
ts(j−1)

Cn
b (t) · Vb(t)dt (20)
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The error of TLBL relative to the reference trajectory TDR is used as the objective
function, as shown in Equation (22).

ε(j) =
[

εx(j) εy(j)
]T

= PLBL
(
tsj
)
− PDR

(
tsj
)

(21)

f (x) =
1
N

·
N

∑
j=1

√
[εx(j)]2 +

[
εy(j)

]2 (22)

where ε(j) represents the trajectory error; εx(j) and εy(j) represent the components of ε(j)
on the x-axis and y-axis, respectively; and x represents the parameters to be optimized.

By utilizing the coordinates of each beacon in the array as optimization parameters,
denoted as x, and by minimizing the objective function f (x), the overall calibration of
the beacon array can be successfully achieved through the application of an appropriate
parameter optimization algorithm.

3.2. Implementation of Beacon Calibration Method Based on PSO

PSO is a population-based stochastic optimization technique inspired by collective
behaviors observed in nature, such as the cooperative foraging patterns seen in insects,
herds, flocks of birds, and schools of fish. In PSO, each particle represents a potential
solution and independently explores the search space to find the best individual solution.
Meanwhile, the entire swarm of particles operates collectively, iteratively selecting the
global best solution. During the search process, particles dynamically adjust their search
direction and step size based on their individual and global best solutions. This dynamic
adjustment mechanism enables PSO to rapidly converge toward the optimal solution and
effectively avoid local optima.

Taking the coordinates of each beacon in the array as parameters to be optimized, a
particle swarm is generated, with the minimization of the fitness value calculated by the
objective function serving as the optimization criterion. As the particle swarm continuously
iterates within the PSO optimizer based on the EVLBL positioning model, the overall
calibration of the beacon array can be achieved.

The coordinates of the beacon array are abstracted as a particle position, which is
represented as follows:

xi(t) = [xi1(t), xi2(t), xi3(t), xi4(t), xi5(t), xi6(t)]
= [xB1(t), yB1(t), xB2(t), yB2(t), xB3(t), yB3(t)]

(23)

where i = 1, 2, · · · , Np represents the index of each particle, with Np denoting the total
number of particles in the swarm; similarly, t = 1, 2, · · · , Tmax indicates the iteration num-
ber, where Tmax is the maximum number of iterations in the PSO optimization process; and
xi(t) denotes the position of particle i in the t-th iteration, represented as a six-dimensional
vector indicating the x and y coordinates of each beacon in the Cartesian coordinate system.
The update rule governing the evolution of these positions is outlined in Equation (24).

xi(t + 1) = xi(t) + tpvi(t + 1) (24)

where vi(t + 1) represents the velocity of particle i in the (t + 1)-th iteration, which quanti-
fies the changing rate of the particle’s position. Similar to the particle position, it is also
a six-dimensional vector. The update rule for the velocity is given in Equation (25). tp
represents the time step, which is generally defaulted to a unit time step, i.e., its value is set
to 1 in this context.

vi(t + 1) = ωpvi(t) + c1r1

[
ppb

i − xi(t)
]
+ c2r2

[
pgb − xi(t)

]
(25)
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where ωp represents the inertia weight, reflecting the degree to which the particle velocity
update is influenced by the magnitude and direction of the particle velocity in the previous
iteration; c1 is the cognitive coefficient, indicating the extent to which the particle velocity
update is influenced by its historical best position ppb

i ; c2 is the social coefficient, reflecting
the extent to which the particle velocity update is influenced by the global best position pgb

of the swarm; and r1 and r2 are random numbers between 0 and 1.
The personal best value f pb

i is the minimum fitness value of particle i in the current

iteration process, and its corresponding particle position is ppb
i . Similarly, the global best

value f gb is the minimum value of all the particles’ personal best values in the swarm
during the current iteration process, and its corresponding particle position is pgb.

During the iterative process of PSO, the personal best positions of particles within the
swarm are continuously updated as the fitness values are computed. Concurrently, the
global best position of the swarm is also updated. All particles in the swarm continuously
move in the direction of the lowest fitness value with the assistance of their individual
cognition and group information. Additionally, the positions of all beacons gradually iterate
in the direction of the optimal estimate. When the particle swarm optimizer reaches the
stopping condition, the beacon array coordinates ultimately achieve the optimal estimation.
The overall calibration algorithm process of the beacon array based on PSO is shown in
Algorithm 1.

Algorithm 1 Calibration method of acoustic beacon array based on PSO.

Input: Coordinate transformation matrix based on compass measurement data Cn
b .

Measurement data from DVL Vb. Measurement data from beacons Rk and measurement
data from depth sensor h.
Output: Estimated value of beacon array location [x̂B1, ŷB1, x̂B2, ŷB2, x̂B3, ŷB3].

1: Initialize the particle’s position with a uniformly distributed random vector, and initial-
ize each particle’s velocity at 0.

2: Calculate the fitness values of the particles; then, determine f gb, pgb, and ppb
i .

3: Calculate the dead reckoning trajectory TDR of the AUV based on Cn
b and Vb.

4: while stop condition not reached do
5: for each particle i do
6: Calculate the position of the virtual beacon array according to Equation (15).
7: Calculate the fitness value f (xi) according to Equation (22);
8: if f (xi) < f pb

i then

9: Update the personal best value f pb
i and the best known position ppb

i .
10: end if
11: end for
12: if min

[
f pb
1 f pb

2 · · · f pb
Np

]
≤ f gb then

13: Update the global best value f gb and the best known position pgb of the swarm.
14: end if
15: if stop condition reached then
16: Stop the PSO iteration.
17: end if
18: Update the particles’ velocities according to Equation (25).
19: Update the particles’ positions according to Equation (24).
20: end while
21: Calculate the beacon array location: [x̂B1, ŷB1, x̂B2, ŷB2, x̂B3, ŷB3] = pgb.

It should be emphasized that the stopping criteria of the algorithm and parameters
involved, such as the inertia weight, cognitive coefficient, and social coefficient, need to be
adjusted according to specific circumstances. In the simulation experiments in this study,
we chose to stop the iterations after 200 runs. The value of ωp was set to 0.9, while the
values of c1 and c2 were both set to 2.
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4. Simulation
4.1. Conditions for the Simulation

To validate the effectiveness and accuracy of the underwater beacon array position
estimation method based on the EVLBL positioning model, a simulation experiment was
conducted under the following conditions:

1. The distribution of the underwater acoustic beacons within the array is depicted in
Figure 5. The green stars represent the release positions of the beacons, indicating the
coordinates where the beacons were deployed on the water surface. The blue stars
indicate the anchored positions of the beacons, representing their actual locations
on the seabed after being influenced by factors such as water currents. The specific
positions are detailed in Table 1.

2. The simulated trajectory of the AUV is illustrated in Figure 5. The trajectory began
from (203.42, 946.99,−749.99) and then underwent a continuous spiral descent mo-
tion lasting for 1200 s at a constant speed. Throughout the entire process, the AUV
completed a clockwise rotation of 360.0 degrees to simulate the motion state in a real
ocean environment.

3. The AUV travelled in a clockwise direction, with the heading angle increasing from
30.0 degrees at a constant angular velocity, completing one full rotation. The pitch
angle decreased uniformly from 0 to around −1.5 degrees during the spiral descent
process and remained constant, uniformly returning to 0 before the end of the trajec-
tory. The roll angle fluctuated near 0 throughout. The specific attitude angle data are
shown in Figure 6a.

4. The forward velocity vb
y of the AUV maintained a constant speed of 4.00 m/s, while

the right velocity vb
x and upward velocity vb

z remained near 0. Specific data are shown
in Figure 6b.

5. The measurement noise for each attitude angle of the compass was white noise with a
standard deviation of 0.30°.

6. The measurement noise for the velocity in each direction of the DVL was white noise
with a standard deviation of 0.01 m/s.

7. The ranging error of the underwater acoustic beacon was specified as 0.1% of the slant
range, which was compounded with white noise with a standard deviation of 0.1 m.

Figure 5. Schematic diagram of the AUV simulation trajectory and beacon array location.

Table 1. Distribution of the beacon array in the simulation test.

Position Beacon 1 Beacon 2 Beacon 3

Release point (0.00, 0.00, 0.00) (3239.81, 868.11, 0.00) (868.11, 3239.81, 0.00)
Anchored point (79.36, −91.52, −1018.97) (3223.05, 867.79, −1000.26) (817.26, 3156.09, −1008.66)
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(a) (b)

Figure 6. Measurement data in simulation test: (a) attitude information from compass; (b) velocity
information data from DVL.

4.2. Results and Discussion of the Simulation

Drawing upon the aforementioned simulated data, comprehensive simulation tests
were conducted on the proposed underwater beacon array positional calibration algorithm
based on EVLBL and PSO (hereafter referred to as EVPSO). In addition, to demonstrate
the effectiveness and advantages of the EVLBL positioning model, comparative simulation
experiments were devised against the PSO algorithm employing a conventional LBL
positioning model (hereafter referred to as PSO). Compared with the EVPSO algorithm, the
standard PSO algorithm did not perform step 6 as described in Algorithm 1, which used the
actual coordinates of the beacon array rather than virtual coordinates for the trilateration
calculation. However, both methodologies adhered to the principle of iteratively optimizing
the beacon array coordinates as a whole. Furthermore, to validate the effectiveness and
advantages of the iterative optimization approach with respect to the beacon array as a
whole, comparative simulation experiments were designed with the conventional approach
based on the least squares algorithm, which separately processed the range data of each
beacon and completed the calibration one by one (hereinafter referred to as LS). Table 2
provides the calibration results of these algorithms for the beacon array coordinates and
their errors from the given values.

Table 2. Estimation results and errors of beacon array positions in simulation test.

Algorithm xB1/∆xB1 (m) yB1/∆yB1 (m) xB2/∆xB2 (m) yB2/∆yB2 (m) xB3/∆xB3 (m) yB3/∆yB3 (m)

Setpoint 79.36/0.00 −91.52/0.00 3223.05/0.00 867.79/−0.00 817.22/0.00 3156.09/0.00
LS 80.01/0.66 −91.43/0.09 3216.65/−6.40 867.77/−0.02 820.15/2.93 3156.98/0.89

PSO 76.52/−2.84 −89.32/2.20 3223.49/0.45 870.29/2.50 813.60/−3.61 3156.09/0.01
EVPSO 79.66/0.30 −92.22/−0.71 3223.42/0.38 866.94/−0.86 816.88/−0.34 3156.29/0.20

According to the data in this table, LS exhibited excellent accuracy in estimating
the position of beacon 1, with the error within 1.00 m. However, for the estimation of
beacon 2, the error significantly increased, reaching over 6.00 m. Similarly, the estimation
error for beacon 3 also exceeded 2.00 m. This primarily stemmed from the fact that the
LS algorithm employed a sequential calibration-data-processing approach, resulting in a
higher calibration accuracy for beacons closer to the AUV trajectory due to smaller slant
range errors. Conversely, beacons further away from the AUV trajectory suffered from
larger slant range errors, leading to a relatively lower calibration accuracy.
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In contrast, the PSO algorithm performed an overall calibration by utilizing the trajec-
tory data generated from the LBL positioning of the AUV using the beacon array, thoroughly
accounting for the effects of the slant range errors for each beacon. Therefore, its estimation
results exhibit a more balanced trend, with the positioning error for all three beacons stabi-
lized at around 3.00 m, demonstrating a certain level of stability. Nevertheless, there is still
room for improvement in the calibration accuracy of the PSO algorithm. This is primarily
due to the inconsistency in the reception timing of beacon signals in the conventional LBL
positioning model when the AUV trajectory deviated from the center of the beacon array.
This inconsistency led to an increase in the slant range errors of the beacons, thereby affect-
ing the calibration accuracy. By compensating for this error through the EVLBL positioning
model proposed in this paper, EVPSO achieved a significant improvement in calibration
accuracy for the three beacons, with the calibration errors reduced to within 1.00 m.

Figure 7 illustrates the iteration curves for estimating the coordinates of beacons using
the PSO and EVPSO algorithms. Specifically, Figure 7a presents the iteration curve of
the fitness value, which not only reflects the iteration speed of the algorithm but also,
to some extent, indicates the final calibration accuracy. Through comparative analysis,
it is evident that EVPSO exhibited a faster convergence rate compared with PSO, with
a lower convergence value (1.75 vs. 1.93). This advantage is primarily attributed to the
effective compensation of slant range errors by the EVPSO algorithm. Figure 7b–d present
the iteration curves of the x- and y-coordinate estimation values for beacon 1 to beacon
3, respectively. From these curves, it can be observed that EVPSO not only had a faster
convergence speed compared with PSO but also that its final convergence value was closer
to the given value, further validating the superiority of the EVPSO algorithm in the beacon
array coordinate estimation.

After compensating for the beacon array position estimation results of the LS, PSO,
and EVPSO algorithms, Figure 8 clearly illustrates the comparison of the LBL trajectories
before and after calibration. Before calibration, the LBL trajectories gradually deviated from
the true trajectory over time, exhibiting significant errors. However, after calibration with
the LS, PSO, and EVPSO algorithms, all LBL trajectories showed significant improvement,
closely aligning with the true trajectory and effectively reducing the positioning errors.
Notably, the LBL trajectory calibrated by the EVPSO algorithm was even closer to the
true trajectory compared with the other two methods, further demonstrating the higher
accuracy and superiority of the EVPSO algorithm in beacon array calibration.

After calibration with the LS, PSO, and EVPSO algorithms, the positioning errors of the
LBL trajectory compared with the true trajectory in the x- and y-directions are illustrated in
Figure 9. The root-mean-square error (RMSE) of the LBL position error after compensation
by each calibration method is presented in Table 3. From the figures and tables, it can
be observed that the LBL position error after the LS calibration was significantly larger
than that of the other two algorithms, indicating a larger deviation. In comparison, the
LBL position error after the EVPSO calibration was slightly smaller than the result of PSO,
demonstrating a higher calibration accuracy and stability.

Table 3. RMSE of LBL after beacon array calibration.

Algorithm PX (m) PY (m)

Uncalibrated 17.81 67.83
LS 5.71 2.61

PSO 1.65 1.46
EVPSO 1.14 1.04

PX and PY represent the components of the LBL positioning error in the x-axis and y-axis
directions, respectively.
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(a) (b)

(c) (d)

Figure 7. Iteration curves of beacon array position estimation based on PSO and EVPSO in simu-
lation tests: (a) fitness value; (b) estimated position of beacon 1; (c) estimated position of beacon 2;
(d) estimated position of beacon 3.

Figure 8. Comparison of LBL trajectories before and after beacon array calibration.
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Figure 9. Positioning error of LBL after beacon array calibration.

5. Conclusions

In this paper, an overall calibration method for underwater beacon arrays based on
the EVLBL positioning model is proposed. First, a thorough analysis was conducted on
the position errors in LBL calculations arising from time-synchronized acoustic source
beacon arrays. Based on this analysis, the EVLBL positioning model was introduced, which
incorporated the equivalent translation of beacons through the dead reckoning of an AUV.
Building upon this, a beacon array coordinate parameter optimization search method is
further proposed, with the objective of minimizing the discrepancy between the dead
reckoning trajectory and the LBL trajectory. Through simulation verification using the PSO
algorithm, it was demonstrated that this method is not only effective and feasible but also
holds potential value in practical applications. The specific conclusions are as follows:

1. As the trajectory of the AUV diverged further from the center of the beacon array
and its velocity increased, the errors in the conventional LBL positioning model
correspondingly enlarged. The EVLBL positioning model introduced in this study
mitigated the positional discrepancies that arose from AUV motion, thereby notably
enhancing the accuracy of the localization.

2. Compared with the conventional LS method based on individual beacon data cali-
bration, the proposed overall calibration method for beacon arrays based on the LBL
trajectory overlap demonstrated significant advantages in terms of the calibration
accuracy and stability. In the simulation experiments, the LS method exhibited large
calibration errors for beacons distant from the AUV trajectory (up to 6.40 m). In con-
trast, the PSO algorithm demonstrated balanced calibration errors across all beacons,
with the average error controlled around 3.00 m. This not only enhanced the calibra-
tion accuracy but also significantly improved the efficiency of the beacon calibration.

3. When comparing the performances of various algorithms, the EVPSO algorithm ex-
hibited a higher precision in the beacon array calibration, which was attributable
to its comprehensive consideration of both the AUV’s motion and beacon posi-
tion errors. The simulation experiments revealed that the calibration errors of the
EVPSO algorithm for individual beacons were contained within 1.00 m, marking a
notable enhancement in calibration accuracy compared with the PSO, which averaged
around 3.00 m.

4. By comparing the RMSE of the LBL system after the beacon array was calibrated using
various methods, it became evident that the EVPSO algorithm, with an RMSE of approx-
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imately 1.00 m, significantly outperformed both the PSO algorithm (RMSE ≈ 1.50 m)
and the LS algorithm (RMSE > 5.00 m). This outcome reinforced the validity and
precision of the overall calibration method for underwater beacon arrays proposed in
this paper, which was based on the EVLBL positioning model.

The EVPSO algorithm proposed in this paper facilitates the calibration of the positions
of randomly dispersed underwater acoustic beacon arrays and is compatible with a wide
range of underwater unmanned platforms and integrated navigation systems. This is
particularly beneficial for time-sensitive tasks, such as underwater archaeology, resource
exploration, and underwater rescue operations. Prior to mission execution, the simulta-
neous deployment of beacons and AUVs can be coordinated in the operational maritime
area, facilitated by working vessels or unmanned aerial vehicles. With the assistance of
compasses, DVLs, and the randomly positioned beacon array, AUVs can swiftly conduct
the calibration of the beacon array. Consequently, this enables the provision of precise
navigation services for other underwater equipment.

Although the proposed underwater beacon array calibration method based on EVLBL
represents significant progress in enhancing the positioning accuracy and beacon calibra-
tion efficiency, there are still some limitations in practical applications. First, this method
has extremely strict requirements for time synchronization. In the complex underwater
environment, long-term operation often leads to the accumulation of time synchronization
errors, which, in turn, has a non-negligible impact on the positioning accuracy. Second, the
method proposed in this study was mainly designed and validated for acoustic source bea-
con arrays, and its applicability to responder beacon arrays remains inadequately verified.

Addressing the aforementioned limitations, future work will focus on several aspects
for further research and improvement. Efforts will be made to optimize time synchroniza-
tion algorithms and enhance the clock accuracy of hardware devices, aiming to reduce
error accumulation during long-term operations and consequently improve the positioning
accuracy and stability. Second, the scope of application of the method proposed in this
paper will be expanded, especially for transponder beacon arrays. Through a thorough
analysis of the signal characteristics of transponders, more effective calibration and posi-
tioning strategies can be developed to further the utilization of underwater positioning
technology in diverse fields.
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