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Abstract: Effectively understanding and categorizing vulnerabilities is vital in the ever-evolving
cybersecurity landscape, since only one exposure can have a devastating effect on the entire system.
Given the increasingly massive number of threats and the size of modern infrastructures, the need
for structured, uniform cybersecurity knowledge systems arose. To tackle this challenge, the MITRE
Corporation set up two powerful sources of cyber threat and vulnerability information, namely
the Common Vulnerabilities and Exposures (CVEs) list focused on identifying and fixing software
vulnerabilities, and the MITRE ATT&CK Enterprise Matrix, which is a framework for defining and
categorizing adversary actions and ways to defend against them. At the moment, the two are not
directly linked, even if such a link would have a significant positive impact on the cybersecurity
community. This study aims to automatically map CVEs to the corresponding 14 MITRE ATT&CK
tactics using state-of-the-art transformer-based models. Various architectures, from encoders to
generative large-scale models, are employed to tackle this multilabel classification problem. Our
results are promising, with a SecRoBERTa model performing best with an F1 score of 77.81%, which is
closely followed by SecBERT (78.77%), CyBERT (78.54%), and TARS (78.01%), while GPT-4 showed a
weak performance in zero-shot settings (22.04%). In addition, we perform an in-depth error analysis
to better understand the models’ performance and limitations. We release the code used for all
experiments as open source.

Keywords: CVE mapping; MITRE ATT&CK Matrix; multilabel tactic classification; transformer-based
models

1. Introduction

Whether we are talking about the everyday lives of individuals or the daily activities
of any organization, digital technology has become a core element of modern society. As the
scale of software systems has dramatically grown, the attack surface for cybercriminals has
also significantly extended, thus making cybersecurity a top priority.

One approach to defending against such attacks involves determining if a given action
is legitimate or malicious, also known as intrusion detection, which often incorporates
Machine Learning (ML) techniques. Various methodologies exist for this purpose: one
focuses on real-time defense by analyzing data such as networking traffic or system calls
from the time the attack is attempted or even ongoing; alternatively, another approach
involves analyzing different sources of data left after the attack (e.g., syslog records) [1].
In our current investigation, we focus on building a tool for security auditing purposes,
which anticipates the potential impacts that a vulnerability or series of vulnerabilities may
have upon a system, even in the absence of an actual attack. A strong understanding of
vulnerabilities is crucial in creating an efficient defense against such threats.

Many large-scale security assessments involve a direct or indirect mapping of vul-
nerabilities to how they can be exploited. This is needed to understand how to defend
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against attacks or how exploiting a series of vulnerabilities on different nodes of a wider
infrastructure can form a kill chain and what the effects of such an event are. Of course,
a team of cybersecurity specialists can perform all these activities manually. However, time
is essential in this field, and a delayed response can sometimes be as bad as a total lack of
action. This aspect, coupled with the time delay between the moment when a vulnerability
is discovered and when the corresponding information is published, results in a critical
requirement for a fast and automated manner to better understand vulnerabilities.

To address the challenges of handling the increasingly large number of security flaws,
the MITRE Corporation set up two powerful sources of cyber threat and vulnerability
information, namely the CVEs list and the MITRE ATT&CK Enterprise Matrix. The CVEs
list publicly disclosed computer security flaws. When someone refers to a CVE, they
mean a security flaw assigned a CVE ID number [2]. Each CVE record includes an ID
number, a brief description of the security vulnerability, and other references, like vulnera-
bility reports and advisories. ATT&CK stands for MITRE Adversarial Tactics, Techniques,
and Common Knowledge. The MITRE ATT&CK framework is a knowledge base and
model for cyber adversary behavior. It reflects the various phases of an adversary’s attack
life cycle and the platforms they are known to target [3]. It is a free tool widely adopted by
private and public sector organizations of all sizes and industries. Users include security
defenders, penetration testers, red teams, cyber threat intelligence teams, and any internal
teams interested in building secure systems, applications, and services [4]. The ATT&CK
Enterprise Matrix includes 14 tactics (i.e., Reconnaissance, Resource Development, Initial
Access, Execution, Persistence, Privilege Escalation, Defense Evasion, Credential Access,
Discovery, Lateral Movement, Collection, Command and Control, Exfiltration, and Impact)
listed in a logical sequence, thereby indicating the possible phases of an attack [3].

Currently, CVEs and the MITRE ATT&CK Matrix are separate entities, even if they
are conceptually strongly connected. Linking them leads to a better understanding of
the potential risks associated with given vulnerabilities and to the further adoption of
better responses and defensive strategies. This mapping facilitates a more systematic and
standardized approach to vulnerability management and helps organizations prioritize
their mitigation efforts based on known adversary techniques and tactics. One of the main
reasons such a link does not exist for now is that building it manually would require a lot
of effort and specialized human resources. However, due to the recent progress in ML,
mapping the two entities using artificial intelligence became promising.

This study builds on the work of Grigorescu et al. [5] and aims to automatically
map CVEs to the corresponding list of 14 MITRE ATT&CK tactics using state-of-the-art
transformer-based models. Instead of addressing the entire collection of 201 possible tech-
niques, we focus on the higher-level task, which is more suitable for practice and provides
an overarching view of potential exposure. The initial dataset had several shortcomings
regarding a high imbalance and the lack of examples for certain techniques. As such,
we now focus on the 14 tactics that have better coverage and a more balanced distribu-
tion instead of focusing only on the 31 considered techniques after applying a minimum
threshold [5]. Additionally, Grigorescu et al. [5] used classical ML models (naïve Bayes
classifiers and/or support vector machines) and convolutional neural networks, coupled
with older techniques for word embeddings like word2vec, while the current study brings
improvements by focusing on newer models and architectures, such as T5 or GPT-4.

The main contributions of this paper are as follows:

• We introduce and release a new, extended dataset of 9985 entries (starting from the
previous work of Grigorescu et al. [5] with 1718 entries), with each tactic now having
at least 170 samples.

• We establish a strong baseline involving various transformer-based architectures
ranging from encoder models (e.g., CyBERT and SecBERT) and encoder–decoder
models (e.g., TARS and T5) to zero-shot learning, with GPT-4 having been used for
solving the multilabel tactic classification task;
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• We perform an in-depth results analysis to better understand the models’ performance
and limitations.

• We release as open source the dataset and the code used for our experiments, which
have been published on GitHub (https://github.com/readerbench/CVE2ATT-CK-
tactics, accessed on 18 February 2024).

The paper is structured as follows: Section 2 presents the related work regarding
vulnerability classification based on the MITRE matrix. Further on, we present our method,
including our dataset and the employed models. We used three types of transformer archi-
tectures, namely encoder (represented by SecBERT, CyBERT, and SecRoBERTa), encoder–
decoder (represented by TARS and T5), and decoder only (GPT-4). We then present and
discuss our results and, in the end, show our conclusion and our directions for future work.

2. Related Work

Mapping ATT&CK to CVE for Impact [6] is an initiative started by the Center for
Threat-Informed Defense in October 2021 and sponsored mainly by AttackIQ and JPMorgan
Chase [7]. This research project aimed to establish a critical connection between vulner-
ability management, threat modeling, and compensating controls by mapping a CVE to
MITRE tactics and techniques. The project did not have an automated component and
relied on a rigorous, public labeling methodology. For now, the project publicly released a
set of 840 labeled vulnerabilities, which are available on GitHub [8]. Both the dataset and
the methodology were considered during the labeling process of the dataset introduced
by Grigorescu et al. [5], which is described later on in detail and used in the current study.

Kuppa et al. [9] presented a multilabel text classification approach for mapping CVEs
to ATT&CK techniques and proposed a multihead joint embedding neural network architec-
ture. They addressed the issue of insufficient labeled data using an unsupervised labeling
method that assigned labels without supervision to 17 techniques. This method relied
on extracting phrases from threat reports and ATT&CK technique descriptions and then
mapping a CVE to a technique based on the cosine distance between the CVE’s description
and the technique’s vector. The lack of supervision for this approach is a benefit; however,
its capability to classify only 17 techniques leaves room for major improvement.

Ampel et al. [10] introduced another approach for mapping CVE’s to ATT&CK tactics.
Their study compared different techniques and their performances: classical ML models
(i.e., random forests, SVM, naïve Bayes, and logistic regression), deep learning models (i.e.,
RNN, LSTM, and BiLSTM), pretrained language models (i.e., GPT-2, BERT, and RoBERTA),
and self-distillation. Their distillation approach combines relational knowledge from a
large, pretrained model (the teacher, in this case, is a pretrained RoBERTa model) and a
prior untrained model (the student). As a result, the trained student model generalizes
better to unseen data than a model without knowledge distillation. This approach obtained
encouraging results, with an F1-score of 76.18%. However, the classification was only
multiclass, not multilabel, as a CVE was only mapped to one corresponding tactic. This
rarely happens in reality, where a vulnerability is often exploited using multiple tactics.

Grigorescu et al. [5] also presented a multilabel text classification approach on the
same dataset considered in this work. The difference is that [5] mapped techniques instead
of tactics. Ideally, the mapping of techniques is the final goal. Still, only a few techniques
(31 out of 192) exceeded a minimum occurrence threshold, and several limitations were
observed, especially due to the high imbalance. As such, this study focuses on tactics as an
overarching goal. [5] classified text descriptions from CVEs using SciBERT and adversarial
attacks for the 31 techniques with an F1 score of 47.84%. Our approach has some similarities,
but the current work explores a wider, more powerful set of models.

Haddad et al. [11] focused on mapping CVEs to MITRE CWE Top 25 Weaknesses
by approaching the problem as a ranking problem and aims to release (still not currently
available) a dataset of 4012 manually annotated samples. The main difference between our
tasks and the tasks proposed by Haddad et al. [11] is that the CWE weaknesses focus on
identifying and categorizing specific vulnerabilities or weaknesses, while the MITRE tactics

https://github.com/readerbench/CVE2ATT-CK-tactics
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focus on categorizing and describing adversary behaviors and objectives during cyber
attacks. Fine-tuned deep learning models like SentenceBERT and rankT5 featured good
semantic understanding for this ranking task. Specific metrics for ranking tasks, like the
mean reciprocal rank (MRR), mean average precision (MAP), and normalized discounted
cumulative gain (NDCG), were used for evaluating the models. MAP@k/NDCG@k com-
pares the top-k prediction to the ground truth (true positives), so MAP@1 and NDCG@1 are,
in fact, representing a classification measure, which should be more relevant for comparison
with our task. The best model was a fine-tuned sentence BERT (SBERT), with a MAP@1
score of 85% and an NDCG@1 score of 84.46%.

3. Method

Our method significantly enlarged the previous corpus by Grigorescu et al. [5], as
language models require as much data as possible to learn efficiently. Second, even though
the new dataset also exhibits class imbalance, each class has at least 170 samples, which is
a noteworthy improvement from the initial dataset where some classes had a very small
number of samples (e.g., Command and Control had only 7 samples). Furthermore, we
experimented with multiple types of transformer architectures in a crossvalidation setup to
validate our results thoroughly.

3.1. Corpus

The current dataset started from the one introduced by [5] for MITRE technique
classification. Each technique had a corresponding tactic; thus, the tactic mapping can
be easily derived from the initial dataset. The dataset contained 1718 entries, of which
820 CVEs were provided by MITRE-Engenuity [6]. The remaining entries were manually
annotated by Grigorescu et al. [5] in a team of five people. Data quality was ensured by
performing multiple validation rounds between the team members [5].

In our first expansion, 8000 more vulnerabilities were extracted from ENISA’s
2018–2019 state of vulnerabilities report [12]. The European Union (EU) Agency for Cyber-
security (ENISA) is dedicated to achieving a high common level of cybersecurity across the
continent. It released this document, which highlights the state of cybersecurity vulnerabil-
ities at the end of 2019. A list of these vulnerabilities, along with some data analysis tasks
performed on this data, can be found on GitHub [13]. The provided data also includes the
corresponding tactics for part of the vulnerabilities extracted and added to our dataset.

Additionally, 250 more vulnerabilities were manually searched and added to the
new dataset to ensure that each of the 14 classes had at least 170 sample vulnerabilities.
A comparison between the initial dataset and the new one is presented in Table 1.

Let us consider the following example regarding a specific vulnerability (i.e., CVE-2020-
5413) to argue for the complexity of the annotation process: “Spring Integration framework
provides Kryo Codec implementations as an alternative for Java (de)serialization. When
Kryo is configured with default options, all unregistered classes are resolved on demand.
This leads to the “deserialization gadgets” exploit when provided data contains malicious
code for execution during deserialization. In order to protect against this type of attack,
Kryo can be configured to require a set of trusted classes for (de)serialization. Spring
Integration should be proactive against blocking unknown "deserialization gadgets" when
configuring Kryo in code”. This entry was first mapped in terms of techniques to Command
and Scripting Interpreter because it can be exploited through the Spring Framework; second,
it was mapped to Exploitation for Client Execution because it can lead to the client attack,
which runs malicious code on the host. Further, the entry was mapped to Execution in
terms of tactics, since this is the corresponding tactic for both previous techniques.

From an exploratory data analysis point of view, notable observations about our
extended dataset must be made. As shown in Figure 1, the set is unbalanced, with “Defense
Evasion” being the dominant tactic. “Privilege Escalation”, “Persistence”, “Execution”,
“Discovery”, and “Lateral Movement” are also well represented. Some other tactics, like
“Initial Access”, “Collection”, “Credential Access”, “Command and Control”, and “Impact”
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still have hundreds of samples, while the rest of the tactics have few samples; more
specifically, Exfiltration has 171 samples; Resource Development and Reconnaissance each
have 170 samples.

Table 1. Comparation between the initial dataset introduced by Grigorescu et al. [5] and our dataset.

Class Number of Samples in the
Initial Dataset [5]

Number of Samples in Our
Dataset

Reconnaissance 28 170

Resource Development 37 170

Initial Access 641 722

Execution 721 2642

Persistence 187 3016

Privilege Escalation 359 3218

Defense Evasion 132 7552

Credentials Access 230 614

Discovery 71 2369

Lateral Movement 51 1932

Collection 265 663

Command and Control 7 427

Exfiltration 16 171

Impact 349 349

Figure 1. Distribution of MITRE tactic labels.

Most vulnerabilities have been annotated with only one tactic (see Figure 2); neverthe-
less, the count of entries with two tactics follows closely, thus arguing for the inadequacy
of labeling only with the dominant tactic, as performed by Ampel et al. [10].



Information 2024, 15, 214 6 of 19

Figure 2. Distribution of MITRE tactic number per sample.

As shown in Figure 3, most vulnerabilities have under 200 words in their description,
which should not represent an issue for the length limit that BERT has (512).

Figure 3. CVE description token length distribution.

Noise removal was used for preprocessing the text of a CVE. This refers to removing
those characters, digits, or even pieces of text that might pull back the performance of the
text analysis. In our case, this refers to the version of a given vulnerable piece of software
and the identifiers of other vulnerabilities. It is relevant for the model to know the targeted
product, but knowing the version itself might confuse the model. With this in mind,
the numerical versions were removed and replaced with the word [version]. References to
the identifiers of other vulnerabilities were also replaced with the “CVE” generic word.

We split the data into two sets: 80% for training and validation, while the remaining
entries were selected for the static test set. The static test partition was considered to achieve
a fair comparison across all employed architectures. For this split, the dataset was shuffled
first, and the separation was made using the MultilabelStratifiedShuffleSplit class from
the ‘iterative-stratification’ Python package [14], which kept the label distribution constant
after the train–test split in the context of multilabel tasks; see Sechidis et al. [15].

Given the imbalance in the dataset, the tactic distribution is an important aspect when
evaluating the results. Nevertheless, all tactics are well represented, and we did not opt to
perform oversampling or undersampling but instead kept the initial distributions.

Next, the common training and validation dataset was shuffled and split again using
MultilabelStratifiedShuffleSplit four times into individual training and validation static
subsets. Each time, the training set had 60% of the initial data, while the validation subset
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contained 20% of the initial data. In this way, the results could be validated on various
training and validation datasets for all models while keeping a constant test subset.

3.2. Models

Transformer-based models have reshaped the NLP landscape since their introduc-
tion [16] by proving state-of-the-art performance on a wide variety of tasks. Depending on
the architecture, these deep learning models can be classified into three large categories:
encoders, decoders, and encoder–decoder models. The transformer encoder model (e.g.,
Bidirectional Encoder Representations from Transformers—BERT [17]) takes as input a
piece of text, represented as a sequence of tokens, and produces a fixed-size length vector
representation of the input, which can be further used for classification or clustering. In con-
trast, the transformer decoder model (e.g., GPT-4 [18]) takes as input a fixed-size length
vector and outputs a sequence of words one at a time, with each word being conditioned
on the previously generated words, thus making this model especially fitted for tasks like
text generation. Finally, the encoder–decoder transformer (e.g., T5 [19]) takes as input a
sequence of tokens, produces a fixed-size vector representation of it, and then gives it to
the decoder to generate the output text, thus making this model fitting for many tasks,
including translation or question answering. We performed experiments with models from
each category.

3.2.1. Transformer Encoders

We selected all publicly available encoders on HuggingFace for the cybersecurity
domain [20–22]. First, SecBERT (or SecureBERT) [23] is a BERT-based model pretrained on
a cybersecurity-related corpus. It was fine-tuned based on the Masked Language Modeling
(MLM) procedure [17]; namely, the models learned to guess randomly masked words
from a diverse set of security texts (e.g., Cisco security reports, the NIST website, and
cybersecurity and hacking books).

Second, SecRoBERTa [24] was fine-tuned on the same cybersecurity corpus as SecBERT,
but, as its name suggests, the base model is RoBERTa, which is an optimized variation of
BERT. This variant was trained on a larger corpus compared to BERT, had the benefit of
better hyperparameters found to be suboptimal in the original BERT, and had a different,
dynamic word masking strategy during training.

Third, CyBERT [25] is a domain-specific BERT model that has been fine-tuned with
a large corpus of textual unlabeled cybersecurity data. It was fine-tuned starting from
the BERT base cased model with MLM [17], which is similar to SecBERT. More specifi-
cally, the first step consisted of extending the model’s vocabulary with specific cybersecu-
rity words. Once the vocabulary was extended and the embedding space was updated,
the model was trained to guess randomly masked words from the specific cybersecurity
corpus; see Ranade et al. [25]. The main difference between SecBERT and CyBERT lies in
the data the two models were tuned on. More specifically, CyBERT was trained using a
corpus of labeled sequences from ICS (industrial control systems) device documentation
collected across a wide range of vendors and devices [25], while SecBERT was trained
using a large number of online cybersecurity-related text data, including books, blogs,
news, security reports, videos (subtitles), journals and conferences, white papers, tutorials,
and survey papers [23].

These models (CyBERT, SecRoBERTa, and SecBERT) were used to encode the CVE text
description, followed by a dropout layer and a linear layer with 14 output nodes, one for
each class, coupled with a BCEWithLogitsLoss [26] loss function. The output represents a
probability for each class, based on which it is decided if the CVE can be exploited using a
given tactic.

3.2.2. Transformer Encoder–Decoder Architectures

TARS (Task-Aware Representation of Sentences for Generic Text Classification) is a
transformer-based model that leverages the information provided by class labels and shows
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good performance in few-shot and zero-shot settings [27]. It is based on a BERT encoder,
with the most relevant difference being that it also has a task-shared decoder, which
outputs a Boolean value, thus extending the capabilities of transfer learning compared
to text classifiers based on BERT and its variations. For those classifiers, the final linear
layer and activation are task-specific and must be learned separately from scratch for each
task [27]. The concept of task-aware representation refers to the reformulation of each
classification problem, multiclass or mult-label, into a generic binary classification for each
label by feeding the transformer a sentence and a potential label (more or less descriptive)
and establishing whether the association holds or not. TARS formalizes the classification
function as

f : ⟨task label, text⟩ → {0, 1} (1)

and addresses the incomplete knowledge transfer, as the same decoder can now be used
across arbitrary tasks in this context, thereby allowing the full transfer of the model not
only of the encoder component, as in the case of the previous BERT models [27].

This approach was chosen especially to explore if, by providing some information
about what a tactic means by itself, the model better classifies the under-represented classes
unsuccessfully recognized by the previous BERT models, which are not aware of each
label’s meaning. This model is also suitable for the multilabel classification, as it establishes
for every possible tactic if there is an association between a CVE description and that tactic
or not.

Two experiments were performed: one where the labels have a short name (e.g.,
“Reconnaissance”) and one where the labels are a short description of the tactics (e.g.,
“gather the information they can use to plan future operations”).

The Text-to-Text Transfer Transformer [19] relies on a transformer-based architecture
that uses a text-to-text approach that takes text as input, and it learns to produce new
text as output. The main goal of the model is to create a unified framework for various
NLP tasks, such as translation, question answering, and classification. This text-to-text
approach enabled the direct usage of the same model, an objective training procedure,
and a decoding process for all considered tasks [19].

To take advantage of transfer learning capabilities and the text-to-text format, the train-
ing entries were adapted as shown in Table 2. The tactics formed of two words (e.g., Lateral
Movement and Initial Access) were reduced to only one word (e.g., Movement and Access).
The predictions contained padding sequences and also had the format of the labels shown
in Table 2, so they had to be parsed and transformed into the original encoding to compute
the scores.

Table 2. Initial training entry and T5 training entry.

Text Label

In freewvs before 0.1.1, a user could create a large file
that freewvs will try to read, which will terminate a scan
process. This has been patched in 0.1.1.

0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1

CVE Text: In freewvs before 0.1.1, a user could create a
large file that freewvs will try to read, which will termi-
nate a scan process. This has been patched in 0.1.1.%

Predicted MITRE tactics:
Access, Persistence, Impact

3.2.3. Transformer Decoder Architectures

Large language models, like GPT-4, were trained on an extremely large quantity
of data and instructions and exhibited enhanced zero-shot learning capabilities; these
models capture the semantic similarities and differences between classes, thus making it
possible to well generalize and obtain state-of-the-art results for classification tasks without
additional training.
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GPT-4 is the most recent model from the GPT family. It was evaluated on various
tasks that tested its ability to understand and generate natural language text, particularly in
more complex and nuanced scenarios [18]. For example, GPT-4 was tested on specialized
exams designed for humans (e.g., the bar exam), and it achieved a score that falls in the top
10% of test takers compared to the bottom 10% for its predecessor, GPT-3 [18].

For now, the model is accessible only through OpenAI’s API [28], which allows for
easy experimentation despite its size, which would otherwise require a lot of resources.
However, using the API for GPT-4 is significantly more expensive (30 times) than for
GPT-3.5, thereby making it more expensive for large datasets. Fortunately, our dataset was
relatively small and did not create issues in this direction.

After the system prompt that contextualizes the task, two prompts briefly describing
the task were used to carry out the classification with GPT-4. For the first one, the prompt
contained only the tactic names, while the second one also contained a short description
of the tactic after its name, which was similar to the TARS experiment. The completion
format was specified in the prompt to interpret the response and measure performance.
The used prompts are shown in Table 3: the first and the last table rows were utilized for all
experiments. The prompts from the Prompt columns were used in the experiments without
descriptions, while the prompts with tactic descriptions from the Extra Prompt column
were used in the experiments with descriptions.

Table 3. GPT-4 zero-shot experiment prompts with and without tactic description.

Prompt Extra Prompt

You are a cybersecurity researcher. You receive the
description of a vulnerability (CVE) and you map
it to one of the 14 MITRE tactics. The tactics are:

and their descriptions are:

Reconnaissance Gather information they can use to plan
future operations

Resource Development Establish resources they can use to sup-
port operations

Initial Access Get into your network
Execution Run malicious code
Persistence Maintain their foothold
Privilege Escalation Gain higher-level permissions
Defense Evasion Avoid being detected
Credential Access Steal account names and passwords
Discovery Figure out your environment
Lateral Movement Move through your environment
Collection Gather data of interest to their goal
Exfiltration Steal data

Command and Control Communicate with compromised systems
to control them

Impact Manipulate, interrupt, or destroy your sys-
tems and data

The prediction must have the following format: [
predicted_tactic, predicted_tactic,...]
CVE_DESCRIPTION: TEXT
The classification:

3.3. Experimental Setup for Fine-Tuned Models

The experiments were performed on NVIDIA A100 GPU. For evaluating the model,
in the context of the presented multilabel classification task, we were interested in gener-
ating overall correct mappings (high precision) and the correct classification of as many
examples as possible per class (high recall). To take into consideration both aspects, the F1
score, which is the harmonic mean between recall and precision, was considered the
most relevant metric [5]. More specifically, due to the severe imbalance in the dataset,
the weighted F1 score was chosen as the final metric, as it computes the metrics for each
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label and finds the final score based on the number of true instances for each one. The macro
F1 score, which does not consider the imbalance in the dataset and gives equal importance
to each class, was also computed for a better overall model analysis. The other relevant
metrics, like precision and recall, were also computed as weighed for the overall score.

We also computed the standard deviation (SD) for each reported metric. It measures
the variability of values from their mean to determine the stability of the models on
different training and validation sets. A smaller SD indicates a more robust model, while a
larger one shows greater performance fluctuation, thereby making the model less reliable.
Moreover, the scores for each class were computed to understand better how the imbalance
in the dataset would impact the results. Given the multilabel task, confusion matrixes
were computed for each class. During training, the number of epochs was chosen by
observing the behavior during longer experiments based on when the validation loss had
reached a constant value. For all models, the learning rate search was performed to find the
optimal value based on the best average validation score for each model. For all transformer
encoders, the AdamW optimizer was used, the batch size was set to 16, and the learning rate
was set to 3 × 10−5 during training. No input truncation was needed, because the longest
vulnerability was shorter than BERT’s input length limit of 512 tokens [17]. The variants
based on BERT base uncased were used. For TARS, we considered the implementation [27]
from the FLAIR Framework [29] based on BERT base. A learning rate of 0.02 was set,
and the model was trained for 20 epochs. The T5 base from HuggingFace [30] was used for
fine-tuning experiments. During the 10 epochs training, an AdamW optimizer, a batch size
of 16, and a learning rate of 2 × 10−4 were used.

4. Results

All the previously described architectures that involved training (i.e., CyBERT, SecBERT,
SecRoBERTa, TARS, and T5) were evaluated on both validation (Table 4) and testing datasets
(Table 5). The GPT-4 experiments performed in a zero-shot setting were only conducted
once for the static testing dataset (20% of the available data). More precisely, based on the
initial splits computed with respect to the constant tactic distribution, the validation results
were computed after crossvalidation experiments on the train and validation common
set, thereby representing 80% of all the available data. During the validation experiments,
the best parameters (e.g., learning rate) were established. Each model was trained four
times on 60% of the available data and also evaluated each time on 20% of the available
data, with the reported data from Table 4 being the average of the four results and the
standard deviation being computed for each metric. The validation results (Table 4) have
highlighted the stability and consistency of the models while being trained and validated
on different data subsets. The standard deviation (SD) for all the computed metrics was less
than 4.5%, thereby indicating a small variability among the models and therefore arguing
for their reliability.

Next, the models trained on the four variable training subsets from the previously
described validation experiments were tested on the static testing set. Moreover, in order to
take advantage of as much data as possible, with the perspective of deploying the models
in the future, a fifth experiment was executed, with training on the whole training and
validation set (i.e., 80% of available data) and testing on the static test set. The reported
results from Table 5 represent the average of these five experiments and the standard
deviation for each metric.

The best weighted F1 score for both validation (77.65%) and testing experiments
(78.88%) was achieved by SecRoBERTa, by a very close margin, which was closely followed
by SecBERT and CyBERT. Both TARS experiments exhibited a slightly smaller weighted
F1 score but a better F1 macro score on the validation experiments, thus indicating that,
given the information of what a tactic means, TARS may be less influenced by the strong
dataset imbalance. Another interesting aspect is that, in multiple validation runs, the short-
label TARS experiment showed better results than the long-label experiments, which is
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counterintuitive, as the former offered the model more context about what each tactic
means. T5, on the other hand, showed lower performance on all metrics.

Table 4. Performance results for on the validation sets (bold marks the best model and performance).

Model Weighed
Precision (SD)

Weighed Recall
(SD)

Weighed F1
(SD) F1 Macro (SD)

CyBERT 79.66% (1.22%) 75.59% (1.21%) 76.64% (0.93%) 54.11% (4.12%)
SecBERT 80.12% (0.83%) 76.69% (1.06%) 77.37% (0.76%) 60.80% (2.45%)

SecRoBERTa 80.10% (1.00%) 76.31% (1.46%) 77.65% (1.00%) 61.86% (1.60%)

TARS short
labels 73.48% (1.91%) 81.03% (1.39%) 76.88% (0.55%) 65.60% (1.30%)

TARS long
labels 73.91% (1.53%) 81.30% (0.87%) 77.10% (0.49%) 64.91% (1.42%)

T5 76.96% (1.09%) 76.98% (0.53%) 76.46% (0.71%) 57.33% (0.54%)

Table 5. Performance results for the test set (bold marks the best model and performance).

Model Weighed
Precision (SD)

Weighed Recall
(SD)

Weighed F1
(SD) F1 Macro (SD)

CyBERT 82.95% (1.08%) 75.86% (1.34%) 78.54% (1.19%) 58.65% (4.48%)
SecBERT 82.18% (0.43%) 76.93% (0.64%) 78.77% (0.56%) 64.16% (2.38%)

SecRoBERTa 82.09% (0.38%) 77.02% (1.23%) 78.88% (0.71%) 65.43% (1.98%)

TARS short
labels 74.92% (1.63%) 80.81% (1.08%) 77.50% (0.53%) 64.10% (1.42%)

TARS long
labels 74.80% (3.02%) 81.99% (1.47%) 78.01% (2.06%) 65.06% (4.61%)

T5 77.77% (0.48%) 78.42% (0.70%) 77.56% (0.34%) 58.40% (0.91%)

GPT with
description 52.05% (0%) 27.64% (0%) 26.41% (0%) 19.22% (0%)

GPT without
description 51.42% (0%) 29.57% (0%) 28.99% (0%) 22.04% (0%)

Table 6 highlights the per-tactic results for our best-performing model, SecRoBERTa.
The reported results were computed after training the model on the whole training and
validation dataset and testing on the fixed test dataset. Figure 4 highlights the correlation
between the per-class F1 score and the number of samples from the training dataset. As ex-
pected from the imbalance in the dataset, the best F1 score was obtained for the dominating
class, namely Defense Evasion (F1 score of 91.66%). However, the next most frequent
classes (Privilege Escalation, Persistence, Execution, Discovery, and Lateral Movement) also
showed promising results, with F1 scores of over 74%. Despite being less-frequent classes,
Exfiltration and Resource Development showed good F1 scores of 88.88% and 79.13%.
Weaker results were registered for Initial Access and Impact, with F1 score slightly over
30%. For the best experiment, we have also computed the weighted accuracy having a value
of 89.52% and the accuracy score (computed using the subsets accuracy) having a value
of 65.34%. The reason why these two metrics have different values is that in multilabel
classification, the subset accuracy takes into account that the set of labels predicted for a
sample must exactly match the corresponding set of labels [31].

Given the relatively large number of classes for the current multilabel classification
task (14), the macro F1 score of 68.67%, which gives equal value to each class, shows that
even if the model naturally has the tendency to better classify the class with the largest
number of samples, it still differentiates between the rest of the classes, thus extracting
relevant linguistic features from the CVE’s description.

As shown in Table 5, GPT-4 exhibited weak performance in a zero-shot setup compared
to the fine-tuned models. Adding a short description of each tactic in the prompt did not
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improve the results, thereby leading to slightly worse performance. The imbalanced dataset
did not influence GPT-4’s performance; nevertheless, its F1 macro score was much lower
than those from the prior experiments, thereby confirming that the current task is a difficult
one even for such large language models as GPT-4.

Figure 4. F1 score (red lines) on top of CVE training distribution (blue bars) for SecRoBERTa.

Table 6. SecRoBERTa per-tactic results.

Tactic Accuracy Precision Recall F1

Reconnaissance 98.79% 77.77% 41.17% 53.84%

Resource Development 99.39% 95.83% 67.64% 79.13%

Initial Access 93.73% 67.27% 25.69% 37.18%

Execution 86.91% 77.07% 71.96% 74.43%

Persistence 88.26% 80.00% 81.59% 80.78%

Privilege Escalation 87.36% 80.34% 80.59% 80.46%

Defense Evasion 87.61% 90.35% 93.64% 91.96%

Credentials Access 96.38% 76.28% 60.16% 67.27%

Discovery 91.42% 83.44% 79.74% 81.55%

Lateral Movement 92.92% 83.01% 79.79% 81.37%

Collection 94.23% 58.65% 45.86% 51.47%

Command and Control 96.58% 59.13% 64.70% 61.79%

Exfiltration 99.64% 96.55% 82.30% 88.88%

Impact 96.89% 70.00% 20.00% 31.11%

5. Discussion

The top performance models were SecRoBERTa (F1 weighed: 78.88%), SecBERT (F1
weighed: 78.77%), and TARS (F1 weighed: 78.10%). For the well- and medium-represented
classes, the per-class F1 score had satisfactory values, with some variations depending on
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the model. However, it is visible that the models were extracting valuable information from
training and learning in some measure to map those tactics, thereby indicating significant
potential regarding the information that can be extracted from a CVE’s textual description.

The fine-tuned models still had minor problems when tackling the high off-balance
between the classes (i.e., 171 samples compared to 7552 samples for the most frequent
one). Also, the results obtained for the Defense Evasion tactic were influenced by the very
large amount of data for this class, as the models inherently tended to have a bias toward
predicting the majority tactic. For the confusion with Defense Evasion, a more balanced
dataset would be necessary, because Defense Evasion tended to dominate, and the class
appeared even when it was not applicable. Adding synthetic data by augmenting the
existing data (e.g., using TextAttack [32] or state-of-the-art LLMs like GPT-4) from the
under-represented classes was considered, but given the specialized cybersecurity terms
and the relatively fixed structure of a CVE, this technique would not have provided realistic
additional information for the models.

Our best model had problems identifying two classes (i.e., Initial Access and Impact),
for which its F1 scores were below 50%. The precision score was over 65%; thus, when the
model predicted these tactics, it was usually right, but these classes had a low recall score
under 25%, thereby reflecting that the model frequently missed them. Given the multilabel
task, sometimes the model predicted a smaller number of tactics for those entries with
multiple associated tactics, thereby ignoring tactics like Initial Access or Impact. Other
times, it confused the previously two mentioned tactics with other tactics. Upon closer
inspection, the model had problems discriminating between Initial Access and Defense
Evasion, as well as between Impact and Credential Access. The first confusion might
come from the fact that both tactics usually take advantage of public-facing services,
with Initial Access being an intermediary step needed for the attacker to enter a context
where avoiding detection is actually needed. The second confusion can also be explained by
the conceptual link between tactics like Impact, which involves compromising the integrity
of a system, and Credential Access, which involves obtaining sensitive data that leads to
the system’s compromise.

MITRE states that the Impact tactic consists of techniques that adversaries use to
disrupt availability or compromise integrity by manipulating business and operational pro-
cesses. As such, we infer that reaching Impact can occur following the malicious acquisition
of credentials, thereby suggesting a causal relationship between the two tactics. Providing
more examples of Impact, especially ones not related to credentials since it is one of the
rarer classes, would be beneficial in avoiding this confusion.

Given our multilabel class, computing a single 14 × 14 confusion matrix was not
possible; instead, 14 2 × 2 confusion matrixes containing the number of true positive, true
negative, false positive, and false negative samples for the best model were computed
using multilabel_confusion_matrix from sklearn [33] (additional tables are presented in
Appendix A).

Furthermore, it is interesting to note that GPT-4 only had F1 scores of over 50% for
Discovery, Privilege Escalation, and Exfiltration. This shows that for a specific classification
task such as ours, a very large, generative model might have, in zero-shot settings, a surpris-
ingly poor performance, being much lower than significantly smaller, fine-tuned models.

Error Analysis

Table 7 shows different predictions of the best model, from fully correct classifications
to only partially correct classifications and, finally, completely wrong classifications. As il-
lustrated, some CVEs contain much more information than others, thereby making the
classification difficult for those with very short text. Especially for these cases, adding more
data beyond the sole CVE textual description would be helpful. We have extended the
initial dataset and integrated data from ENISA (details in Section 3.1). We have observed
that, in time, other organizations (e.g., ENISA) have publicly released precisely the required
data. Hence, it is possible that this could occur again in the future, thus allowing us to
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incorporate new data from such sources. Another envisioned approach is to explore semisu-
pervised learning, as proposed in the future work section, which leverages the abundance
of unlabeled CVEs.

Moreover, the model tended to correctly classify some tactics based on more seman-
tically obvious keywords, like ‘execute’. In many CVE descriptions, the word ‘execute’
appears, thus making it easier for the model to classify the respective CVE as Execution.
The same happens for CVEs containing the words ‘authenticated’ (which tend to be classi-
fied as Privilege Escalation) and ‘credentials’ (which tend to be classified as Credentials
Access) without considering the actual deeper meanings of the CVE. This aspect, coupled
with the fact that some vulnerabilities have similar texts with similar affected software (e.g.,
‘Oracle Java SE ’ and ‘Cisco Web Security ’), makes it easier to confuse the model based on
non-necessarily relevant text sequences.

However, many vulnerabilities are indeed interpretable, as their correct labels are
highly influenced by the labeling methodology. This happens because many tactics are also
conceptually linked, thereby making it difficult to derive a tactic sequence only from the
textual description. The most direct manner to solve this issue is to manually label more
data to focus on the classes with low performance. Unfortunately, this is not a trivial task,
as such CVEs are less frequent in the wild and are likely coupled with a more popular tactic.

Table 7. Best model (SecRoBERTa) predictions and true tactics.

CVE ID CVE Text Correct Tactics Predicted
Tactics

CVE-2010-
3971

Use-after-free vulnerability in the CSharedStyleSheet: Notify func-
tion in the Cascading Style Sheets (CSS) parser in mshtml.dll,
as used in Microsoft Internet Explorer 6 through 8 and other prod-
ucts, allows remote attackers to execute arbitrary code or cause
a denial of service (DoS) (application crash) via a self-referential
@import rule in a stylesheet, aka “CSS Memory Corruption Vulner-
ability”.

execution,
initial access

execution,
initial access

CVE-2018-
2602

Vulnerability in the Java SE, Java SE Embedded component of
Oracle Java SE (subcomponent: I18n). Supported versions that
are affected are Java SE: 6u171, 7u161, 8u152 and version; Java SE
Embedded: 8u151. Difficult to exploit vulnerability allows unau-
thenticated attacker with logon to the infrastructure where Java
SE, Java SE Embedded executes to compromise Java SE, Java SE
Embedded. Successful attacks require human interaction from a
person other than the attacker. Successful attacks of this vulner-
ability can result in unauthorized update, insert or delete access
to some of Java SE, Java SE Embedded accessible data as well as
unauthorized read access to a subset of Java SE, Java SE Embedded
accessible data and unauthorized ability to cause a partial DoS
of Java SE, Java SE Embedded. Note: This vulnerability applies
to Java deployments, typically in clients running sandboxed Java
Web Start applications or sandboxed Java applets, that load and
run untrusted code (e.g., code that comes from the internet) and
rely on the Java sandbox for security. This vulnerability does not
apply to Java deployments, typically in servers, that load and run
only trusted code (e.g., code installed by an administrator).

execution, persistence
privilege escalation,
lateral movement
defense evasion

execution,
persistence
privilege escalation,
lateral movement
defense eva-
sion

CVE-2023-
34537

A Reflected XSS was discovered in HotelDruid version 3.0.5, an at-
tacker can issue malicious code/command on affected webpage’s
parameter to trick user on browser and/or exfiltrate data.

exfiltration exfiltration
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Table 7. Cont.

CVE ID CVE Text Correct Tactics Predicted
Tactics

CVE-2019-
4235

IBM PureApplication System 2.2.3.0 through 2.2.5.3 does not re-
quire that users should have strong passwords by default, which
makes it easier for attackers to compromise user accounts. IBM
X-Force ID: 159417.

discovery,
defense evation

discovery,
credential access

CVE-2021-
22894

A buffer overflow vulnerability exists in Pulse Connect Secure be-
fore 9.1R11. 4 allows a remote authenticated attacker to execute ar-
bitrary code as the root user via maliciously crafted meeting room.

execution,
privilege escalation

execution,
persistence

CVE-2022-
27419

rtl_433 version was discovered to contain a stack overflow in the
function acurite_00275rm_decode at /devices/acurite.c. This vul-
nerability allows attackers to cause a DoS via a crafted file.

execution, impact initial access

CVE-2019-
1886

A vulnerability in the HTTPS decryption feature of Cisco Web
Security Appliance (WSA) could allow an unauthenticated, remote
attacker to cause a DoS condition. The vulnerability is due to
insufficient validation of Secure Sockets Layer (SSL) server certifi-
cates. An attacker could exploit this vulnerability by installing a
malformed certificate in a web server and sending a request to
it through the Cisco WSA. A successful exploit could allow the
attacker to cause an unexpected restart of the proxy process on an
affected device.

impact defense evasion

6. Conclusions

This study builds on the work of Grigorescu et al. [5] and targets vulnerability map-
ping to tactics instead of techniques, thus treating it as a multilabel classification task.
The experiments involved larger, more powerful models, which were applied on a signifi-
cantly larger dataset, thereby leading to a weighted F1 score of 78.88% and with consistent
performance on different vulnerability subsets.

Three types of experiments were performed with transformer encoder architectures
(i.e., CyBERT, SecBERT, and SecRoBERTa), encoder–decoder architectures (i.e., TARS and
T5), and zero-shot learning using GPT-4. In the end, from the proposed approaches,
SecRoBERTa performed best, with an F1 weighed score of 78.88.76%, which was closely
followed SecBERT and TARS. A major benefit of our models consists of their relatively
small size, thus making them easier to deploy.

The best-performing model exhibited some weaknesses, with weaker performance
and F1 scores of under 50% on two classes, namely Initial Access and Impact. Inherently,
the obtained results were strongly influenced by the dataset imbalance. Still, the NLP task
by itself is also a difficult one, which is an aspect confirmed by the overall low performance
of the zero-shot GPT-4 experiment.

Several directions for future research are envisioned. The most straightforward ap-
proach is to extend the dataset manually. Additionally, we want to explore whether taking
into account any other type of data or metadata associated with a vulnerability (e.g.,
the severity score) during training brings any improvement. Another possible approach
is to take advantage of the significant number of unlabeled CVEs and experiment with
weakly and semisupervised learning. Starting from our best-performing model, we could
spot potential CVEs for specific classes and label those to ensure better variability when
training our models. Moreover, we aim to introduce a hierarchical approach that tackles
both tactics and techniques in a multitask learning setup.
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BERT Bidirectional Encoder Representations from Transformers
CVE Common Vulnerabilities and Exposures
CVET Common Vulnerabilities and Exposures Transformer
CyBERT Cybersecurity BERT
GPT Generative Pretrained Transformer
LSTM Long-Short Term Memory
ML Machine Learning
MLM Masked Language Modeling
NIST National Institute of Standards and Technology
NLP Natural Language Processing
FN False Negative
FP False Positive
RNN Recurrent Neural Network

RoBERTa
Robustly Optimized Bidirectional Encoder Representations from
Transformers Approach

SD Standard Deviation
SecBERT Security BERT
SecRoBERTa Security RoBERTa
SVM Support Vector Machine
TARS Task-Aware Representation of Sentences
TN True Negative
TP True Positive
T5 Text-to-Text Transfer Transformer

Appendix A

Table A1. Multilabel confusion matrix structure [33].

TN FP
FN TP

https://github.com/readerbench/CVE2ATT-CK-tactics
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Table A2. Confusion matrix for Reconnaissance.

1956 4
20 14

Table A3. Confusion matrix for Resource Development.

1959 1
11 23

Table A4. Confusion matrix for Initial Access.

1832 18
107 37

Table A5. Confusion matrix for Execution.

1353 113
148 380

Table A6. Confusion matrix for Persistence.

1268 123
111 492

Table A7. Confusion matrix for Privilege Escalation.

1223 127
125 519

Table A8. Confusion matrix for Defense Evasion.

333 151
96 1414

Table A9. Confusion matrix for Credential Access.

1848 23
49 74

Table A10. Confusion matrix for Discovery.

1445 75
96 378

Table A11. Confusion matrix for Lateral Movement.

1545 63
78 308

Table A12. Confusion matrix for Collection.

1818 43
72 61

Table A13. Confusion matrix for Command and Control.

1871 38
30 55
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Table A14. Confusion matrix for Exfiltration.

1959 1
6 28

Table A15. Confusion matrix for Impact.

1918 6
56 14
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