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Abstract: This framework for human behavior monitoring aims to take a holistic approach to study,
track, monitor, and analyze human behavior during activities of daily living (ADLs). The framework
consists of two novel functionalities. First, it can perform the semantic analysis of user interactions
on the diverse contextual parameters during ADLs to identify a list of distinct behavioral patterns
associated with different complex activities. Second, it consists of an intelligent decision-making
algorithm that can analyze these behavioral patterns and their relationships with the dynamic
contextual and spatial features of the environment to detect any anomalies in user behavior that
could constitute an emergency. These functionalities of this interdisciplinary framework were
developed by integrating the latest advancements and technologies in human–computer interaction,
machine learning, Internet of Things, pattern recognition, and ubiquitous computing. The framework
was evaluated on a dataset of ADLs, and the performance accuracies of these two functionalities
were found to be 76.71% and 83.87%, respectively. The presented and discussed results uphold the
relevance and immense potential of this framework to contribute towards improving the quality
of life and assisted living of the aging population in the future of Internet of Things (IoT)-based
ubiquitous living environments, e.g., smart homes.

Keywords: ambient intelligence; human behavior monitoring; smart homes; activities of daily living;
elderly population; machine learning; internet of things; ubiquitous computing

1. Introduction

The elderly population across the globe is increasing at a very fast rate. It has been
estimated [1] that by the year 2050, around 20% of the world’s population will be aged
60 years or more. Aging is associated with several issues and limitations that affect a
person’s quality of life. According to [2], in the United States, approximately 8 out of every
10 elderly people have some form of chronic diseases, and approximately 5.4 million older
adults have Alzheimer’s. People living longer are causing a significant increase in the
old-age dependency ratio, which is the ratio of the count of elderly people to that of the
working population. On a global scale, this ratio is expected to increase from 11.7% to
25.4% over the next few years [2]. In addition to this, the population of elderly people
with ages 80 and above is expected to triple within the next few years [3]. This increase
in the population of older adults would bring several sociological and economic needs to
the already existing challenges associated with aging. This constantly increasing elderly
population is expected to impact society in multiple ways, as outlined below [3]:

i. A rise in cost of healthcare: at present, the treatment of older adults’ accounts for
40% of the total healthcare costs in the United States even though older adults
account for around 13% of the total population.

ii. Diseases affecting greater percentage of the population: with the increasing elderly
population, there will be an increased number of people with diseases like Parkin-
son’s and Alzheimer’s, for which there is yet to be a proper and definitive cure.
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iii. Decreased caregiver population: the rate of increase of caregivers is not as high as
the increasing rate of the elderly population.

iv. Quality of caregiving: caregivers would be required to look after multiple older
adults, and quite often they might not have the time, patience, or energy to meet
the expectations of caregiving or to address the emotional needs of the elderly.

v. Dependency needs: with multiple physical, emotional, and cognitive issues associ-
ated with aging, a significant percentage of the elderly population would be unable
to live independently.

vi. Societal impact: the need for the development of assisted living and nursing facili-
ties to address healthcare-related needs.

With the decreasing count of caregivers, it is necessary that the future of technology-
based living environments, e.g., smart homes and smart cities use technology-based ser-
vices to address these needs and create assisted living experiences for the elderly. Over the
last few years, researchers [4] have focused on developing assistive systems and devices
according to a new paradigm, “ambient intelligence.” Ambient intelligence may broadly
be defined as a computing paradigm that uses information technology and its applications
to enhance user abilities and performance through interconnected systems that can sense,
anticipate, adapt, predict, and respond to human behavior and needs.

Human behavior is associated with performing activities in various environments and
settings. An activity may broadly be defined as an interaction between a subject and an
object for the subject to achieve a desired end goal or objective. This is typically represented
as “S <–> O,” where S stands for the ‘subject’ and O stands for the ‘object.’ Here, the subject
is the user or the individual performing the activity, and the objects can be one or more
context parameters present in the confines of the user’s spatial orientation that are a part
of the activity. To complete any given activity, the subject performs a set of related and
sequential tasks or actions on one or more objects that depends on the kind of activity to
be performed. These tasks or actions, along with their associated characteristic features,
represent the user interactions related to the specific activity [5].

There can be various kinds of activities that a user performs in different environments
with different spatial configurations. Activities that are crucial to one’s sustenance and are
performed within the confines of one’s living space, e.g., personal hygiene, dressing, eating,
maintaining continence, and mobility, are collectively termed as activities of daily living
(ADLs) [6]. Based on the interaction patterns of the subject and object during activities,
there are five broad characteristics of ADLs—(1) sequential, (2) concurrent, (3) interleaved,
(4) false start, and (5) social interactions [5]. When multiple ADLs occur either at the
same time or in a sequence or in a combination, they may exhibit more than one of these
characteristics. Figure 1 shows four typical scenarios of different ADLs—A1, A2, A3, and
A4—that can occur, where a number of these characteristics were exhibited by the activity
sequences and combinations.

Elderly people need assistance to carry out ADLs due to the various bodily limitations
and disabilities that they face with aging. An important aspect towards creating assisted
living experiences in smart homes for the aging population is to monitor their interactions
with their surroundings during ADLs [7]. The semantic analysis of user interactions during
any ADL involves the monitoring of the associated behavioral patterns with respect to
contextual, spatial, and temporal information. This analysis helps in interpretation of user
performance during ADLs, as well as allowing for the detection of any anomalies that
could constitute an emergency. For example, a person lying on a bed in a bedroom for
several hours at night would mean that the person is taking rest, but if the same activity
of lying is tracked to be taking place at the bathroom at the same time, it could mean an
emergency situation resulting from a fall or unconsciousness, which needs the attention of
caregivers or medical practitioners. In addition to aiding during ADLs, human behavior
monitoring allows for the early detection of various forms of cognitive impairment, demen-
tia, Alzheimer’s, and a range of other limitations associated with old age [8]. Since it is not
practically possible to manually access an older adult’s behavior, it is the need of the hour
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to develop technology-based solutions with ambient intelligence to address this challenge.
This served as the main motivation for the development of this framework that lever-
ages the potential at the intersection of multiple disciplines including human–computer
interaction, the Internet of Things (IoT), ubiquitous computing, machine learning, and
pattern recognition.Information 2020, 11, x FOR PEER REVIEW 3 of 26 

 

 
Figure 1. Representation of four typical scenarios of different activities of daily living (ADLs)—(a) 
A1, (b) A2, (c) A3, and (d) A4—that can occur, where different characteristics of ADLs are exhib-
ited by the activity sequences and combinations. 

Elderly people need assistance to carry out ADLs due to the various bodily limita-
tions and disabilities that they face with aging. An important aspect towards creating as-
sisted living experiences in smart homes for the aging population is to monitor their in-
teractions with their surroundings during ADLs [7]. The semantic analysis of user inter-
actions during any ADL involves the monitoring of the associated behavioral patterns 
with respect to contextual, spatial, and temporal information. This analysis helps in inter-
pretation of user performance during ADLs, as well as allowing for the detection of any 
anomalies that could constitute an emergency. For example, a person lying on a bed in a 
bedroom for several hours at night would mean that the person is taking rest, but if the 
same activity of lying is tracked to be taking place at the bathroom at the same time, it 
could mean an emergency situation resulting from a fall or unconsciousness, which needs 
the attention of caregivers or medical practitioners. In addition to aiding during ADLs, 
human behavior monitoring allows for the early detection of various forms of cognitive 
impairment, dementia, Alzheimer’s, and a range of other limitations associated with old 
age [8]. Since it is not practically possible to manually access an older adult’s behavior, it 
is the need of the hour to develop technology-based solutions with ambient intelligence 
to address this challenge. This served as the main motivation for the development of this 
framework that leverages the potential at the intersection of multiple disciplines including 
human–computer interaction, the Internet of Things (IoT), ubiquitous computing, ma-
chine learning, and pattern recognition. 

To summarize, the scientific contributions of this paper are as follows: 
1. It provides a novel approach to perform the semantic analysis of user interactions on 

the diverse contextual parameters during ADLs in order to identify a list of distinct 
behavioral patterns associated with different complex activities performed in an IoT-
based environment. These behavioral patterns include walking, sleeping, sitting, and 
lying. This functionality was developed and implemented by using a k-nearest neigh-
bor algorithm (k-NN) classifier. The performance accuracy of this approach was 
found to be 76.71% when it was evaluated on a dataset of ADLs. 

2. It provides a novel intelligent decision-making algorithm that can analyze such dis-
tinct behavioral patterns associated with different complex activities and their rela-
tionships with the dynamic contextual and spatial features of the environment in or-
der to detect any anomalies in user behavior that could constitute an emergency, such 
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To summarize, the scientific contributions of this paper are as follows:

1. It provides a novel approach to perform the semantic analysis of user interactions on
the diverse contextual parameters during ADLs in order to identify a list of distinct
behavioral patterns associated with different complex activities performed in an IoT-
based environment. These behavioral patterns include walking, sleeping, sitting,
and lying. This functionality was developed and implemented by using a k-nearest
neighbor algorithm (k-NN) classifier. The performance accuracy of this approach was
found to be 76.71% when it was evaluated on a dataset of ADLs.

2. It provides a novel intelligent decision-making algorithm that can analyze such
distinct behavioral patterns associated with different complex activities and their
relationships with the dynamic contextual and spatial features of the environment in
order to detect any anomalies in user behavior that could constitute an emergency,
such as a fall or unconsciousness. This algorithm was developed and implemented
by using a k-NN classifier, and it achieved an overall performance accuracy of 83.87%
when tested on a dataset of ADLs.

This paper is organized as follows. We present an overview of the related works in
Section 2. The proposed framework is introduced and explained in Section 3. Section 4 dis-
cusses the results and performance characteristics of this framework. In Section 5, we discuss
the limitations and drawbacks in the existing works and outline how our framework ad-
dresses these challenges and outperforms these existing systems in terms of their technical
characteristics, functionalities, and operational features. It is followed by Section 6, where
the conclusion and scope for future work are outlined.
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2. Literature Review

This section outlines the recent works in the fields of human behavior research, i.e.,
assistive technology, Internet of Things, human–computer interaction, and their related
disciplines for creating assisted living experiences in the future of technology-laden living
environments, e.g., smart homes and smart cities.

A system comprised of wireless sensors to track and interpret human motion data for
performing activity recognition was proposed by Azkune et al. [9]. The system consisted
of an approach of activity clusters that were developed by using knowledge engineering
principles. Based on these clusters, the associated patterns of human motion related to
different activities could be tracked and interpreted by this system. Boualia et al. [10]
proposed a Red Green Blue (RGB) frame analysis-based activity recognition framework
with a specific focus on the study of human poses during different activities. The framework
used a Convolutional Neural Network (ConvNet) architecture that was adapted for a
regression problem and a support vector machine (SVM) classifier to detect activities.
The authors evaluated the performance characteristics of their framework by testing it on
two activity recognition datasets. Kasteren et al. [11] proposed a hidden Markov model-
based architecture that analyzed the multimodal characteristics of sensor data for activity
recognition. The authors used a recorded dataset and developed its annotation by using an
off-the-shelf sensor, the Jabra BT250v. The Jabra BT250v was used to develop annotations
for all the activities performed during each day, and these annotations were then used to
train the hidden Markov model-based architecture for activity recognition. Cheng et al. [12]
developed a framework that used concepts from computer vision, image processing, and
video-data analysis to track and detect activities for both one and multiple users in the
confines of a given IoT-based space. The approach combined characteristic features of
motion data and user appearance information, as well as the spatiotemporal features of
user behavior to train multiple learning models. The authors evaluated their approach by
testing it on a dataset of activities. Skocir et al. [13] developed an artificial neural network-
driven architecture that tracked human motion during different activities, with a specific
focus on detecting enter and exit events in the confines of a given spatial environment, e.g.,
entering and exiting a room. The architecture used two IoT-based sensors with distinct
functionalities to develop its foundation. One of these sensors was used to detect the
presence or absence of the user, and the other sensor was used to detect whether the door
was opened or closed. A dataset of different activities was used by the authors to test and
discuss the performance characteristics of their approach.

The work done by Doryab et al. [14] involved the development of a task recom-
mendation system to augment performances of medical practitioners in hospitals. This
recommendation system was sensor technology-driven and focused on recommending
tasks specifically related to different kinds of surgeries. The sensor data were used to
detect the current action being performed by the user, and based on the same action, tasks
associated with co-located activities were recommended by the system. A sensor network-
driven activity assistance framework with the aim to assist users to perform different
kinds of activities was proposed by Abascal et al. [15]. This work was specifically focused
on helping elderly people with different kinds of impairments such as sensory, motor,
or cognitive. In addition to performance characteristics, the authors also evaluated the
accessibility, usability, and validity of their system. A system for the behavior monitoring
of older adults in smart homes that used concepts of activity recognition and analysis was
proposed by Chan et al. [16]. This system collected human motion data related to specific
ADLs—walking, sleeping, and using the bathroom. The authors conducted real-time
experiments in an Alzheimer’s unit with a specific focus on studying and analyzing the
human behavior and activities of people with Alzheimer’s. Rashid et al. [17] developed a
wearable neckband for human eating activity recognition and analysis. The system had a
functionality to automatically update its database to adjust depending on the changing
eating styles and eating habits of users. It used an artificial neural network-based approach
that could detect four eating states—chewing, swallowing, talking, and idle. Siraj et al. [18]
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developed a framework to recognize small activities, such as cooking, that are performed
with other complex activities during a day. The authors used multiple machine learning
models including those of deep learning, convolutional neural network, and gated recur-
rent unit to train their framework for the recognition of tasks and actions associated with
the activity of cooking. They evaluated their framework on a dataset which consisted of
various actions and tasks related to cooking. Mishra et al. [19] proposed a system that used
video data for activity recognition and analysis. The system consisted of a spatiotemporal
approach defined by considering the fuzzy lattices of the video frames. These lattices were
described by kinetic energy, which was calculated by the Schrödinger wave equation. The
system could detect any changes in human behavior or motion based on the change in
kinetic energy associated with these lattices. In [20], Fu et al. proposed a wireless wearable
sensor-driven device that could perform activity recognition. The device consisted of an air
pressure sensor and an inertial measurement unit to study and analyze human behavior
related to different activities. The wearable used a transfer learning approach to perform
personalized activity recognition. The work done by Yared et al. [21] involved the develop-
ment of an intelligent activity analysis framework to reduce accidents in the kitchen area.
The authors analyzed multiple activities performed in the kitchen to identify characteristic
features such as gas concentration, smoke, the temperature of utensils, and the temperature
of burner that needed to be monitored to detect any accidents. The findings of this work
listed a set of factors that were responsible for most kitchen accidents. Angelini et al. [22]
developed a smart bracelet that could collect multiple features of a user’s movement data
to interpret the health status of the user. It also had the functionality to remind the user of
their routine medications. The bracelet was developed to work for different kinds of indoor
and outdoor activities. The authors conducted usability studies to discuss the effectiveness
of this bracelet.

In the work done by Dai et al. [23], the dynamics of the motion data coming from
the user’s android phone were analyzed to detect falls. The authors developed a proof-
of-concept model that was based on an Android phone that collected real-time behavior-
related data of the user. The architecture of the system was developed in a specific way
to ensure that it did not contribute to high central processing unit (CPU) usage and did
not occupy a significant percentage of the computer’s random-access memory (RAM).
The results discussed by the authors showed that the average CPU usage was 7.41% by
the system, and it occupied about 600 KB on the RAM. Kong et al. [24] proposed a depth
recognition and distance-based algorithm for detecting falls. The algorithm tracked the
distance between the neck of the user and the ground, and if the distance was found to
decrease with a situation lasting greater than a minute, then the algorithm interpreted the
situation as a fall. Shao et al. [25] proposed an approach that analyzed the characteristics
of floor vibrations to detect falls. The authors performed experiments with objects and
humans falling on the ground to study the characteristics of floor vibrations. The system
consisted of a k-means classification approach to detect falls. Chou et al. [26] proposed
an Electrocardiography (ECG)-based system for fall detection. The system consisted of a
smart cane with an ECG detection circuit along with other sensors to study the behavioral
patterns of the user. The authors developed and implemented a microcontroller-based
circuit that could detect falls based on the data collected from the ECG circuit and the
associated sensors. In [27], Keaton et al. proposed an WiFi channel state-based approach
for the detection of falls in IoT-based environments. The authors developed a neural
network-based learning model that could study, track, and analyze the changes in WiFi
channel state data based on normal behaviors and falls. Anceschi et al. [28] proposed a
machine learning-based wearable system for fall detection in a workplace environment. To
develop and train the machine learning model, the authors merged four different datasets
that consisted of diverse activities performed in a workplace. This device used a couple of
IoT-based off-the-shelf products that worked in coordination with a microcontroller circuit
to detect falls from human motion data. Mousavi et al. [29] used acceleration data available
from smartphones to develop a fall detection system. This system consisted of an SVM
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classifier that interacted with the triaxial accelerometer data coming from a smartphone
that had an IOS operating system. The system also had a feature to alert caregivers via
either an SMS or email when a fall was detected.

Despite these recent advances in this field, there are still several limitations and
challenges. For instance, (1) a number of these works have superficially focused on
activity recognition without an analysis of the fine grain characteristics of activities and
the associated dynamics of human behavior; (2) several activity analysis approaches are
confined to specific tasks and cannot always be applied seamlessly to other activities;
(3) a number of these methodologies have been developed and implemented for specific
settings with a fixed set of context parameters and environment variables, and their real
world deployment is difficult because the real world environments are different compared
to such settings; (4) the video-based systems may have several challenges related to the
categorization and transcription of data, the selection of relevant fragments, the selection
of camera angle, and the determination of the number of frames; (5) some of the fall
detection technologies are built for specific operating systems, devices, or gadgets and
cannot be implemented on other platforms; (6) some of these systems have a dependency on
external parameters, such as floor vibrations, that can affect the readings and performance
characteristics; and (7) some of the systems are affected by user diversity such as the user’s
height and weight. To add to the above, some of these works have focused on activity
recognition and analysis, while others have focused on fall detection. None of these works
have focused on both of these challenges at the same time. Thus, it can be concluded that
it is the need of the hour to leverage the immense potential at the intersection of ambient
intelligence and the IoT to develop a framework that can not only track, study, analyze, and
anticipate human behavior but also detect any anomalies, such as a fall or unconsciousness,
that could constitute an emergency. It is also necessary that such systems are developed
in way so that they are not environment-specific and can be seamlessly implemented and
deployed in any IoT-based real world setting. This framework aimed to address these
challenges by developing an approach for the analysis of human behavior at a fine-grain
level with respect to the associated dynamic contextual, spatial, and temporal features to
detect any anomalies that could constitute an emergency. The work involved the integration
of advancements and technologies from multiple disciplines. This framework is introduced
in Section 3, and a further discussion of how the salient features of this framework address
these challenges and the drawbacks in the existing systems is presented in Section 5.

3. Proposed Work

In this section, we first present the steps towards the development of the functionality
in our framework for the semantic analysis of user interactions on the context parameters
during ADLs in order to identify a list of common behavioral patterns associated with
different complex activities performed in any given IoT-based environment. In a real-
world scenario, human activities are highly complex and involve multiple forms of user
interactions that include a myriad of tasks and their dynamic characteristics, performed
on the context parameters, based on the associated need related to the activity. Such
complex real-world activities are referred to as complex activities. A complex activity
can be broken down into atomic activities, context attributes, core atomic activities, core
context attributes, other atomic activities, other context attributes, start atomic activities,
end atomic activities, start context attributes, and end context attributes [30]. Here, atomic
activities refer to the macro and micro level tasks and sub-tasks associated with the complex
activity, and the environment parameters on which these atomic activities are performed
are collectively known as context attributes. Those specific atomic activities that are crucial
to a complex activity and without which the complex activity can never be completed are
referred to as core atomic activities, and their associated context attributes are known as
core context attributes. The atomic activities that are necessary to start a given complex
activity are known as start atomic activities, and the atomic activities that are necessary to
successfully end a given complex activity are known as end atomic activities. The context



Information 2021, 12, 81 7 of 26

parameters on which these two types of atomic activities take place are known as start
context attributes and end context attributes, respectively. All the atomic activities other
than the core atomic activities are known as other atomic activities, and their associated
context attributes are known as other context attributes. The semantic analysis of user
interactions during complex activities involves analyzing all these characteristic features of
activities with respect to contextual, spatial, and temporal information. The following are
the steps for the development of this functionality in the proposed framework:

i. Deploy both wireless and wearable sensors to develop an IoT-based intercon-
nected environment.

ii. Set up a data collection framework to collect the big data from these sensors during
different ADLs performed in the confines of a given IoT-based space.

iii. Use context-based user interaction data obtained from the wireless sensors to spa-
tially map a given environment into distinct ‘zones,’ in terms of context attributes
associated with distinct complex activities. Here, we define a ‘zone’ as a region
in the user’s spatial orientation where distinct complex activities take place. For
instance, in the cooking zone, the complex activity of cooking could take place, but
other complex activities like sleeping or taking a shower could not.

iv. Analyze the atomic activities performed on different context attributes for a given
complex activity, along with their characteristic features.

v. Track user behavior in terms of joint point movements and joint point characteris-
tics [31] for each atomic activity associated with any given complex activity.

vi. Analyze the user behavior, atomic activities, and context attributes to form a general
definition of a complex activity in each context-based spatial ‘zone.’

vii. Repeat (vi) for all the complex activities with respect to the context attributes as
obtained from (iii) for a given IoT-based environment.

viii. Analyze the activity definitions to find atomic activities and their characteristic
features for all the complex activities associated with the different ‘zones.’

ix. Study the activity definitions to record the human behavior for all the atomic
activities obtained from (viii).

x. Analyze the behavior definitions in terms of joint point movements and character-
istics to develop a knowledge base of common behaviors associated with all the
complex activities in the different ‘zones.’

xi. Develop a dataset that consists of all these behavioral patterns and the big data
from user interactions for each of these ‘zones’ in a given IoT-based environment.

xii. Preprocess the data to detect and eliminate outliers and any noise prior to develop-
ing a machine learning model.

xiii. Split the data into training and test sets and then test the machine learning model
on the test set to evaluate its performance characteristics.

Upon the development of the above-discussed functionality in our framework, we
implemented the following steps to develop the proposed intelligent decision-making
algorithm that can detect emergencies or anomalies in user behavior based on studying the
multimodal components of user interactions during complex activities in each ‘zone.’ Each
‘zone’ is associated with distinct complex activities that are further associated with a set
of atomic activities, context attributes, core atomic activities, core context attributes, other
atomic activities, other context attributes, start atomic activities, end atomic activities, start
context attributes, and end context attributes. An analysis of the user behavior in terms
of joint point characteristics [31] allows for the detection and analysis of these behavioral
patterns and their relationships with the dynamic spatial features of the environment to
detect any anomalies in user behavior that could constitute an emergency. For instance,
the atomic activity of lying at night in the sleeping or bedroom zones could be interpreted
as the person taking rest. However, the detection of the same atomic activity in the
bathroom at the same time could indicate an emergency that could have resulted from a
fall or unconsciousness. Such a situation would need the attention of caregivers or medical
practitioners. The proposed intelligent decision-making algorithm was built on this concept
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for the detection of emergencies during complex activities, and the following are the steps
for the development of this functionality:

i. Classify the complex activities from this dataset as per their relationships with
atomic activities, context attributes, other atomic activities, other context attributes,
core atomic activities, core context attributes, start atomic activities, end atomic
activities, start context attributes, and end context attributes to develop semantic
characteristics of complex activities.

ii. Track user movements to detect start atomic activities and start context attributes.
iii. If these detected start atomic activities and start context attributes match with the

semantic characteristics of complex activities in the database, run the following
algorithm: emergency detection from semantic characteristics of complex activi-
ties (EDSCCA).

iv. If these detected start atomic activities and start context attributes do not match
with the semantic characteristics of complex activities in the knowledge base, then
track the atomic activities, context attributes, other atomic activities, other context
attributes, core atomic activities, core context attributes, start atomic activities, end
atomic activities, start context attributes, and end context attributes to develop a
semantic definition for a complex activity (SDCA).

v. If an SDCA is already present in the knowledge base, go to (vi), else update the
database with the SDCA.

vi. Develop a dataset that consists of all these semantic definitions for complex activities
and the big data from user interactions associated with them.

vii. Preprocess the data to detect and eliminate outliers and any noise prior to develop-
ing a machine learning model.

viii. Split the data into training and test sets and then test the machine learning model
on the test set to evaluate its performance characteristics.

Next, we outline the steps for developing the proposed EDSCCA algorithm:

i. Track if the start atomic activity was performed on the start context attribute.
ii. Track if the end atomic activity was performed on the end context attribute.
iii. If (i) is true and (ii) is false:

a. Track all the atomic activities, context attributes, other atomic activities, other
context attributes, core atomic activities, and core context attributes.

b. For any atomic activity or other atomic activity that does not match its associ-
ated context attribute, track the features of the user behavior.

c. If the user behavior features indicate lying and no other atomic activities are
performed, the inference is an emergency.

iv. If (i) is true and (ii) is true:

a. The user successfully completed the activity without any emergency detected,
so the inference is no emergency.

v. If (i) is false and (ii) is true:

a. Track all the atomic activities, context attributes, other atomic activities, other
context attributes, core atomic activities, and core context attributes.

b. For any atomic activity or other atomic activity that does not match its associ-
ated context attribute, track the features of the user behavior.

c. If the user behavior features indicate lying and no other atomic activities
performed, the inference is an emergency.

vi. If (i) is false and (ii) is false:

a. No features of human behavior were associated with the observed activities
or, in other words, the user did not perform any activity, so the inference is
no emergency.

We used one of our previous works [31] that presented a framework for human
behavior representation in the context of ADLs based on joint point characteristics. These
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joint point characteristics primarily include joint point distances and joint point speeds.
By studying these joint point characteristics associated with diverse behavioral patterns,
this framework tracks the dynamic changes in the skeleton that point to interpretations
of human pose and posture. The dynamics of human pose and posture are then used by
the framework to analyze human behavior and its associated features during multimodal
interactions in the context of ADLs. This concept is outlined in Figure 2. According
to this methodology, each point on the skeletal tracking, as obtained from a Microsoft
Kinect sensor, is assigned a joint number and a definition based on the kind of underlining
movements associated with that joint point. The associated joint point characteristics, in
terms of the individual joint point speeds and the distance between two or more joint
points, undergo changes based on the behavioral patterns of the user. We applied this
concept to analyze the ADLs in terms of the atomic activities, context attributes, other
atomic activities, other context attributes, core atomic activities, and core context attributes
in order to identify the list of behavioral patterns associated with each of these ADLs.
This analysis also involved modelling all possible instances of each complex activity while
assigning weights to the individual atomic activities, context attributes, other atomic
activities, other context attributes, core atomic activities, and core context attributes based
on probabilistic reasoning. This was done by using Equations (1)–(3), which were proposed
in [32].

α = atC0 + atC1 + atC2+ . . . . . . . atCat = 2at (1)

β = (at−ct)C0 + (at−ct)C1 + (at−ct)C2 +...+ (at−ct)C(at−ct) = 2(at-ct) (2)

γ = 2at − 2(at−ct) = 2(at−ct) * (2ct−1) (3)

where α represents all possible ways by which any complex activity can be performed
including false starts; β represents all the ways of performing any complex activity where
the user always reaches the end goal; γ represents all the ways of performing any complex
activity where the user never reaches the end goal; Ati represents all the atomic activities
related to the complex activity, where i is a positive integer; Cti represents all the context
attributes related to the complex activity, where i is a positive integer; AtS represents a
list of all the Ati that are start atomic activities; CtS represents a list of all the Cti that are
start context attributes; AtE represents a list of all the Ati that are end atomic activities; CtE
represents a list of all the Cti that are end context attributes; γAt represents a list of all the
Ati that are core atomic activities; ρCt represents a list of all the Cti that are core context
attributes; at represents the number of Ati related to the complex activity; bt represents the
number of Cti related to the complex activity; ct represents the number of γAt related to
the complex activity; and dt represents the number of ρCt related to the complex activity.
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Figure 2. The methodology to represent skeletal tracking in terms of joint points and their associated
definitions [31].

The work in [32] presented a mathematical foundation for modelling all possible user
interactions related to atomic activities, context attributes, other atomic activities, other
context attributes, core atomic activities, and core context attributes associated with any
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given complex activity. The objective of the work in [32] was to develop a knowledge
base that would consist of all possible tasks and actions performed on context parameters,
related to any given complex activity, arising from universal diversity and the variations
in the context parameters based on the associated spatial and temporal characteristics of
user interactions. In this work, these equations were developed by integrating complex
activity analysis [30], the principles of the binomial theorem [33], and permutation and
combination principles. These equations represent the diverse ways by which a complex
activity may be performed. Equation (1) represents all possible ways by which a complex
activity can be modelled, including distractions, false starts, one or more missed Ati, one or
more missed Cti, one or more missed AtS, one or more missed CtS, one or more missed AtE,
one or more missed CtE, one or more missed γAt, and one or more missed ρCt. Equation (2)
represents all those scenarios where the user reached the end goal or, in other words, the
user performed all the γAt on the ρCt related to a given complex activity. Equation (3)
represents all those scenarios where the user did not perform one or more γAt on the
ρCt related to a given complex activity, as well as one or more missed AtS, one or more
missed CtS, one or more missed AtE, and one or more missed CtE. Weights were assigned
to the individual Ati and Cti by probabilistic reasoning principles, as outlined in [30]. The
weights indicate the relevance or importance of the task or action towards helping the user
reach the end goal or desired outcome. A higher value of the weight indicates a greater
relevance, and a lower value of the weight indicates a lesser relevance of the associated
Ati and Cti. The γAt and ρCt are assigned the highest weights as compared to the other
Ati and Cti. The weights associated with all the Ati and Cti can be analyzed to determine
the threshold weight of the complex activity, which determines whether a given complex
activity was properly performed. Here, properly performed refers to whether the user
was able to successfully reach the end goal or outcome associated with a given complex
activity. The threshold weight varies based on the nature and number of AtS, CtS, AtE, CtE,
γAt, and ρCt related to a complex activity. Each instance of a complex activity, denoted by
Equation (1), is also assigned a different weight based on the number of AtS, CtS, AtE, CtE,
γAt, and ρCt, as well as the nature and sequence in which these actions were performed.
When this weight exceeds the threshold weight, it indicates that the user reached the end
goal, and such activity instances are represented by Equation (2). Table 1 outlines the
analysis for a typical ADL, eating lunch, as described by this methodology. In Table 2,
we represent the analysis of this complex activity as per Equations (1)–(3) to study the
characteristics of the associated Ati, Cti, AtS, CtS, AtE, CtE, γAt, ρCt, at, bt, ct, and dt.

Table 1. Analysis of the complex activity of eating lunch in terms of joint point characteristics [31].

Atomic Activities Context Attributes Joint Points Pairs That
Experience Change

At1: Standing (0.08) Ct1: Lights on (0.08) No change
At2: Walking towards dining table (0.20) Ct2: Dining area (0.20) (13,17), (14,18), (15,19), and (16,20)

At3: Serving food on a plate (0.25) Ct3: Food present (0.25) (7, 11) and (8,12)
At4: Washing hand/using hand sanitizer (0.20) Ct4: Plate present (0.20) (7, 11) and (8,12)

At5: Sitting down (0.08) Ct5: Sitting options available (0.08) No change

At6: Starting to eat (0.19) Ct6: Food quality and taste (0.19) (6,3), (7,3), (8,3), (6,4), (7,4), (8,4) or (10,3),
(11,3), (12,3), (10,4), (11,4), and (12,4)

As can be seen from Table 2, where α = 64, there are 64 different ways by which this
complex activity can be performed. However, the value of γ = 60 means that 60 out of these
64 ways would not lead to the end goal or the desired outcome. The remaining activity
instances indicated by β = 4 refers to those instances when the user would always reach
the end goal of this complex activity. One such instance is shown in Table 1.
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Table 2. Analyzing multiple characteristics of a typical complex activity—eating lunch.

Complex Activity Characteristics Value(s)

Ati, all the atomic activities related to the complex activity At1, At2, At3, At4, At5, and At6
Cti, all the context attributes related to the complex activity Ct1, Ct2, Ct3, Ct4, Ct5, and Ct6

AtS, list of all the Ati that are start atomic activities At1 and At2
CtS, list of all the Cti that are start context attributes Ct1 and Ct2
AtE, list of all the Ati that are end atomic activities At5 and At6
CtE, list of all the Cti that are end context attributes Ct5 and Ct6
γAt, list of all the Ati that are core atomic activities At2, At3, At4, and At6
ρCt, list of all the Cti that are core context attributes Ct2, Ct3, Ct4, and Ct6

at, number of Ati related to the complex activity 6
bt, number of Cti related to the complex activity 6
ct, number of γAt related to the complex activity 4
dt, number of ρCt related to the complex activity 4

α, all possible ways by which any complex activity can be performed including false starts 64
β, all the ways of performing any complex activity where the user always reaches the end goal 4
γ, all the ways of performing any complex activity where the user never reaches the end goal 60

To develop this framework, we used an open-source dataset [34] that contains the
big data of user interactions recorded during multiple ADLs in an IoT-based environment.
The complex activities and their associated characteristics in this dataset can be distinctly
mapped to four spatial ‘zones’—kitchen, bedroom, office, and toilet—in the simulated
and interconnected IoT-based environment. The big data in this dataset consisted of data
attributes that provided the location, or the ‘zone’-related data associated with all these
ADLs. These data were used to analyze the indoor location of the user with respect to the
context attributes of interest for a given complex activity in the IoT-based environment. The
context attributes associated with different instances of each of these ADLs were studied by
the approach discussed in Tables 1 and 2. The dataset also consisted of accelerometer and
gyroscope data that were collected from wearables and that represented diverse behavioral
patterns during different instances of each of the ADLs performed in each of these spatial
‘zones.’ These data were used to study, analyze, and interpret the multimodal characteristics
of human behavior distinct to different complex activities. Here, as per the data and their
characteristics present in the dataset, we defined lying and being unable to get up in any
other location other than a bedroom as an emergency. This definition of an emergency can
also be modified, e.g., to detect a long lie, as per the complex activities and their semantic
characteristics for a given IoT-based environment.

We used RapidMiner, previously known as Yet Another Learning Environment
(YALE) [35], for the development of this framework. RapidMiner is a software tool that
consists of several built-in functions known as ‘operators’ that can be used to implement a
range of computational functions including machine learning, artificial intelligence, and
natural language processing algorithms. The tool also allows for the seamless customiza-
tion of these ‘operators’ as per the needs of the model being developed. Multiple ‘operators’
can be put together in the tool to develop an application, which is known as a ‘process.’
There are two versions of RapidMiner available—the free version and the paid version.
The free version has a processing limit of 10,000 rows. The dataset that we used for this
study did not exceed 10,000 rows, so this limitation of the free version did not affect our
results and findings. The version of RapidMiner that we used was 9.8.000, and the same
was run on a Microsoft Windows 10 computer with an Intel (R) Core(TM) i7-7600U CPU @
2.80 GHz, 2 core(s) and 4 logical processor(s) for the development and implementation of
the proposed framework.

4. Results

In this section, we present the results obtained from the proposed framework by
using the dataset [34]. The big data present in the dataset represented various kinds of
ADLs—sleeping, changing clothes, relaxing, cooking, eating, working, and defecating, as
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well as emergency situations in the kitchen, bedroom, office, and toilet. The emergency
corresponded to the user lying on the ground in any location other than the bedroom, which
could have resulted from a fall or unconsciousness. As per the methodology discussed
in Figure 2 and Tables 1 and 2, we developed definitions of all the complex activities
that occurred in a given IoT-space. Then, we developed a process in RapidMiner to
identify and interpret the list of common behavioral patterns associated with each of these
ADLs in this dataset, performed in the spatial locations or ‘zones’—bedroom, kitchen,
office, and toilet. We used the ‘Dataset’ operator to import this dataset into RapidMiner.
The ‘Data Preprocessing’ operator was used to preprocess the data and to study the
various characteristics of human behavior as outlined in Section 3. The data processing
involved the studying, analysis, and interpretation of the dynamic characteristics of human
behavior data associated with the diverse complex activities performed in each of the
spatial ‘zones’ represented in the dataset. The dataset that we used for these pre-processing
steps consisted of 295 rows. First, we studied the different ADLs performed in each of
these ‘zones’—bedroom, kitchen, office, and toilet. This is shown in Figure 3, where the
location or ‘zone’ is plotted on the x-axis, and the different ADLs are represented on the
y-axis. As there were nine different ADLs, so we represented each ADL with a different
color; this color coding is mentioned in the figure. Each occurrence of an ADL in a specific
‘zone’ is represented with a bubble corresponding to that zone. For instance, in the toilet
zone, the activities of defecating and emergency were observed, so these two activities
were tracked using distinct colors for this ‘zone.’
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Internet of Things (IoT)-based environment.

After detecting and studying the different ADLs local to each ‘zone,’ we studied
the associated atomic activities, context attributes, other atomic activities, other context
attributes, core atomic activities, and core context attributes associated with each of these
ADLs to study the common behavioral patterns local to each ADL in each zone that we
observed from Figure 3. This analysis is shown in Figure 4, where the x-axis represents
the location, and the common behavioral patterns of lying, standing, sitting, and walking
are represented on the y-axis. As there were multiple ADLs to which these common
behavioral patterns belonged, so we represented each ADL by using a different color. Each
occurrence of an ADL in a specific ‘zone’ is represented with a bubble corresponding to
that zone. For instance, from Figure 3, we can observe that in the toilet zone, the activities
of defecating and emergency occur multiple times. The behavioral patterns associated with
these activities are sitting and lying, so these behaviors were represented using different
colors, as shown in Figure 4.



Information 2021, 12, 81 13 of 26

Information 2020, 11, x FOR PEER REVIEW 13 of 26 

 

these activities are sitting and lying, so these behaviors were represented using different 
colors, as shown in Figure 4. 

 
Figure 4. Representation of common and distinct behavioral patterns associated with the different 
ADLs performed in the different spatial locations or ‘zones’ in a given IoT-based environment. 

After studying these activity patterns distinct to different ADLs local to each zone, 
we studied the characteristics of the human behaviors at a fine-grain level associated with 
each of these ADLs. This was done by analyzing the accelerometer and gyroscope data 
corresponding to occurrences of each of the common behavioral patterns—lying, stand-
ing, sitting, and walking—for different ADLs in each of these spatial ‘zones.’ The study 
and analysis of the accelerometer and gyroscope data for these common behavioral pat-
terns for all these ADLs performed in the kitchen, bedroom, office area, and toilet are 
shown in Figures 5–8, respectively. In each of these figures, the common behavioral pat-
terns are plotted on the x-axis. The y-axis represents the accelerometer data and gyroscope 
in the x, y, and z directions, each of which is plotted with a distinct color. 

 
Figure 5. The study and analysis of the accelerometer and gyroscope data for the common behav-
ioral patterns—lying, standing, sitting, and walking—for all ADLs performed in the kitchen. Due 
to paucity of space, analyses of a some of the ADLs are shown here. 
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ADLs performed in the different spatial locations or ‘zones’ in a given IoT-based environment.

After studying these activity patterns distinct to different ADLs local to each zone,
we studied the characteristics of the human behaviors at a fine-grain level associated with
each of these ADLs. This was done by analyzing the accelerometer and gyroscope data
corresponding to occurrences of each of the common behavioral patterns—lying, standing,
sitting, and walking—for different ADLs in each of these spatial ‘zones.’ The study and
analysis of the accelerometer and gyroscope data for these common behavioral patterns
for all these ADLs performed in the kitchen, bedroom, office area, and toilet are shown
in Figures 5–8, respectively. In each of these figures, the common behavioral patterns are
plotted on the x-axis. The y-axis represents the accelerometer data and gyroscope in the x,
y, and z directions, each of which is plotted with a distinct color.
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Figure 5. The study and analysis of the accelerometer and gyroscope data for the common behavioral
patterns—lying, standing, sitting, and walking—for all ADLs performed in the kitchen. Due to
paucity of space, analyses of a some of the ADLs are shown here.
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patterns—lying, standing, sitting, and walking—for all ADLs performed in the toilet. Due to paucity
of space, analyses of a some of the ADLs are shown here.
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After performing this analysis, we used the ‘Split Data’ operator to split the data into
training and test sets; 75% of the data were used for training, and the remaining 25% were
used for testing. We used a k-NN classifier to develop the machine-learning functionality
of our framework. k-NN [36] is a non-parametric machine learning classifier. k-NN works
by comparing an unknown data sample to ‘k’ closest training examples in the dataset to
classify the unknown data into one of these samples. Here, closeness refers to the distance
in a space represented by ‘p,’ where ‘p’ is the number of attributes in the training set.
There are various approaches for the calculation of this distance. For the development
of the proposed approach, we used the Euclidean distance approach in RapidMiner [35].
The Euclidean distance [37] between two points ‘m’ and ‘n’ is computed as shown in
Equation (4):

d(m, n) =
√

∑p
i = 1(mi − ni)

2 (4)

where m and n are two points in the Euclidean space, d (m,n) represents the distance
between the two points m and n in the Euclidean space, mi represents the vector in the
Euclidean space that connects the point m to the origin, ni represents the vector in the
Euclidean space that connects the point n to the origin, and p represents the p-space.

The k-NN model that we developed consisted of 11 nearest neighbors. The model
was developed using 222 examples consisting of three dimensions of each of the activity
classes representing lying, standing, walking, and sitting. We tested the classifier by using
the ‘Apply Model’ operator and evaluated its performance characteristics by using the ‘Per-
formance’ operator. This RapidMiner process is shown in Figure 9, and the order in which
the ‘operators’ associated with this RapidMiner process were executed when the process
was compiled and run is shown in Figure 10. Thereafter, we studied the effectiveness and
performance characteristics of our framework to detect these behavioral patterns—walking,
sleeping, sitting, and lying—in different spatial locations. The RapidMiner process stud-
ied each row of the test dataset, which constituted a user interaction with the context
parameters and detected the associated behavioral patterns.
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the semantic analysis of user interactions on the diverse context parameters during ADLs to identify
a list of distinct behavioral patterns associated with different complex activities performed in a given
IoT-based environment.
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Figure 10. The order of execution of all the operators upon the compilation and execution of the
RapidMiner process shown in Figure 9.

The output of this RapidMiner process was in the form of a table where each row
consisted of the attributes as outlined in Table 3. Here, the degree of certainty expresses the
certainty of prediction of the associated behavioral pattern of the user by the developed
k-NN-based machine learning model. To predict the same, the k-NN model in RapidMiner
assigned a confidence value to each of these behavioral patterns, and the behavior with the
highest confidence was the final prediction of the model for that specific user interaction.
For instance, in row number 2, the confidence values associated with lying, standing,
sitting, and walking are 0.818, 0.182, 0, and 0, respectively, so the prediction of the model
was lying. This output table had 73 rows, but only the first 13 rows are shown in Figure 11.

Table 3. Description of the attributes of the output of the RapidMiner process shown in Figure 11.

Attribute Name Description

Row No The row number in the output table
Activity The actual behavioral pattern associated with a given ADL

Prediction (Activity) The predicted behavioral pattern associated with a given ADL
Confidence (lying) The degree of certainty that the user was lying during this ADL

Confidence (standing) The degree of certainty that the user was standing during this ADL
Confidence (sitting) The degree of certainty that the user was sitting during this ADL

Confidence (walking) The degree of certainty that the user was sitting during this ADL
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Figure 11. The output table of the RapidMiner process shown in Figure 3 for the detection of distinct
behavioral patterns associated with the different ADLs. This output table had 73 rows, but only the
first 13 rows are shown here.
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The performance accuracy of this model was evaluated by using a confusion matrix,
where both the overall performance and the individual class precision values were com-
puted. Figures 12 and 13 show the tabular representation and plot view of the confusion
matrix, respectively. A confusion matrix [38] is a method of evaluating and studying
the performance characteristics of a machine learning-based algorithm. The number of
instances of a data label in the predicted class is represented by each row of the matrix,
and the number of instances of a data label in the actual class is represented by each
column of the matrix. The matrix can also be inverted to have the rows represent the
columns and vice versa. Such a matrix allows for the calculation of multiple performance
characteristics associated with the machine learning model. These include overall accuracy,
individual class precision values, recall, specificity, positive predictive values, negative
predictive values, false positive rates, false negative rates, and F-1 scores. To evaluate
the performance characteristics of our proposed approach, we focused on two of these
performance metrics—the overall accuracy and the individual class precision values, which
are calculated by the formula as shown in Equations (5) and (6), respectively:

Acc =
True(P) + True(N)

True(P) + True(N) + False(P) + False(N)
(5)

Pr =
True(P)

True(P)+False(P)
(6)

where Acc is the overall accuracy of the machine-learning model, Pr is the class precision
value, True(P) means true positive, True(N) means true negative, False(P) means false
positive, and False(N) means false negative.
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Miner process shown in Figure 9 for the detection of distinct behavioral patterns associated with the
different ADLs performed in the different spatial locations in a given IoT-based environment.

As can be seen from Figures 12 and 13, this machine learning model achieved an
overall performance accuracy of 76.71%, with respective class precision values for lying,
standing, sitting and walking of 63.33%, 75.00%, 81.48%, and 100.00%. Our understanding
is that out of lying, standing, sitting and walking, only walking constitutes a movement of
the user from one location to the other, which is distinct compared to the other behaviors
on the dataset—lying, sitting, and standing. This makes the associated user interactions
and behavior-related data very different from the other behaviors. Thus, the detection of
walking by the machine learning model could achieve 100.00% accuracy.

Thereafter, we developed the other functionality of our framework—the intelligent
decision-making algorithm that can analyze these behavioral patterns and their relation-
ships with the dynamic spatial features of the environment to detect any anomalies in user
behavior that could constitute an emergency, as outlined in Section 2. This functionality
of our framework was developed as a RapidMiner ‘process’ that is shown in Figure 14,
and the order in which the various operators of this RapidMiner process were executed
upon the compilation of the same is shown in Figure 15. For the purpose of evaluating
the efficacy of this framework, we were interested in developing a binary classifier that
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could classify a situation as an ‘emergency’ or ‘non-emergency.’ Thus, all instances of
activities other than an emergency were labelled as ‘non-emergency’ in this dataset for
the development of this RapidMiner ‘process.’ The ‘Dataset’ operator allowed for the
importation of the data into the RapidMiner platform for developing this ‘process.’ The ‘Set
Role’ operator was used to inform RapidMiner of the data attribute and its characteristics
that should be predicted. In this case, it was either ‘emergency’ or ‘non-emergency.’ The
‘Data Processing’ operator was used to implement the knowledge base and make the model
aware of the rest of the relationships and dependencies amongst the data attributes as per
the characteristics of our framework and the proposed EDSCCA. The ‘Data Preprocessing’
operator also consisted of the of the ‘Split Data’ operator, which was used to split the data
into training and test sets. We used 75% of the data for training and 25% of the data for
testing after the removal of the outliers, as per the data preprocessing steps outlined in
Section 3. Next, we used a k-NN classifier to develop this binary classification model. This
k-NN classifier was also developed based on the Euclidean distance approach represented
in Equation (4). This classification model consisted of five nearest neighbors and 186 exam-
ples with eight dimensions of the two classes—emergency and non-emergency. The ‘Apply
Model’ operator was used to apply this learning model to the test data. The ‘Performance’
operator was used to evaluate the performance characteristics of the learning model. For
the performance metrics, we used the confusion matrix to study the overall accuracy of the
model, as well as the individual class precision values.
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Figure 13. The performance accuracy (studied via a confusion matrix—plot view) of the RapidMiner
process shown in Figure 9 for the detection of distinct behavioral patterns associated with different
ADLs performed in the different spatial locations in a given IoT-based environment.

This RapidMiner process studied each row of the dataset, which consisted of differ-
ent behavioral patterns associated with an ADL, to classify the associated behavior as
emergency or non-emergency.

The output of this RapidMiner process was in the form of a table where each row
consisted of the attributes outlined in Table 4. Here, the degree of certainty expresses the
certainty of prediction of emergency or non-emergency by the developed k-NN-based
machine learning model. To predict the same, the k-NN classification model in RapidMiner
assigned a confidence value to each of these behavioral patterns, and the behavior with
the highest confidence value was the final prediction of the model for that specific user
interaction. For instance, in row number 2, the confidence values associated with non-
emergency and emergency are 0.811 and 0.189, respectively, so the prediction of the model
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was non-emergency for the specific user interaction represented by this row. This output
table had 62 rows, but only the first 13 rows are shown in Figure 16.Information 2020, 11, x FOR PEER REVIEW 19 of 26 
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RapidMiner process shown in Figure 14.

Table 4. Description of the attributes of the output of the RapidMiner process shown in Figure 16.

Attribute Name Description

Row No The row number in the output table

Complex Activity The actual user behavior (either emergency or non-emergency)
associated with a given complex activity (ADL)

Prediction (Complex Activity) The predicted user behavior (either emergency or
non-emergency) associated with a given complex activity (ADL)

Confidence (Non-Emergency) The degree of certainty that the user behavior associated with a
given complex activity did not constitute an emergency

Confidence (Emergency) The degree of certainty that the user behavior associated with a
given complex activity constituted an emergency
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The performance characteristics of this framework were evaluated in the form a
confusion matrix, as shown in Figures 17 and 18, with Figure 17 representing the tabular
view and Figure 18 representing the plot view of the confusion matrix. By using the
confusion matrix, both the overall performance and individual class precision performance
values were computed.

As can be observed from Figures 17 and 18, the framework achieved an overall
performance accuracy of 83.87%, with the sub-class precision for the detection of ‘non-
emergency’ being 85.42% and the sub-class precision for the detection of ‘emergency’
being 78.57%.
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Figure 17. The performance accuracy (studied via a confusion matrix—tabular view) of the Rapid-
Miner process shown in Figure 14 that involves the development of the intelligent decision-making
algorithm of the framework that can analyze distinct behavioral patterns and their relationships
with the dynamic contextual and spatial features of the environment to detect any anomalies in user
behavior that could constitute an emergency.
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Figure 18. The performance accuracy (studied via a confusion matrix—plot view) of the RapidMiner
process shown in Figure 14 that involves the development of the intelligent decision-making algo-
rithm of the framework that can analyze distinct behavioral patterns and their relationships with the
dynamic contextual and spatial features of the environment to detect any anomalies in user behavior
that could constitute an emergency.

5. Comparative Discussion

Despite several advances and emerging technologies in the fields of human activity
recognition, human behavior analysis, and their related application domains, the existing
systems [9–29] have several limitations and drawbacks, as outlined in Section 2. This frame-
work, which integrates the latest advancements and technologies in human–computer
interaction, machine learning, Internet of Things, pattern recognition, and ubiquitous com-
puting, aims to take a rather comprehensive approach to addressing these challenges in this
field. In this section, we discuss these specific challenges and outline how our framework
addresses the same and outperforms these existing systems in terms of their technical
characteristics, functionalities, and operational features. This is presented as follows:

1. Several researchers in this field have only focused on activity recognition and that too
at a superficial level. Various methodologies such as sensor technology-driven [9],
RGB frame-based [10], hidden Markov model-based [11], and computer vision-
based [12] methodologies have been proposed by researchers, but the main limitation
of such systems is their inability to analyze complex activities at a fine-grain level
to interpret the associated dynamics of user interactions and their characteristic fea-
tures. Our framework addresses this challenge by being able to perform the semantic
analysis of user interactions with diverse contextual parameters during ADLs. By
semantic analysis, we refer to the functionalities of our framework to (1) analyze
complex activities in terms of the associated postures and gestures, which are in-
terpreted in terms of the skeletal joint point characteristics (Figure 1); (2) interpret
the interrelated and interdependent relationships between atomic activities, context
attributes, core atomic activities, core context attributes, other atomic activities, other
context attributes, start atomic activities, end atomic activities, start context attributes,
and end context attributes associated with any complex activity (Table 1); (3) detect
all possible dynamics of user interactions and user behavior that could be associated
with any complex activity (Table 2); (4) identify a list of distinct fine-grain level be-
havioral patterns—walking, sleeping, sitting, and lying—associated with different
complex activities (Figures 9 and 11), which achieved a performance accuracy of
76.71% when tested on a dataset of ADLs (Figures 12 and 13); and (5) use an intelli-
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gent decision-making algorithm that can analyze these distinct behavioral patterns
and their relationships with the dynamic contextual and spatial features of the envi-
ronment to detect any anomalies in user behavior that could constitute an emergency
(Figures 14 and 16), which achieved an overall performance accuracy of 83.87% when
tested on a dataset of ADLs (Figures 17 and 18).

2. Some of the recent works that have focused on activity analysis were limited to certain
tasks and could not be generalized for different activities. For instance, in [17], the
work focused on eating activity recognition and analysis; in [13], the activity analysis
was done to detect enter and exit motions only in a given IoT-based space. In [18],
the methodology focused on the detection of simple and less complicated activities,
such an cooking, and [22] presented a system that could remind its users to take
their routine medications. The analysis of such small tasks and actions are important,
but the challenge in this context is the fact that these systems are specific to such
tasks and cannot be deployed or implemented in the context of other activities. With
its functionalities to perform complex activity recognition and analysis of skeletal
joint point characteristics, our framework can analyze and interpret any complex
activity and its associated tasks and actions, thereby addressing this challenge. When
tested on a dataset, our framework was able to recognize and analyze all nine com-
plex activities—sleeping, changing cloth, relaxing, moving around, cooking, eating,
emergency, working, and defecating—that were associated with this dataset. It is
worth mentioning here that our framework cannot only recognize these specific nine
complex activities, because its characteristics allow it to recognize and analyze any
set of complex activities represented by the big data associated with user interactions
in a given IoT-based context, which could be a from a dataset or from a real-time
sensor-based implementation of the IoT framework.

3. A number of these methodologies have focused on activities in specific settings
and cannot be seamlessly deployed in other settings consisting of different context
parameters and environment variables. For instance, in [14,16], the presented systems
are specific to hospital environments, the methodology presented in [21] is only
applicable to a kitchen environment, and the approach in [28] is only applicable to
a workplace environment. While such systems are important for safe and assisted
living experiences in these local spatial contexts, their main drawback is the fact that
these tools are dependent on the specific environmental settings for which they have
been designed. Our framework develops an SDCA by analyzing the multimodal
components of user interactions on the context parameters, from an object centered
perspective, as outlined in Section 3. This functionality allows our framework to detect
and interpret human activities, their associated behavioral patterns, and the user
interaction features in any given setting consisting of any kind of context attributes
and environment variables.

4. Video-based systems for activity recognition and analysis, such as [12,19] may have
several drawbacks associated with their development, functionalities, and perfor-
mance metrics. According to [39], video ‘presents challenges at almost every stage
of the research process.’ Some of these are the categorization and transcription of
data, the selection of relevant fragments, the selection of camera angle, and the de-
termination of the number of frames. By not using viewer-centered image analysis
but by using object centered data directly from the sensors, our proposed framework
bypasses all these challenges.

5. Some of the frameworks that have focused on fall detection are dependent on a
specific operating system or platform or device. These include the smartphone-based
fall detection approach proposed in [23] that uses an Android operating system,
the work presented in [29] that uses an IOS operating system, the methodology
proposed in [26] that requires a smart cane, and the approach in [15] that requires
a handheld device. To address universal diversity and ensure the wide-scale user
acceptance of such technologies, it is important that such fall detection systems are
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platform-independent and can run seamlessly on any device that uses any kind of
operating system. Our framework does not have this drawback because it does not
need an Android or IOS operating system or any specific device for running. Even
though it uses RapidMiner as a software tool to develop its characteristic features,
RapidMiner is written in Java—which is platform-independent. RapidMiner allows
for the exportation of any process in the form of the associated Java code. Java
applications are known as write once run anywhere (WORA). This essentially means
that when a Java application is developed and compiled on any system, the Java
compiler generates a bytecode or class file that is platform-independent and can be
run seamlessly on any other system without re-compilation by using a Java virtual
machine (JVM). Additionally, RapidMiner also consists of multiple extensions that
can be added to a RapidMiner process and used to seamlessly integrate a RapidMiner
process with other applications or software based on the requirements.

6. Several fall detection systems are dependent on external parameters that cannot
be controlled and could affect the performance characteristics. For instance, Shao
et al. [25] proposed a fall detection methodology based on measuring the vibrations
of the floor. Several factors such as the weight of the user, the material of the floor, the
condition of the floor, and other objects placed on the floor can impact the intensity of
vibrations that could affect the performance of the system. Kong et al.’s [24] system
used the distance between the neck of the user and the ground to detect falls. The
performance of such a system could be affected by the height of the user, the posture
of the user, and any elevations on the ground such as high objects or stairs. The
work proposed in [27] by Keaton et al., which used WiFi channel state data to detect
falls, could be affected by external factors that tend to influence the WiFi channel
state data. Similarly, the methodology developed in [20] worked by using an air
pressure sensor, the readings of which could be affected by environmental factors and
external phenomena. Such influences or effects of external conditions could have a
negative effect on the operational and performance characteristics of the system, and
it could even lead to false alarms, thus causing alert fatigue [40] in caregivers and
medical personnel. Such false alarms and alert fatigue can decrease the quality of
care, increase response time, and make caregivers and medical personnel insensitive
to the warnings of such fall detection systems. The challenge is therefore to ensure
that such fall detection systems can seamlessly function without being dependent on
external factors that could affect its operation or performance metrics. Our framework
uses concepts of complex activity recognition [30] and two related works [31,32], as
well as taking the context-driven approach outlined in Section 3, for the analysis of
diverse components of user interactions performed on context parameters to interpret
the dynamics of human behavior and their relationships with the contextual and
spatial features of an environment to detect any anomalies that could constitute an
emergency. The performance, operation, and functionality of such an approach is
independent of the effect of any external factors or conditions, such as floor vibrations,
WiFi channel state data, and the distance between the user and the ground.

6. Conclusions and Scope for Future Work

Ambient intelligence in the future of smart homes and smart cities has the potential to
address the multiple elderly needs during ADLs due to the behavioral, physical, mental,
psychological, and other forms of impairments or limitations that they face with increasing
age. A key to developing ambient intelligence in order to address and access these needs
lies in monitoring human behavior while analyzing the multimodal components of user
interactions with the dynamic contextual, spatial, and temporal features of a given IoT-
based ubiquitous environment in which these activities are performed. Therefore, this work
provides an interdisciplinary framework that takes a comprehensive approach to study,
track, monitor, and analyze human behavior during ADLs. Based on the understanding of
the behaviors associated with ADLs, abnormal behaviors leading to situations that might
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have resulted in health-threatening situations, such as from a fall or unconsciousness, that
would need the immediate attention of caregivers or medical practitioners can be detected,
and necessary actions can be taken accordingly.

The framework has two novel functionalities that were implemented and tested with
an existing dataset. First, it is able to analyze multimodal components of user interactions
to identify a list of distinct behavioral patterns associated with each ADL. Using the given
dataset, the results showed that it achieved an overall performance accuracy of 76.71%.
Second, it uses an intelligent decision-making algorithm that can analyze these behavioral
patterns and their relationships with the dynamic contextual and spatial features of the
environment to detect any anomalies in user behavior that could constitute an emergency,
such as from a fall or unconsciousness. This algorithm achieved an overall performance
accuracy of 83.87% when tested on a dataset consisting of multiple ADLs.

To the best of the authors’ knowledge, no similar work has been done yet. The pre-
sented and discussed results uphold the immense potential and relevance of the framework
for the development of ambient intelligence in the future of ubiquitous living environments,
e.g., smart homes, to address multiple needs associated with the aging population. Our
framework addresses several limitations and challenges in this field, but at this point,
its functionality is limited to one user in the confines of a given IoT-based space. Future
work along these lines would involve extending the functionality of the framework to
incorporate multiple users. We also plan to implement this framework in real-time by
setting up an IoT-based environment and incorporating relevant practices and measures to
address the healthcare- and safety-related needs of the elderly.
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