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Abstract: Cyclic air braking is a key factor affecting the safe operation of trains on long downhill
sections. However, a train’s cycle braking strategy is constrained by multiple factors such as driving
environment, speed, and air-refilling time. A Q-learning algorithm-based cyclic braking strategy
for a heavy haul train on long downhill sections is proposed to address this challenge. First, the
operating environment of a heavy haul train on long downhill sections is designed, considering
various constraint parameters, such as the characteristics of special operating routes, allowable
operating speeds, and train tube air-refilling time. Second, the operating status and braking operation
of a heavy haul train on long downhill sections are discretized in order to establish a Q-table based
on state–action pairs. The training of algorithm performance is achieved by continuously updating
Q-tables. Finally, taking the heavy haul train formation as the study object, actual line data from the
Shuozhou–Huanghua Railway are used for experimental simulation, and different hyperparameters
and entry speed conditions are considered. The results show that the safe and stable cyclic braking of
a heavy haul train on long downhill sections is achieved. The effectiveness of the Q-learning control
strategy is verified.

Keywords: heavy haul train; long steep downhill; cyclic braking; Q-learning; intelligent control

1. Introduction

Heavy haul trains have a large transportation capacity, high efficiency, and low trans-
portation costs; thus, they have received widespread attention from countries worldwide.
To control speed when heavy haul trains operate on long downhill sections, the braking
system must increase cyclic air braking [1]. The existing strategy used for air braking
mainly relies on the conductor’s experience, which is insufficient for meeting the safety
and efficiency requirements for heavy haul train operation [2]. Therefore, an intelligent
control strategy must be developed to improve the air braking performance of heavy haul
trains on long downhill sections [3].

With the rapid development of heavy haul trains, scholars have recently conducted
extensive research on the cyclic braking of heavy haul trains on long downhill sections.
Related methods can be summarized as mechanistic model-, machine learning-, and rein-
forcement learning-based methods.

In terms of mechanistic model-based methods, a neural network-based air braking
model was proposed to accurately predict pressure changes in the key components of train
air braking systems [4]. In [5], a new hybrid model of long short-term memory (LSTM) was
developed to describe the changes in control force. In [6], a long short-term memory model
with delayed information was constructed to solve the problem of deep learning models
being unable to explain the impact of model inputs on system outputs. A real-time slope
estimation model based on Kalman filtering was constructed for the electric and air braking
system of heavy haul trains [7]. Traditional physical-driven models usually fail to reflect
the “true” dynamics of heavy haul trains because of the strong nonlinearity and uncertainty
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in the mechanistic model due to air resistance, frequently switching working conditions,
and variations in external influencing factors such as weather and temperature. During
heavy haul train operations, a large amount of data are accumulated, providing support
for the research on data-driven circulating air braking strategies for heavy haul trains.

In terms of machine learning-based research, an intelligent driving strategy for heavy
haul trains based on expert knowledge and machine learning is proposed, in order to deter-
mine feasible air pressure reduction and the exact time to apply and release air brakes [8].
In [9], an optimization model for the operation of heavy-duty trains was established, achiev-
ing optimal control while maximizing operating distance and minimizing air braking time.
In [10], to address the issue of the severe imbalance in the proportion of operating data
for heavy haul trains under different working conditions, a random forest algorithm was
used to extract data and establish a model for automatic air brakes. In [11], based on a train
dynamics model, the model parameters—including energy consumption, running time,
and distance of pneumatic braking—were optimized, and the artificial bee colony (ABC)
algorithm was introduced to find reasonable switching points for different states.

Reinforcement learning can be used to handle large-scale state spaces and dynamically
changing environments, and is characterized by a strong real-time decision-making ability.
Reinforcement learning has received widespread attention in studies on braking strategies
for heavy haul trains. In [12], a long downhill section operation optimization method
suitable for long-formation heavy haul trains was developed to improve the braking
performance of 20,000-ton heavy haul trains. In [13], a deep reinforcement learning method
with a reference system was constructed, which satisfies the constraints on speed, time, and
position during train operation and reduces the tracking errors of reinforcement learning.
In [14], a double-switch Q-network (DSQ network) architecture was designed to solve
the problem of the optimal control of multiple electric locomotives in heavy haul trains.
However, fully using the massive amounts of data generated by trains during operation is
a key issue in reinforcement learning methods that needs to be addressed.

The Q-learning algorithm is a widely recognized and extensively used reinforcement
learning method. It not only boasts a solid theoretical foundation, but also features a rela-
tively simple application process. Additionally, it has demonstrated excellent performance
in numerous practical scenarios, providing strong practical support for its utilization in
the field of heavy haul train braking. Significantly, the Q-learning algorithm has a unique
advantage in handling discrete action spaces, making it well-suited to address the chal-
lenges faced by heavy haul trains operating on long downhill sections. Based on these
comprehensive considerations, we developed a cyclic air braking strategy for heavy haul
trains on long downhill sections based on the Q-learning algorithm. The main contributions
of this study are as follows:

(1) A heavy haul train model with operational constraints was constructed, considering
the vehicle’s characteristics on long and steep slopes of railway lines, as well as
heavy haul trains equipped with traditional pneumatic braking systems. In addition,
with the optimization objectives of safe train operation and operational efficiency,
a Q-learning algorithm-based cycle braking strategy for heavy haul trains on long
downhill sections was developed under constraints such as interval speed limits and
air-refilling time.

(2) Simulations and experiments were conducted under actual heavy haul train operating
conditions, and the experimental results were compared under different parameters
and ramp speeds. The experimental results showed that the proposed intelligent
control strategy performs well in various scenarios, demonstrating its effectiveness
and practicality in train braking.

The rest of this article is organized as follows: A model for heavy haul trains operating
on long downhill sections is described in Section 1, introducing constraints on train opera-
tion and the performance indicators of train operation. Section 2 introduces the method
of circulating air braking for heavy haul trains based on the Q-learning algorithm. The
effectiveness and robustness of the proposed method were verified through simulation
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experiments, as described in Section 3. Finally, Section 4 provides a summary of the study
and outlines prospects for future research.

2. Heavy Haul Train Model
2.1. Dynamics Model

During the operation of heavy haul trains, various factors such as track gradient, train
formation, and on-board mass exert diverse forces on each train. However, in this study,
the forces of the interactions between carriages were not considered in the calculation
of additional resistance. As a result, the forces acting on the train during its operation
primarily comprised locomotive traction, braking force (including electric and pneumatic
braking), fundamental running resistance, and additional resistance. According to the
principles of Newtonian dynamics, the mathematical expression of each train model can be
formulated as follows:

M
.
v = F− B1 − B2 − FR. (1)

Generally, the running resistance FR encountered by a heavy haul train during brak-
ing on a long and steep downhill slope is mainly composed of basic resistance MR and
additional resistance LR. These resistances depend on the operating speed of the heavy
haul train as well as its physical characteristics [15].

FR = MR + LR. (2)

According to previous research [16], the formula for calculating the basic resistance of
a heavy haul train is as follows:

MR = M(φ1 + φ2v + φ3v2). (3)

The additional resistance is determined by the slope force gR, curvature resistance cR,
and the tunnel resistance tR [16], as shown in Equation (4). The specific calculations [17] of
these factors are given in Equation (5).

LR = gR + cR + tR, (4)
gR = Mg sin(arctan i

1000 )
cR = 600/R

tR = 0.00013Ls

. (5)

To facilitate the understanding, the main symbols are introduced in Table 1.

Table 1. Description of symbols used in the train model.

Symbol Description Symbol Description

M Sum of the masses of all carriages
.
v Acceleration of the heavy

haul train
R Curve radius Ls Tunnel length
B1 Output electric brake force B2 Output air brake force

ud
max Maximum electric brake force ua Air brake force

ba Binary variable of air braking bd Relative output ratio of the electric
brake force

FR Resistance of train g Gravity acceleration
φ1, φ2, φ3 Running resistance constant La Air brake distance

v Running speed of train Vr
min

Minimum release speed of
air brake

tb
j+1

Time point of engaging air brake in
the (j+1)th cycle tr

j
Time point of releasing air brake in

the jth cycle

i Gradient of the track on which the
train is running Vmax Upper limit of train running speed
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2.2. Running Constraints

The aim of this study on the circulating air braking of heavy haul trains on long
and steep downhill sections is, essentially, to solve a multi-constraint and multi-objective
optimization problem. Considering the actual requirements of driving control and model
design of trains, the running constraints set in this study were as follows:

When a train operates on a long and steep downhill section, cyclic braking is adopted
for speed control. To ensure sufficient braking force in the next braking cycle, sufficient time
is required to refill the air pipe to full pressure [18]. That is, the duration of the release phase
shall not be less than the minimum air filling time Ta specified by the operating procedures.

tb
j+1 − tr

j ≥ Ta, (6)

where tb
j+1 represents the time point where the air brake is engaged in the (j + 1)th cycle,

and tr
j indicates the time point where the air brake is released in the j-th cycle. Ta is closely

related to the formation of the train and the pressure drop in the train air pipe. For fixed
train parameters, the air-filled time under a certain pressure drop needs to be determined.
A longer train and a larger pressure reduction generally require longer air-filled time.

To ensure safety, the speed of a heavy haul train cannot exceed the speed limit Vmax
at any point on long and steep downhill line sections. This value often depends on the
infrastructure of the railway line or the temporary setup during operation. Additionally,
train speed must be greater than the minimum air brake release speed Vr

min. The specified
limit is designated as 40 km/h for a 10,000-ton heavy haul train formation [19]. Therefore,
the speed should meet the following requirement:

Vr
min ≤ v ≤ Vmax. (7)

Regarding the optimization objectives of this study, the operation of a heavy haul
train on long downhill sections is also constrained by the relative output ratio of the
braking force [20]. The two main types of braking devices used for heavy haul trains
include variable resistance and pneumatic braking systems. Variable resistance braking,
also known as regenerative braking, can feed energy back to other locomotives to provide
power. Pneumatic braking systems produce braking force by reducing the air pressure in
the train’s air brake pipe [21].

The output electric brake force B1 of a heavy haul train depends on the maximum
electric brake force ud

max(v) and the relative output ratio bd. The output pneumatic braking
force depends on whether air braking is applied. Therefore, a train’s braking force can be
expressed as {

B1 = bdud
max, 0 ≤ bd ≤ 1

B2 = baua, ba = 0 or ba = 1
, (8)

where the maximum electric brake force ud
max is a piecewise function related to the operating

speed [22], and the air braking force ua is a function of the air pressure drop [23].

2.3. Performance Indicators

This study mainly focuses on the safety and maintenance cost of the heavy haul train
operation process. The maintenance cost is expressed as the air-braking distance. Hence,
two indicators were used to evaluate the control of the heavy haul train.

• Safety: Safety is a prerequisite for train operation. The running speed of a heavy haul
train must be kept under the upper limit but cannot be lower than Vr

min. Here, K is
defined in order to indicate whether the train’s speed remains within the speed limit.

K =

{
1, Vr

min ≤ v ≤ Vmax
0, otherwise

. (9)
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• Air-braking distance: As excessive wear is caused by the friction between the wheels
and brake shoes when the air brake is engaged for a long distance, the replacement of
air brake equipment increases maintenance costs. By reducing the air brake distance
during operation, the maintenance cost can be reduced. Therefore, the air brake
distance La of a heavy haul train is defined as

La =
∫ T

0
ba(t) ∗ v(t)dt. (10)

3. Algorithm Design

Reinforcement learning is a machine learning approach tailored for goal-oriented
tasks [24]. Unlike traditional methods, reinforcement learning does not instruct the agent
on how to act, but rather guides the agent through interactions with the environment to
learn the correct strategies [25]. In this section, we first define the train operation process
as a Markov decision process (MDP). Second, we describe a control algorithm based on
Q-learning that learns the cyclic braking strategy for long downhill sections.

3.1. Markov Decision Process

Before applying the Q-learning algorithm, the process of controlling train operation on
a long and steep downhill slope needed to be defined as a Markov decision process (MDP),
that is, the formalization of sequential decision-making [24,26]. A schematic diagram of
the MDP interaction of a heavy haul train running on a long and steep downhill slope is
shown in Figure 1.
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As shown in Figure 1, the MDP consists of five elements: the agent, environment,
action, state, and reward. A heavy haul locomotive is defined as an agent that makes
control decisions. The heavy haul train dynamics and railway infrastructure settings are
defined as the environment. During the interaction process, the agent performs actions
based on the environment, and the environment responds to the agent, with new heavy
haul train states and reward signals based on operational constraints. Therefore, location,
speed, and operating time are defined as the states of the heavy haul train.

sk = [Pk, Vk, Tk], k = 0, 1, 2, · · · , n, (11)

where sk is the status of the heavy haul train at step k, Pk is the position of the train, Vk is
train speed, and Tk is the train’s running time.

The control action is defined as the setting of the relative electric brake force and air
brake notch.

ak = [ba
k , bd

k ], k = 0, 1, · · · , n, (12)
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where ba
k is a binary variable representing the air brake control command, and ba

k is the
relative output ratio of the electric brake force output by the train locomotive, which is
limited by the constraint condition in Equation (8).

The control output of a heavy haul train in each period is determined only by the
speed, position, and operating time of the train. Thus, the process of controlling a heavy
haul train can be exactly defined using reinforcement learning as a Markov decision-making
process [26], which is expressed as follows:

s0
a0−→ s1, r1

a1−→ · · · sk, rk · · ·
an−2−−→ sn−1, rn−1

an−1−−→ sn. (13)

3.2. Q-Learning Algorithm

In this section, the Q-learning algorithm-based intelligent control method is described
for heavy haul trains operating on steep downhill slopes. The Q-learning algorithm is a
reinforcement learning algorithm that learns in an environment without prior knowledge.
Based on the principle of temporal difference control, the agent continuously updates the
Q-value function through interactions with the environment. Using the Q-value as the
evaluation criterion, the algorithm iteratively seeks the optimal action to maximize the
expected total reward obtained during the interaction with the environment. The iteration
process of the Q-learning algorithm involves learning the optimal actions from the Markov
decision process (MDP). In a single simulation process, Q-learning updates the Q-values in
real time to form new strategies for the next simulation, as shown in the control process
diagram in Figure 2.

Information 2024, 15, x FOR PEER REVIEW 6 of 14 
 

 

on the environment, and the environment responds to the agent, with new heavy haul 
train states and reward signals based on operational constraints. Therefore, location, 
speed, and operating time are defined as the states of the heavy haul train. 

s [ , , ], 0,1, 2, ,k k k kP V T k n= =  , (11) 

where 𝑠𝑠𝑘𝑘 is the status of the heavy haul train at step k, 𝑃𝑃𝑘𝑘 is the position of the train, 𝑉𝑉𝑘𝑘 
is train speed, and 𝑇𝑇𝑘𝑘 is the train’s running time. 

The control action is defined as the setting of the relative electric brake force and air 
brake notch. 

[ , ], 0,1, ,a d
k k ka b b k n= = 

, (12) 

where 𝑏𝑏𝑘𝑘𝑚𝑚 is a binary variable representing the air brake control command, and 𝑏𝑏𝑘𝑘𝑚𝑚 is the 
relative output ratio of the electric brake force output by the train locomotive, which is 
limited by the constraint condition in Equation (8). 

The control output of a heavy haul train in each period is determined only by the 
speed, position, and operating time of the train. Thus, the process of controlling a heavy 
haul train can be exactly defined using reinforcement learning as a Markov decision-mak-
ing process [26], which is expressed as follows: 

0 2 11
0 1 1 1 1s , , ,n na a aa

k k n n ns r s r s r s− −
− −→ → → →  . (13) 

3.2. Q-Learning Algorithm 
In this section, the Q-learning algorithm-based intelligent control method is de-

scribed for heavy haul trains operating on steep downhill slopes. The Q-learning algo-
rithm is a reinforcement learning algorithm that learns in an environment without prior 
knowledge. Based on the principle of temporal difference control, the agent continuously 
updates the Q-value function through interactions with the environment. Using the Q-
value as the evaluation criterion, the algorithm iteratively seeks the optimal action to max-
imize the expected total reward obtained during the interaction with the environment. 
The iteration process of the Q-learning algorithm involves learning the optimal actions 
from the Markov decision process (MDP). In a single simulation process, Q-learning up-
dates the Q-values in real time to form new strategies for the next simulation, as shown in 
the control process diagram in Figure 2. 

Start

Initialize Q(s,a)

 Choose action a 
according to strategy π

Execute action a

Receive reward r based on 
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Yes
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Figure 2. Flowchart of controller for Q-learning algorithm.

(1) Randomly initialize Q (s, a), ∀s ∈ S, a ∈ A(s).
(2) According to the ε-greedy policy π and the current state s, action a is selected from the

Q-table. Execute action a as determined by the decision-making process; then, obtain
the reward value r by interacting with the environment and proceed to the next state.
Update the Q-Table, i.e., s→s’; continue until the termination state is reached.

(3) By following this procedure, after multiple iterations, the optimal policy and the
optimal state–action value function can both be obtained.

When the number of algorithm iterations reaches a certain quantity, the termination
condition is met. The generation of the optimal policy is no longer determined by the greedy
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policy, but is based on selecting actions according to the optimal Q-values corresponding to
each state at each time, forming the optimal policy.

3.2.1. Policy Design

To ensure that the algorithm balances exploration and exploitation capabilities, an
ε-greedy policy is adopted, defining the agent’s behavior at a given time step. Formally,
the policy is a function that outputs the probability of selecting each possible action relative
to the Q-function. It can be represented as the following:

π(a|sk) =

{
(1− ε) + ε

|A(sk)|
, a = a∗

ε
|A(sk)|

, a ̸= a∗
, (14)

where |A(sk)| is the number of actions in the action set when the state is sk,
a∗ = argmaxaQ(s, a), ε ∈ (0, 1).

Specifically, using the ε-greedy policy to select control actions during the train oper-
ation process involves randomly choosing actions with a probability of ε, and adopting
the action with the highest estimated Q-value with a probability of 1−ε. This approach
enhances the algorithm’s global search capability.

3.2.2. Reward Function Design

The optimization goal of the reinforcement learning problem is reflected by the reward
function. For the train control process in question, to ensure safe operation, the operating
speed cannot exceed the upper limit. Therefore, the constraint in Equation (10) must be
satisfied. If the speed is higher than the upper limit Vmax or lower than the minimum
remission speed Vr

min, a negative reward Rc is given to the agent. If the air brake is engaged
by a heavy haul train at step k, a zero reward is given. Otherwise, a positive reward Rd is
given to encourage the release of the air brake. Therefore, the award is defined as follows:

rk+1 =


Rc, Vk+1 < Vr

min or Vk+1 > Vmax
0, ha

k = 1 and Vr
min ≤ Vk+1 ≤ Vmax

Rd, ha
k = 0 and Vr

min ≤ Vk+1 ≤ Vmax

. (15)

Algorithm 1 summarizes the control method for heavy haul trains based on the Q-
learning algorithm.

Algorithm 1: The Q-learning-based control strategy for cyclic air braking of the heavy haul train.

///Initialization///
1: Initialize Q function Q (s, a) randomly.
///Training process//
2: for episode = 1, . . . M do
3: Initialize the state s0 of the train.
4: for k = 0, 1, . . ., N − 1 do
5: Select action a according to ε-greedy policy π.
6: Perform action a; receive rewards r and the next state of the train s′

7: Update the Q-Table through the equation, that is,
Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a)−Q(s, a)]
8: Update the next state of train, s←s’
9: end for
10: end for
11: Output the well-trained Q-Table
///Online control process///
12: Initialize the state s0 of the train
13: for k = 0, 1, . . ., N − 1 do
14: According to a = argmaxaQ(s) select action.
15: Perform action a and obtain the next state s’
16: end for
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4. Algorithm Simulation and Analysis

This section describes the simulation experiments that were conducted using real
data from the Shuozhou–Huanghua Railway in China. First, the setup of the experimental
parameters and the data are introduced. Second, the experimental results are presented and
analyzed in three main parts: the model training process, effectiveness testing in practical
applications, and robustness testing of the algorithm.

4.1. Experimental Parameter Settings

To validate the effectiveness of the proposed intelligent control algorithm, simulation
experiments were conducted using “1 Locomotive + 100 Wagons” in combination with
the route data from the Shuohuang Railway in China. Our aim was to obtain a speed
tracking curve for a heavy haul train on long downhill sections. The train consisted of
HXD1 electric locomotives and C80 freight cars, with the specific train parameters shown
in Table 2. The total length of the train route was S = 20,000 m, and the slope of the route
mostly ranged from 10‰ to 12‰, which complied with the requirements of the Technical
Management Regulations for Chinese Railways for long downhill sections. Additionally,
the speed limit on this route was 80 km/h, and specific route data are provided in Table 3.
The hyperparameters for the Q-learning algorithm were set as shown in Table 4.

Table 2. Train parameters.

Locomotive Parameters Freight Car Parameters

Parameter Name Value Parameter Name Value

Model HXD1 Model C80
Mass 200 t Mass 100 t

Length 35.2 m Length 13.2 m

Table 3. Route information.

Distance (m) Gradient (-‰) Distance (m) Gradient (-‰)

0–1000 1.5 12,430–14,080 10.5
1000–1400 7.5 14,080–16,330 11.4
1400–6200 10.9 16,330–19,130 10.6
6200–6750 9 19,130–20,000 10.9

6750–12,430 11.3

Table 4. Algorithm hyperparameters.

Parameter Value Parameter Value

Maximum training
episode M 100,000 Minimum air-refilling

time TAI
50

Discount rate γ 0.95 Learning rate λ 0.001
Initial value of ε 0.98 Final value of ε 0.1

Positive reward Rd 5 Negative reward Rc −50
Minimum braking

speed Vr
min

30 km/h Maximum braking
speed Vr

max
80 km/h

4.2. Simulation Experiment Verification
4.2.1. Model Training Process

Using the parameter settings described above, the proposed Q-learning algorithm was
validated through simulation experiments. During this study, the learning rate λ of the Q-
learning algorithm was defined, and the sensitivity of this parameter was analyzed. Three
groups of experiments were set up, with λ values set to 0.0001, 0.001, and 0.01, separately.
The iterative Q-learning process in each group of experiments was observed. The initial
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speed V0 of the heavy haul train entering the long downhill section was set to 40 km/h.
Other hyperparameters were set according to Table 4. The more interactions between the
reinforcement learning agent and the environment, the richer the experience, and the more
accurate the strategies. During training, the agent and the environment interacted 1 million
times, including 100,000 episodes. For each episode, the total reward value corresponding
to the solution generated based on Q-values was recorded. The cumulative reward change
curve of the optimized algorithm is shown in Figure 3.
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Figure 3. The cumulative reward change curves of the algorithm for different learning rates: (a) the
learning rate λ of Q−learning algorithm is 0.0001; (b) the learning rate λ of Q−learning algorithm is
0.001; (c) the learning rate λ of Q−learning algorithm is 0.01.

The best training performance was achieved for the experiment depicted in Figure 3b.
Compared with the other two groups of experiments, when λ = 0.001, the cumulative
reward change curve of the Q-learning algorithm exhibited a faster and more stable con-
vergence rate, as well as a higher convergence value. Therefore, we recommend setting
the learning rate λ to 0.001 during training. Owing to the presence of the ε-greedy policy
in the Q-learning algorithm, the agent initially randomly explores during training, and
the action selection during decision-making is random. Consequently, the optimization
space for Q-values is large, resulting in relatively small reward values and optimization
effects. As exploration proceeds, the agent gradually learns the correct braking strategy,
and the cumulative reward value continuously increases. As training progresses, the con-
trol policy optimization of the Q-learning algorithm tends to stabilize and approach the
optimal state. The agent tends to adopt the optimal action with the maximum Q-value,
leading to a stable cumulative reward curve, which indicates convergence of the Q-learning
algorithm’s iterations.
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4.2.2. Effectiveness Testing of Practical Application

After training the Q-learning algorithm, the effectiveness of the control algorithm in
periodically braking the train was verified, considering different entry states of the train and
the state transition process. The Q-values corresponding to different entry states and state
transitions were read directly from the Q-table. The effectiveness of the control algorithm
for periodic braking of the train was validated. The speed tracking curves of the train under
different entry speeds are shown in Figure 4. When the entry speed is 30 km/h, the train
adopts a three-cycle braking optimization strategy through reinforcement learning training.
Similarly, when the entry speed is 40 km/h, the train also adopts a three-cycle braking
optimization strategy. However, when the entry speed is 50 km/h, due to the increase
in entry speed, the train adopts a four-cycle braking optimization strategy. Additionally,
according to the simulation results, when the train runs on a long downhill section, air
braking tends to be applied at the maximum speed limit during the cyclic braking process,
and the braking is released appropriately at the right time. Despite the train entering the
downhill section at the three different entry speeds mentioned above, the running speed
of the train increases. This is because, on long downhill sections, trains tend to initially
maintain a coasting state to save energy and ensure a higher running speed, and then apply
braking at the appropriate time.
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Figure 4 shows that after training, for the three entry speeds mentioned above, the
reinforcement learning agent can control train speed by applying air braking before reaching
the maximum speed limit. This ensures that the train remains within a safe operating speed
range until exiting the section. This indicates that the Q-learning algorithm can effectively
train agents to develop good control strategies, keeping the train speed within the speed
limits and maintaining a relatively high average speed. This validates the effectiveness of
the algorithm.

4.2.3. Performance Comparison Experiment

To verify the robustness of the Q-learning algorithm in controlling heavy haul trains
through cyclic braking on long downhill sections, the optimized results for different entry
speeds were compared. The key parameters of the Q-learning algorithm were set as
follows: the learning rate λ was 0.001; the maximum number of iterations M was 100,000;
the discount factor γ was 0.95; the exploration rate ε was 0.1; and the state transition time
interval ∆t was 50.
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Table 5 shows that under different conditions, the Q-learning algorithm with the same
hyperparameter settings—aiming to optimize air braking distance, running time, and
running efficiency—shows robustness in braking distance and braking efficiency when
heavy haul trains perform cyclic air braking on long downhill sections. Additionally,
the Safety Indicator K documented in Table 5 reveals a significant degree of stability
in braking performance for algorithms utilizing fixed hyperparameters, regardless of
the specific environmental conditions encountered. This dependability is paramount in
guaranteeing the safety of heavy-duty trains during downhill braking, effectively mitigating
the risks associated with speed loss or ineffective braking methods, thereby minimizing the
potential for accidents. Ultimately, the empirical data strongly corroborate the efficacy of
the proposed Q-learning algorithm in securing safe train operations.

Table 5. Comparison of simulation results.

V0/(km/h)

Target

Safety Indicator K Air Braking
Distance/m

Planned Running
Time/s

Actual Running
Time/s

Average
Speed/(km/h)

30 1 9843.6 1000 1074.6 67
40 1 10,181.3 1000 1014 71
50 1 10,547.4 1000 993.2 72

5. Conclusions

In this study, a cyclic air braking strategy for heavy haul trains on long downhill
sections based on the Q-learning algorithm is proposed. Aiming to minimize air brake
distance and maximize operating efficiency, various constraints on actual train operation
were simultaneously considered, including factors such as the air-filled time of the reservoir,
the operating speed, and the operation–action switch. Our main conclusions are as follows:

(1) For heavy haul trains running on long and steep downhill sections, a multi-objective
optimization model under multiple constraint conditions was constructed. A Q-
learning algorithm with a finite Q-Table was introduced. The train states were dis-
cretized, and HXD1 locomotives and C80 freight trains were compared as the study
objects for simulation verification. The proposed method enabled the train to adapt
to complex train operating environments and route conditions. By adjusting the
Q-learning algorithm hyperparameters, the convergence speed of the algorithm was
improved while ensuring safe train operation.

(2) To validate the performance of the proposed Q-learning algorithm, comparative ex-
periments were conducted under different parameter conditions. The experimental
results demonstrated that the proposed Q-learning algorithm exhibits a stable op-
timization performance and effectively generates train speed profiles that satisfy
constraints, providing a valuable reference for the intelligent assisted driving of heavy
haul trains on long downhill sections.

In future work, the impacts of other environmental factors on the cyclic air braking
method for heavy haul trains should be further explored—for example, considering dif-
ferent weather conditions, track conditions, or train load conditions, and how to optimize
control in these complex environments. Additionally, introducing neural networks or
combining other algorithms with Q-learning may further improve the performance of the
cyclic air braking method for heavy haul trains.
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