
Citation: Koutromanos, D.; Stefanatos,

D.; Paspalakis, E. Control of Qubit

Dynamics Using Reinforcement

Learning. Information 2024, 15, 272.

https://doi.org/10.3390/info15050272

Academic Editors: Wenbin Yu,

Yadang Chen and Chengjun Zhang

Received: 9 April 2024

Revised: 2 May 2024

Accepted: 8 May 2024

Published: 11 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Control of Qubit Dynamics Using Reinforcement Learning
Dimitris Koutromanos, Dionisis Stefanatos and Emmanuel Paspalakis *

Materials Science Department, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
koutromanosd@gmail.com (D.K.); dionisis@post.harvard.edu (D.S.)
* Correspondence: paspalak@upatras.gr; Tel.: +30-2610-996318

Abstract: The progress in machine learning during the last decade has had a considerable impact
on many areas of science and technology, including quantum technology. This work explores the
application of reinforcement learning (RL) methods to the quantum control problem of state transfer
in a single qubit. The goal is to create an RL agent that learns an optimal policy and thus discovers
optimal pulses to control the qubit. The most crucial step is to mathematically formulate the problem
of interest as a Markov decision process (MDP). This enables the use of RL algorithms to solve the
quantum control problem. Deep learning and the use of deep neural networks provide the freedom to
employ continuous action and state spaces, offering the expressivity and generalization of the process.
This flexibility helps to formulate the quantum state transfer problem as an MDP in several different
ways. All the developed methodologies are applied to the fundamental problem of population
inversion in a qubit. In most cases, the derived optimal pulses achieve fidelity equal to or higher
than 0.9999, as required by quantum computing applications. The present methods can be easily
extended to quantum systems with more energy levels and may be used for the efficient control of
collections of qubits and to counteract the effect of noise, which are important topics for quantum
sensing applications.

Keywords: quantum technologies; quantum control; reinforcement learning; machine learning;
qubit systems

1. Introduction

The recent developments in quantum technologies, like quantum computing, quantum
metrology, and quantum sensing, have advanced at a rapid pace. In this quantum race,
the precise control of the fundamental quantum systems that are the building blocks for
these important quantum technology applications is quite crucial. There are already a
multitude of methods used in quantum control problems: resonant methods [1], adiabatic
methods like rapid adiabatic passage [1,2] and stimulated Raman adiabatic passage [3],
variances in adiabatic techniques termed shortcuts to adiabaticity [4], and optimal control
methods [5,6] have been applied with great success for several years now.

Artificial intelligence (AI) is also a rapidly growing area, especially in the last decade
with the advances in deep learning combined with the increase in the computational power
of modern computer systems [7,8]. Reinforcement learning (RL) is the area of machine
learning (ML) that is trying to develop algorithms and agents that learn to solve problems
and make decisions based on training and interaction with the environment. This technique
has been applied in many areas from games like chess and GO [9] to robotic systems for real-
time decision processes and even to physics systems [10,11]. The present article is aligned
with the ongoing efforts to apply RL in controlling quantum systems. More specifically,
the goal of an RL agent is to drive a quantum system from some initial state to another
target state by optimally shaping the applied electromagnetic field. The metric that is
usually used for measuring the success of a state transition is the fidelity (F) of the final
state with respect to the target state. There are also other types of machine learning, such as
supervised learning, which have been used to solve quantum control problems, like qubit

Information 2024, 15, 272. https://doi.org/10.3390/info15050272 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15050272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-3945-4304
https://orcid.org/0000-0001-5206-2244
https://doi.org/10.3390/info15050272
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15050272?type=check_update&version=1

Information 2024, 15, 272 2 of 29

characterization [12] and qubit manipulation and readout [13]. This article only deals with
RL methods.

Reinforcement learning solves problems that are in the mathematical form of a Markov
decision process (MDP) [14]. For this reason, one should formulate the problem of quantum
state transfer as an MDP, which governs the agent-environment interplay of the problem.
In this context, the quantum mechanical system is actively involved in the defined environ-
ment. This work presents different formulations of the MDP in an attempt to explore many
possible ways to formalize the state transfer problem, building on previous works [15–24].

The fundamental building block of quantum systems and the smallest chunk of
quantum information is the two-level system or qubit [2]. For this reason, the proposed
methodology is used to control the dynamics of a single qubit, emphasizing the state
transfer problem of population inversion from one qubit state to the other. The environment
(MDP) and the agent are formulated in many different settings and combinations, and
the results are presented from the application of several RL algorithms. In most cases,
the agents are stressed to achieve fidelities higher than 0.9999, which is a rough estimate
of the accuracy threshold needed for fault-tolerant quantum computation. The current
work may serve as a stepping stone to apply the proposed methodology in more complex
quantum control problems, for example, the simultaneous control of a collection of qubits
with different frequencies and efficient qubit control in the presence of noise, which are
essential in quantum sensing. We plan to address these problems in future work.

The structure of this article is as follows: In Section 2, we present the theoretical
aspects of the qubit system and the mathematical aspects of the MDP and RL, as well as
the different formulations and settings of the MDP process and how they are related to
the two-level system. Section 3 provides an overview of the RL methods that are used
in this paper, while Section 4 describes the trigonometric series optimization algorithm
that uses RL methods to produce smooth control. Section 5 presents the results of the
various algorithms for qubit population inversion; finally, Section 6 provides some insights
and conclusions.

2. Two-Level System and Markov Decision Process (MDP)
2.1. Two-Level System

A two-level system or qubit is a quantum system that has two energy levels, as shown
in Figure 1. The lower-energy state |1⟩ is called the ground state, and the higher-energy
state |2⟩ is called the excited state. An arbitrary state of the qubit can be represented by a
2 × 2 density matrix

ρ =

[
ρ11 ρ12
ρ21 ρ22

]
, (1)

where the diagonal element ρii is the population of state |i⟩, i = 1, 2, and the off-diagonal
elements ρ∗21 = ρ12 express the coherence between the ground and excited states. Note that
for a closed system (without losses), as the one considered here, it is ρ22 = 1− ρ11; thus, its
general state can be represented by the triplet of real parameters ρ11, Re{ρ12}, Im{ρ12}.

The control of a qubit is usually achieved through the application of an external
electromagnetic field. The Hamiltonian expressing the interaction of a two-level system
with a chirped field of the form E(t) = ϵ(t) cos[ωt + ϕ(t)], where ϵ(t) is the envelope, ω
the angular frequency and ϕ(t) the time-dependent phase of the field, under the electric
dipole and rotating wave approximations, can be written as [2]

H(t) =
h̄
2

[
∆(t) Ω(t)
Ω(t) −∆(t)

]
= h̄

∆(t)
2

σz + h̄
Ω(t)

2
σx. (2)

Here, h̄ is the Planck’s constant, the control function Ω(t) = −d21ϵ(t)/h̄ is called the
Rabi frequency, with d21 being the electric dipole matrix element between the energy levels,
and ∆(t) = ω − ω0 + ϕ̇(t) is the detuning from the qubit frequency ω0 = (E2 − E1)/h̄.
In the presence of chirp (ϕ̇ ̸= 0), the detuning is also time-dependent and serves as an

Information 2024, 15, 272 3 of 29

extra control function in addition to the Rabi frequency. This Hamiltonian is expressed in
compact form using Pauli matrices σx, σz.

|2⟩

|1⟩

Ω(t)

∆(t)

Figure 1. Two-level system. Ω is the Rabi frequency, proportional to the envelope of the applied
electromagnetic field, and ∆ is the detuning between the qubit frequency and the frequency of the
applied field.

The qubit dynamics under Hamiltonian (2) is governed by the density matrix equation

ih̄
dρ

dt
= [H, ρ], (3)

where [·, ·] is a bilinear map H×H → H, called a Lie bracket or the commutator. It
maps two operators (H → H) in the Hilbert space H that governs the quantum system
to another one in the same Hilbert space. The qubit is initially (t = 0) in its ground state
|1⟩; thus, ρ11(0) = 1 and ρ22(0) = ρ12(0) = 0. A well-known solution to the problem of
population inversion, i.e., the transfer of a population to the excited state |2⟩, is the resonant
π pulse. This is a pulse without chirp applied on resonance ∆ = 0 (ω = ω0) with the
qubit frequency, with constant amplitude Ω(t) = 1 and duration T = π units of time.
Here, RL methods are used to reproduce this optimal solution and retrieve other solutions
considering time-dependent detuning.

2.2. Markov Decision Process (MDP)

The MDP is a framework for the problem of learning from interaction with the en-
vironment to achieve a goal. The entity that is learning from this interplay and makes
the decisions is called an agent. The entity that the agent interacts with is called the
environment. MDP is a tuple (S ,A, p, γ), where

• S is the state space;
• A is the action space;
• p : S ×R×S ×A is a map that gives the probability that a state s′ ∈ S , and a reward

r ∈ R happens based on previous state s ∈ S and the action a ∈ A;
• γ is the discount factor.

The agent interacts at discrete time steps t ∈ N. At each step, the agent receives a
representation of the environment, which is called the state, denoted by St ∈ S . Based
on the state, the agent selects an action At ∈ A. In the next step, the response of the
environment to the agent’s action is a numerical reward, Rt+1 ∈ R ⊂ R. In the new
step, the environment is in a new state St+1. The whole process is illustrated in Figure 2.
Following this procedure, a sequence of states, actions, and rewards are generated, forming
a trajectory:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . .

Information 2024, 15, 272 4 of 29

Agent

Environment

action
At

St+1

Rt+1

state St
reward
Rt

Figure 2. MDP and agent–environment interplay.

The probability function p determines the dynamics of the MDP. Since p defines a
probability distribution for each choice of s and a, it is

∑
s′∈S

∑
a∈A

p(s′, r|s, a) = 1, ∀s ∈ S , a ∈ A. (4)

This probability distribution completely characterizes the dynamics of the environ-
ment. The probability of each state St and reward Rt depends only on the immediately
preceding state St−1 and action At−1. This is a restriction on the state of the environment.
The state must have information about the past agent–environment interaction. If this is
true, then the state has the Markov property.

2.3. Qubit System and State Transfer as an MDP

The state and action spaces of the qubit system have to be defined in the context of an
MDP. The environment does not always coincide with the quantum system. It depends on
the formulation of the MDP. In general, the environment and the quantum system are two
different entities. State and action spaces can both be defined as discrete or continuous.

2.3.1. Finite State Space

Following Ref. [15], a discrete state space S can be defined as the tuple (T ×O), where
T is the set of the time steps in an episode or trajectory, and O is the discrete space of the
available Rabi frequencies. Only step size pulses are allowed, with Ω ∈ O taking values
in the interval [−1, 1]. Obviously, the considered pulses are resonant and without chirp.
The MDP state at time step t is given by the tuple:

st = (t, Ωt), (5)

where t ∈ T and Ωt ∈ O.

2.3.2. Continuous State Space

A more intuitive choice would be to use the state of the quantum system to construct
the state of the MDP. The quantum state also has the Markov property, since the current state
and the next actions do not depend on the history of the process. The quantum state space is
an infinite dimensional space, thus continuous MDP state space is more relevant in this case.
This formulation offers more freedom in the choice of actions, which may potentially lead
to new insights about the dynamics and control of the system. By incorporating the qubit
state, the MDP state space can be defined as a subset of R4 or R5, with the corresponding
MDP state represented by a 4-tuple or a 5-tuple, depending on whether system is resonant
∆ = 0 or time-dependent ∆(t),

sres
t = (Ωt, ρ11, Re{ρ12}, Im{ρ12}), (6)

or
s∆

t = (Ωt, ∆t, ρ11, Re{ρ12}, Im{ρ12}), (7)

Information 2024, 15, 272 5 of 29

respectively. Note that for a certain case below, a hybrid MDP state space of the form (6) is
used, with discrete Rabi frequency and continuous density matrix elements.

2.3.3. Action Space

The action space A can be discrete or continuous. In the resonant setup where the
only control is the Rabi frequency, each action corresponds to the correction of the value of
the Rabi frequency from the previous time step. If Ωt is the Rabi frequency at time t, and
the action taken at next time step is at = δΩt, then, at time t + 1:

Ωt+1 = Ωt + δΩt. (8)

In the setup where detuning is used as an additional control, the action is defined as
a tuple of two corrections at = (δΩt, δ∆t). In this case, the action corrects both the Rabi
frequency and the detuning; thus, aside from the change described in Equation (8), there is
a corresponding one for the detuning:

∆t+1 = ∆t + δ∆t. (9)

2.3.4. Reward Function

The metric that shows the success of a quantum state transfer process is the fidelity
of the evolved density matrix ρ(t) with respect to the target density matrix ρtar, which is
defined as the trace of the matrix product

F = Tr[ρtarρ(t)]. (10)

Note that ρ(t) is obtained from the evolution of Equation (3), when starting from
the initial condition ρ(0). For the population inversion problem the fidelity is simply the
population of the excited state,

F = ρ22(t). (11)

The MDP reward function, which is responsible for the way the RL agent assimilates
the quantum dynamics, depends on the quantum state fidelity. The goal is to derive an
optimal policy that exceeds a prescribed threshold fidelity Fth within the least possible time.
For this reason, each time step is additionally penalized by giving a negative reward set to
−1, but, when the desired fidelity threshold is surpassed, the agent receives a constant big
positive reward. The MDP is defined as an episodic process, and each episode corresponds
to a pulse sequence that drives the system from the initial state to another, very close to the
desired one in the best-case scenario. An episode ends when the maximum allowed time
has passed or the desired fidelity has been achieved. Combining all the above, the reward
function is defined as follows:

Rt =

{√
F (t) + cu(F (t)), if the episode terminates√
F (t)− 1, in all intermediate steps

, (12)

where c > 0 is a constant reward given to the agent if the threshold fidelity is exceeded
during the episode, and u is the unit step function defined as

u(F) =
{

1, i fF ≥ Fth

0, else
. (13)

Note that in the reward function
√
F , instead of F , is used, because it gives higher

rewards since 0 ≤ F ≤ 1, leading to faster convergence to the optimal policies during
training. Note that in Equation (13), the actual fidelity is used for comparison with the
target threshold.

Information 2024, 15, 272 6 of 29

3. Reinforcement Learning (RL) Methods
3.1. Temporal Difference (TD) Methods

Temporal difference learning [14] is a set of algorithms from reinforcement learning
that combine ideas from Monte Carlo learning and dynamic programming. TD methods
learn directly from experience without any model of the environment. They also update
estimates based on other learned estimates but without waiting for the final outcome
(bootstrapping). TD methods do not need to wait until the end of the episode to determine
the change in the value function V(St), such as in Monte Carlo (MC) methods. At the next
time step t + 1, TD makes the update using the observed reward of new step Rt+1 and the
estimate for the next time step value state V(St+1). A simple update that can be used is the
following rule:

V(St) = V(St) + a
[

Gt −V(St)
]
= V(St) + a

[
Rt + γV(St+1)−V(St)

]
, (14)

where a ∈ (0, 1] is the learning rate, γ is the discount in the next state value, and Gt the
actual return following time t . Most TD algorithms employ similar update rules but, in
most cases, use the action-value function instead of the state-value function.

3.1.1. Q-Learning

Q-learning [25] is one of the most applicable algorithms from the TD family. The basic
concept is that after the agent tries an action in a state, it receives the immediate reward and
moves to a new state. It evaluates and compares the immediate result with the estimate
of the value of the previous state. Exploring all actions in all possible states repeatedly,
it finally learns the optimal policy based on the long-term discounted return. The main
steps of Q-learning are summarized in Algorithm 1. It is considered an off-policy method
since it tries to improve a policy that is different from the one that was used to generate the
data. It is important to note that an exploration of action selection is required to examine
all state–action pairs and determine the optimal ones. This is achieved by introducing
an ϵ-greedy policy during the sampling during the algorithm training, where ϵ is a real
number between 0 and 1, usually close to 0. The value ϵ = 1 means that the policy is
random and always chooses actions randomly, no matter in what MDP state it is, while
ϵ < 1. This means that the policy chooses the most valued action most of the time (with
probability 1− ϵ ≈ 1), but, in some cases, it chooses a random action (with probability
ϵ≪ 1) in an attempt to explore all the state–action pairs sufficiently.

Algorithm 1 Q-learning

Parameters: learning rate l ∈ (0, 1] and ϵ > 0
Initialize arbitrarily state-action value function Q(S, a) ∀S ∈ S , a ∈ A

For each episode:
Initialize state s in S
For each time step of episode:

Choose action A ∈ A with policy using Q-value function (i.e., ϵ-greedy)
Take action A, observe R, S′

Q(S, A)← Q(S, A) + l[R + γ maxa(Q(S′, a))−Q(S, a)]
S← S′

until S terminal

3.1.2. Expected State–Action–Reward–State–Action (SARSA)

Another algorithm that can be considered as a variation of Q-learning is the expected
SARSA algorithm [14]. In this case, instead of the maximum over the next state-action
value, the update rule uses the expected value of the next state-action pair, taking into
account how likely each action is to be selected under the current policy:

Information 2024, 15, 272 7 of 29

Q(St, at)← Q(St, at) + a
[

Rt+1 + γEπ

[
Q(St+1, At+1)|St+1

]
−Q(St, At)

]
← Q(St, at) + a

[
Rt+1 + γ ∑

a
π(a|St+1)Q(St+1, a)−Q(St, At)

]
. (15)

Expected SARSA appears to eliminate the variance in the SARSA algorithm due to the
random selection of action At+1. It is expected to perform better than the latter given the
same amount of learning experience.

3.1.3. Deep Q-Network

The Deep Q-Network [26] is one of the first deep reinforcement learning algorithms.
It combines reinforcement learning with deep neural networks by using a complete fully
connected artificial neural network (ANN) to approximate the action-value function Q.
Nonlinear approximators such as neural networks with non-inear activation functions
experience instabilities in the model. DQN algorithm addresses this problem with two
key ideas:

1. Experience replay: randomizes the data and removes correlations between sequential
states;

2. Periodically Q action-value function update: reduces the correlations with the target.

The experience replay mechanism stores agent experiences e = (s, a, r, s′) in a dataset
D = {e1, . . . , et} where et is the experience tuple at time step t. The Q-learning updates
are done on random samples from these experiences. The loss function for the Q-learning
update is defined by:

Li(θi) = Ee=(s,a,r,s′)

[(
r + γ max

a′
Q(s′, a′, θ−i)−Q(s, a, θi)

)2]
, (16)

where γ is the discount factor, θ−i are the parameters of the Q-network that are used to get
the target at iteration i, and θi are the parameters of the Q-network at iteration i. Parameters
θ−i are updated periodically with the values of parameters θi and are fixed in between. This
practically means that the parameters θi are updated at each step of the training, but they
are not directly used in the estimated value inside the max operation. Only after some
iterations, these parameters are used to update the periodically steady parameters θ−i of
the target network. This process is achieved by preserving two instances of the same neural
network: one with parameters θi and another one with parameters θ−i . The first network
is constantly updated, and the second one is updated periodically using the parameter
values of the first. In this way, the correlations between subsequent experiences are reduced.
More details on this procedure are given in Algorithm 2. Concerning the architecture of
the network, the input neuron layer incorporates the state and the action of the current
time step, while the output neuron values correspond to the action values of each possible
next action. It is trivial to think that this algorithm works without any further modification
with discrete state and action spaces. In Figure 3a, the DQN architecture for the discrete
MDP state space is presented, defined in Equation (5); in Figure 3b, the DQN architecture
for a hybrid MDP state space of the form (6) is presented, with discrete Rabi frequency
and continuous density matrix elements. These figures make obvious the advantage of the
DQN architecture; that is, for each state–action pair, the action value of every possible next
action is estimated at once.

Information 2024, 15, 272 8 of 29

Algorithm 2 Deep Q-Network with experience replay

Initialize replay buffer/memory D
Initialize ANN with random weights θ
Initialize target ANN with random weights θ− and update rate C
for each episode: do

Initialize state s in S
for each time step of episode: do

Choose action a ∈ A based on the ϵ-greedy policy in the parametrized action
value Q(s, ·, θ)

Take action a, observe r, s′

Store experience in memory D
Select a random mini-batch experience from memory D
Obtain the return based on next maximum valued action:

y =

{
r if s′ is terminal state
r + maxa′ Q(s′, a′, θ−) else

Perform gradient descent on the loss function Li(θi) (16)
Update parameters so that θ− = θ every C steps

end for
end for

input state (s)
layer

hidden layers
θt

output
layer

t

Ωt

Qθt(s, a1)

Qθt(s, a2)

(a)

input state (s)
layer

hidden layers
θt

output
layer

Ωt

ρt
11

Re
{

ρt
12
}

Im
{

ρt
12
}

Qθt(s, a1)

Qθt(s, a2)

(b)
Figure 3. DQN architectures of neural networks. (a) DQN architecture 1. (b) DQN architecture 2.
The first architecture has a discrete state space with s = (t, Ωt), and the second has a hybrid state
space of the form s = (Ωt, ρ11, Re{ρ12}, Im{ρ12}), with discrete Rabi frequency and continuous
density matrix elements. In both architectures, the output layer produces the values of all available
actions that correspond to the input state. The greedy policy should select the action with the higher
value, breaking ties randomly.

3.2. Policy Gradient Methods

The previously explored methods are called value-based methods since they learn
the value functions and extract the policy from them. There is another kind of method,
the policy gradient methods, which do not depend on the action values at all, but they use
a an improved parameterized policy to select the best actions [14].

Information 2024, 15, 272 9 of 29

3.2.1. Policy Approximation

Policy π(a|s, θ) is parameterized by a set of parameters θ and should be differentiable
with respect to them. It represents the probability of selecting action a ∈ A when being in
state s ∈ S ,

π(a|s, θ) = Pr{At = a|St = s, θt = θ}. (17)

The methods learn the optimal policy parameters by using approximate gradient
ascent in a performance measure J(θ)

θt+1 = θt + α∇J(θt), (18)

where α is the learning rate, θt are the previous step parameters, and θt+1 are the current
time step parameters. There is a challenge in calculating the gradient of the objective
function since it depends not only on the action selection but also on the distribution of
states. There is a theoretical result that overcomes this challenge, called the policy gradient
theorem, which states that the gradient of the objective function does not depend on the
distribution of states [14]:

∇J(θ) ∼∑
s

µ(s)∑
a

qπ(s, a)∇π(a|s, θ), (19)

where θ are the policy parameters, π the policy, and µ the distribution of the importance of
states under policy π (µ(s) > 0, ∑s µ(s) = 1).

3.2.2. Discrete Action Space Parameterization

If the state space is not too large, the policy is commonly parameterized according to
an exponential softmax distribution

π(a|s, θ) :=
eh(s,a,θ)

∑b eh(s,b,θ)
, (20)

where h(s, a, θ) is the parameterized numerical preferences for each action–state pair, and
b represents an action index. Policy is in fact a probability distribution, since the sum
of the action probabilities on each state sum up to one. This parameterization is called
softmax in action preferences. The action preferences can be parameterized arbitrarily. They
can be computed by an artificial neural network, where θ is the weight of the ANN. One
advantage of this parameterization is that the approximate policy can potentially approach
a deterministic policy, in contrast to ϵ-greedy action selection, where there is always a
possibility of selecting a random action.

3.2.3. Continuous Action Space Parameterization

Policy gradient methods are applicable not only on discrete action spaces: with the
appropriate parameterization, they can also handle very large or even continuous action
spaces [14]. In this case, models learn the statistics of the probability distribution, and
actions are sampled from this distribution. One common choice is sampling actions from a
normal Gaussian distribution. The probability density function is given by

d(a) :=
1

σ
√

2π
e−

(a−µ)2

2σ2 , (21)

where µ is the mean, and σ is the standard deviation of the normal distribution. The prob-
ability of selecting an action from a subset of the complete action space is given by the
following integral:

Information 2024, 15, 272 10 of 29

Pr{a ∈ X} :=
∫
X

d(a)dµa, (22)

where X is the action subset, and dµa is the probability measure in the action distribution
space. The integral can be thought of as the more general Lebesgue integral since a can be
arbitrary and not only on R. Using this probability distribution, a policy can be thought
of as a probability density function where the mean and the standard deviation can be
approximated by state-dependent parameterized functions µ(s, θ) and σ(s, θ) that can be
represented by artificial neural networks

π(a|s, θ) :=
1

σ(s, θ)
√

2π
e
− (a−µ(s,θ))2

2σ(s,θ)2 . (23)

3.2.4. REINFORCE Algorithm

REINFORCE [27] is a policy gradient algorithm based on the policy gradient theorem,
which uses the total return Gt of an episode to proceed to the parameter updates; thus, it
can be regarded as a Monte Carlo method. This is why it is also called the Monte Carlo
policy gradient algorithm. The following pseudocode (Algorithm 3) describes the process
of the algorithm. Figure 4a displays the REINFORCE neural network architecture for the
discrete MDP state space defined in Equation (5), while Figure 4b depicts the corresponding
architecture for the continuous MDP state space defined in Equation (6). Observe that in
the first case, the output is the discrete probability distribution of the action selection, while
the second is the parameters defining a continuous probability distribution, for example,
the mean and standard deviation for a parameterized normal probability distribution, as in
Equation (23).

Algorithm 3 REINFORCE algorithm

Initialize parameters θ of the policy π(a|s, θ) and learning parameter α
for each episode: do

Generate a full episode S0, A0, R1, . . . , ST−1, AT−1, RT
for each time step of episode t = 0, 1, . . . , T − 1 do

Gt ←
T

∑
k=t+1

γk−t−1Rk

θt ← θt + αγtGt
∇π(At|St, θt)

π(At|St, θt)

← θt + αγtGt∇ ln π(At|St, θt)

end for
end for

There is an intuition behind the update rule of the algorithm. Each increment is
proportional to the product of the return Gt and a vector, the gradient of the probability
of taking the action divided by the probability of taking that action. The vector shows the
direction in the parameter space that increases the probability of repeating the action At
at state St. The update term increases proportionally to the actual return Gt and inversely
proportionally to the action probability. This is the intuitive approach since the parameters
move in the direction in which actions give higher returns, and it does not give an advantage
to actions that are frequently selected.

Information 2024, 15, 272 11 of 29

input state
layer

hidden layers
θt

prob. distr.
layer

t

Ωt

Pr(a1|s, θt)

Pr(a2|s, θt)

(a)

input state
layer

hidden layers
θt

prob. distr.
layerΩt

ρ11

Re{ρ12}

Re{ρ21}

µ(s, θt)

σ(s, θt)

(b)
Figure 4. REINFORCE architecture of neural networks. (a) REINFORCE—Policy NN architecture 1.
(b) REINFORCE—Policy NN architecture 2. The first architecture has a discrete state space with
s = (t, Ωt), and the second has a continuous state space with s = (Ωt, ρ11, Re{ρ12}, Im{ρ12}), where,
here, the Rabi frequency is also continuous. In the first case, the output is the discrete probability
distribution of the actions selection, while in the second, the output is the parameters of a continuous
probability distribution, for example, the mean and standard deviation of a parameterized normal
probability distribution as in Equation (23).

3.3. Actor-Critic Methods

The reinforcement learning methods analyzed so far fall into two main categories [28,29]:
the value-based (critic-only) methods, which approximate value functions and derive
policies from them; and the policy-based (actor-only) methods, which use parameterized
policies and try to learn optimal policies. There is also a third class of methods, which are
called actor-critic methods. They try to combine the strengths of both previous approaches.
The critic approximates the value function, which is used by the actor to update the
parameters of the parameterized policy. Actor-critic methods are based on the important
observation that since the number of actor parameters is less than the number of states,
the critic does not need to approximate the exact value function. A parameterized actor
computes continuous actions without the need for the optimization of a value function,
while a critic offers to the actor knowledge about the performance with low variance,
a combination that speeds up learning. Both actor and critic have access to the state of the
system. This process is illustrated in Figure 5.

System

Actor

Critic

Reward

State

Action

Values

Figure 5. Actor-critic architecture.

Information 2024, 15, 272 12 of 29

Proximal policy optimization (PPO) algorithms [30] are a family of policy gradient
methods that optimize a surrogate objective function by stochastic gradient ascent. PPO
updates multiple epochs of mini-batch updates, optimizing a surrogate objective func-
tion by stochastic gradient ascent. This algorithm is inspired by the trust region policy
optimization (TRPO) algorithm [31]. TRPO maximizes a surrogate loss given by

LCPI(θ) = Et

[
rt(θ)At

]
, (24)

where
rt(θ) =

πθ(at|st)

πθold(at|st)
At, (25)

is the probability ratio, st the state, and at the action at time step t. CPI stands for conserva-
tive policy iteration. Without any constraint, the loss function leads to large policy updates,
so the idea here is to modify the loss function so that the policy updates do not move rt(θ)
away from 1 (r(θold) = 1).

The PPO algorithm has the same benefits as TRPO, but it is simpler to implement
and has better sample complexity. Some of the surrogate losses considered for the PPO
algorithms are the CLIP loss and the KLPEN loss. CLIP loss includes a penalty term in the
parameter updates that clips the loss as follows:

LCLIP(θ) = Et

[
min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)

]
, (26)

where At is called the advantage function At(s, a) = Qπ(s, a) − Vπ(s), ∀s ∈ S , a ∈ A.
KLPEN loss is defined by adding a penalty on KL divergence

LKLPEN(θ) = Et

[πθ(at|st)

πθold(at |st)
At − βKL[πθold(·, st), πθ(·|st)]

]
. (27)

KL divergence is a type of statistical distance, a measure of how one probability
distribution is different from a second reference probability distribution. These losses
can be computed and differentiated. Practical implementations utilize multiple steps of
gradient ascent to optimize the parameters based on the loss function. There is also an
option to share parameters across the two used neural networks, one for the critic and
the other for the value function. In this case, the loss function should combine the policy
surrogate loss and the value function error loss or even add an additional entropy term
that ensures sufficient exploration

LCLIP+CF+S
t (θ) = Et

[
LCLIP

t (θ)− c1LVF
t (θ) + c2S[πθ](st)

]
, (28)

where c1, c2 are some coefficients, S is the entropy term and LVF
t is the squared error loss

(Vθ(st)−Vtarg
t)2.

4. Trigonometric Series Optimization Algorithm (TSOA)

The control functions, which always include the Rabi frequency Ω(t) and additionally
the time-dependent detuning ∆(t) in the case of chirped pulses, can be represented by
finite trigonometric series. The idea for this representation was already used in Ref. [32] to
solve quantum control problems with optimal control and in Ref. [33] to implement fast
adiabatic qubit gates. This formulation produces smooth controls for Ω and ∆, which are
easier to be implemented experimentally. We thus consider the truncated series

Ω(t) = a0 +
p

∑
k=1

(a2k−1 cos kt + a2k sin kt), (29)

∆(t) = b0 +
p

∑
k=1

(b2k−1 cos kt + b2k sin kt), (30)

Information 2024, 15, 272 13 of 29

where p is the number of harmonics used in the truncated expansions. The parameter
vector v = [a0, a1, . . . , a2k, b0, b1, . . . , b2k] to be determined is normalized to unity,

∥v∥ = 1. (31)

The continuity of the action space in this formulation requires a policy gradient or an
actor-critic method so that the MDP can be solved. The actor neural network architecture is
displayed in Figure 6. Observe here that the input is the quantum state, expressed by the
real numbers ρ11, Re{ρ12}, Im{ρ12}, while the output is the optimal values of the parameter
vector components. The MDP in this situation is defined by only one time step; the model
maps the MDP state that coincides with the quantum state to the action that is the set of the
parameters of the trigonometric series. This is a completely different formulation of the
problem as an MDP. This model approximates the optimization process to find the optimal
parameters to represent the optimal controls via the trigonometric series. The time in which
the quantum system evolves is fixed, so this is a fixed time optimization process.

input state
layer

hidden layers

trig. param.
layer

ρ11

Re{ρ12}

Im{ρ12}

a0

...

b2k

Figure 6. Parameterized policy actor NN. Input layer consists of the state of the quantum system (the
necessary density matrix components), and output layer consists of the parameters of the truncated
trigonometric series for the controls Ω(t) and ∆(t).

5. Results and Discussion

In the following sections, the results obtained from the trained RL agents are presented,
along with the parameters used for each model. At first, tabular methods using discrete
action and state space MDP setup were used. Then, the same setup was used in deep RL
methods, such as DQN. In the DQN algorithm, which is a value-based method, the actions
should remain discrete, but the state space can be extended to be continuous, utilizing the
formulation with density matrix elements. Next, policy gradient methods were employed
initially using the same MDP setups, but MDP setups where both the action and state
spaces are continuous were considered too. Actor-critic methods were only tested with the
continuous MDP formulation since this is the area where they really excel.

In all simulations of quantum system evolution, h̄ = 1. The Rabi frequency and the
detuning were normalized with respect to parameter Ωmax, so the time unit was t0 = Ω−1

max.
This unit convention is used in all figures throughout this paper.

All the algorithms were developed using the open-source machine learning platform
TensorFlow [34]. This also includes a specific library for reinforcement learning, named
TF-Agents, which accelerates the algorithm implementation and execution. The quantum
system evolution was simulated by QuTiP [35], which is open-source software for simulat-
ing the dynamics of quantum systems. The versions of the software are shown in Table 1.
The simulations were performed with a computer utilizing the CPU, with specifications
shown in Table 2.

Information 2024, 15, 272 14 of 29

Table 1. Software versions.

Software Version

TensorFlow 2.15.1

tf-agents 0.19.0

QuTiP 4.7.3

Python 3.11.8

Table 2. Computer hardware specifications.

Component Model

CPU AMD Ryzen 5 5600X 6-Core Processor

Memory RAM 32 GB

5.1. Temporal Difference Methods
5.1.1. Tabular Methods (Q-Learning and Expected SARSA)

The Q-learning algorithm with the discrete action and state space MDP setup (5) was
used first. The threshold fidelity was set at Fth = 0.99, and a discrete action space with
seven actions was used. The parameters of the algorithm are shown in the Table 3, while
the results are displayed in Figures 7 and 8, at an early training stage of 2000 episodes
and the final training stage of 20,000 episodes, respectively. Observe that in the early
stage, the algorithm did not succeed in obtaining an optimal policy yet, since the fidelity
failed to attain the 0.99 threshold, as shown in Figure 7b, and Ω(t) substantially deviates
from the optimal π-pulse, as shown in Figure 7a. On the other hand, at the later stage
of 20,000 episodes of training, the agent produced an optimal policy that achieved the
threshold fidelity, Figure 8b, while Ω(t) attained the shape of the optimal π-pulse, Figure 8a.
Note that since the threshold fidelity was only 0.99, it was obtained earlier than π units
of time. Also, observe that the expected return (cumulative rewards) from the training
episodes improved with the number of episodes by comparing Figures 7c and 8c. These
figures contain all cumulative returns for all training episodes and show how the episode
rewards change as training accumulates.

Table 3. Tabular methods parameters—7 actions.

Parameters F = 0.99

Maximum time t 5

Maximum time steps 15

Discount factor γ 0.99

Minimum ϵ 0.05

Detuning ∆ 0

Rabi frequency Ω −1 ≤ Ω ≤ 1

Actions δΩ {−2, −1, − 1
2 , 0, 1

2 , 1, 2}

Target fidelity 0.99

Training time ≈30 mins

Information 2024, 15, 272 15 of 29

Figure 7. Results for Q-learning with 7 actions at the early training stage after 2000 training episodes:
(a) optimal normalized Rabi frequency Ω(t) as the external control of the system, (b) fidelity (popula-
tion of excited state |2⟩) as a metric the performance of the population transfer, (c) expected return
(cumulative rewards) results during the training episodes, (d) populations of states |1⟩ and |2⟩. Pulse
shape does not succeed in transferring the state due to lack of sufficient learning.

Figure 8. Results for Q-learning with 7 actions at the final training stage after 20,000 training
episodes: (a) optimal normalized Rabi frequency Ω(t) as the external control of the system, (b) fidelity
(population of excited state |2⟩) as a metric the performance of the population transfer, (c) expected
return (cumulative rewards) from the training episodes, (d) populations of states |1⟩ and |2⟩. Solution
successfully inverts the population between the two states.

The expected SARSA algorithm outperforms the Q-learning algorithm for the early
stage of training, since now the agent is able to attain the target fidelity, as shown in Figure 9.

Information 2024, 15, 272 16 of 29

The parameters of the algorithm are the same as those of the Q-learning algorithm. Note
that for the early-stage training, the threshold fidelity is obtained for a longer duration
than π units of time, as shown in Figure 9b, while Ω(t) deviates from the constant π-pulse,
see Figure 9a. For the later stage of training the results of expected SARSA, displayed in
Figure 10, are similar to those obtained with Q-learning and shown in Figure 8.

Figure 9. Results for expected SARSA with 7 actions at the early training stage after 1000 training
episodes: (a) optimal normalized Rabi frequency Ω(t) as control of the system, (b) fidelity (population
of excited state |2⟩) as a metric the performance of the population transfer, (c) expected return
(cumulative rewards) from the training episodes averaged from 10 episode samples, (d) populations
of states |1⟩ and |2⟩. Suboptimal solution even at the early stage of training process.

Figure 10. Results for expected SARSA with 7 actions at the final training stage after 10,000 training
episodes: (a) optimal normalized Rabi frequency Ω(t), (b) fidelity (population of excited state |2⟩) as
a metric the performance of the population transfer, (c) expected return (cumulative rewards) from
the training episodes averaged from 10 episode samples, (d) populations of states |1⟩ and |2⟩. Agent
can provide the optimal solution (π-pulse).

Information 2024, 15, 272 17 of 29

5.1.2. DQN Algorithm

The applicability of tabular methods is limited since they require many training
episodes to obtain optimal pulses that achieve high fidelity, for example, 0.9999. To ef-
ficiently obtain these fidelity levels, we used deep RL methods. The DQN algorithm
approximates the value function and generates the optimal policy from it based on a greedy
algorithm. The threshold fidelity set was at the higher value Fth = 0.9999, and a discrete
action space with nine actions was used. The first try was with a discrete state space
implementation (5), see also DQN-architecture 1 in Figure 3a, with parameters given in
Table 4. The corresponding results are displayed in Figure 11. From Figure 11b, one can
see that the threshold fidelity was obtained for a duration close to the optimal π units of
time, while Ω(t) in Figure 11a approximates the optimal π-pulse. A hybrid state space
implementation of the form (6) was also used, with discrete Rabi frequency and continuous
density matrix elements, see DQN-architecture 2 in Figure 3b, but with half the amount
of training and parameters given in Table 5. The corresponding results are displayed in
Figure 12. One can observe from Figure 12a,b that the results are similar to those of the
discrete state space case, but there was less variance during training, as can be inferred
from the comparison of Figures 11c and 12c. Regarding the deep RL methods, subfigure (c)
in all deep RL figures shows how the average reward (over 10 episodes) evolves during
the training process. The average reward here was taken as the average of the cumulative
reward of all time steps of an episode in a 10-episode sample. This way, it is easy to see how
the current policy behaves and how its results approach the optimal policy as the training
process continues. In most of the cases, one can observe that the reward is maximized
based on our reward system, and this is a point at which the optimal policy succeeds.

Table 4. DQN parameters—Discrete state space.

Parameters F = 0.9999

Max time steps (N) 35

Ωmax 1

End time (T) 5
Ωmax

Time step T
N

discount factor γ 0.99

ϵ 0.1

Detuning ∆ 0

Rabi frequency Ω {−1,− 3
4 ,− 1

2 ,− 1
4 , 0, 1

4 , 1
2 , 3

4 , 1}

Actions δΩ {−2,−1,− 1
2 ,− 1

4 , 0, 1
4 , 1

2 , 1, 2}

Target fidelity 0.9999

Training Iterations 4000

Hidden layers (2) (100, 75)

Learning rate 0.001

Optimizer Adam

Training time ≈45 mins

Information 2024, 15, 272 18 of 29

Figure 11. Results for DQN algorithm with 9 actions and discrete state space after 4000 training itera-
tions: (a) optimal normalized Rabi frequency Ω(t) as control of the system, (b) fidelity (population of
excited state |2⟩) as a metric of the population transfer, (c) expected return (cumulative rewards) from
the training episodes averaged from 10 episode samples, (d) populations of states |1⟩ and |2⟩. Agent
attains the optimal pulse shape for this problem (π-pulse).

Table 5. DQN parameters—hybrid state space.

Parameters F = 0.9999

Max time steps (N) 35

Ωmax 1

End time (T) 5
Ωmax

Time step T
N

discount factor γ 0.99

ϵ 0.1

Detuning ∆ 0

Rabi frequency Ω {−1,− 3
4 ,− 1

2 ,− 1
4 , 0, 1

4 , 1
2 , 3

4 , 1}

Actions δΩ {−2,−1,− 1
2 ,− 1

4 , 0, 1
4 , 1

2 , 1, 2}

Target fidelity 0.9999

Training Iterations 2000

Hidden layers (2) (100, 75)

Learning rate 0.001

Optimizer Adam

Training time ≈45 mins

Information 2024, 15, 272 19 of 29

Figure 12. Results for DQN algorithm with 9 actions and hybrid state space of the form (6) with
discrete Rabi frequency and continuous density matrix elements after 2000 training iterations: (a) opti-
mal normalized Rabi frequency Ω(t), (b) fidelity (population of excited state |2⟩), (c) expected return
(cumulative rewards) from the training episodes averaged from 10 episode samples, (d) populations
of states |1⟩ and |2⟩. In the hybrid setup, agent succeeds in obtaining optimal solution with faster
convergence than in the discrete case.

5.2. Policy Gradient Methods

Policy gradient methods use a different approach than the value-based methods. They
parameterize the policy and are trained with simulations to adjust the policy parame-
ters and converge to a local or the global minimum, which produces the optimal policy.
In the present work, the models that were used to parameterize the policy were deep
neural networks.

REINFORCE with the baseline algorithm uses a critic neural network, representing
the parameterized policy, which follows the performance gradient and is step-by-step
improved approaching optimal or near-optimal policies. The baseline introduced is a value
neural network that estimates the value of the input state. The algorithm was applied
for a discrete action space with nine actions and discrete state space configuration (5); see
NN architecture 1 in Figure 4a and parameters in Table 6. For a continuous action and
state space configuration (6) on resonance (∆ = 0), see NN architecture 2 in Figure 4b
and parameters in Table 7. For a continuous action and state space configuration (7) with
additional detuning control, the NN architecture in Figure 4b was modified by adding
∆t at the input, while the corresponding parameters are given in Table 8. The results are
displayed in Figures 13, 14 and 15, respectively. In all the investigated setups, the target
fidelity threshold Fth = 0.9999 was obtained. In the absence of detuning control, the
optimal π-pulse is recovered, see Figures 13a and 14a, while in the presence of detuning
control, the π pulse is approximately obtained, see Figure 15a, with constant Ω(t) and
∆(t) ≈ 0. Among the resonant control configurations, the one with continuous action and
state spaces exhibits less variance during training, as shown by comparing Figures 13c
and 14c. The addition of detuning control increases the variance during training, see
Figure 15c. Note that the extra control variable does not accelerate the population inversion,
at least at a noticeable level. The real advantage of using detuning control comes in more
complicated situations where there is uncertainty in the qubit frequency ω0 or the goal is
to manipulate a collection of qubits with different frequencies, problems that are essential

Information 2024, 15, 272 20 of 29

for quantum sensing applications. We plan to investigate the power of RL to tackle such
complex problems in future work.

Table 6. REINFORCE with baseline parameters—discrete action and state space.

Parameters F = 0.9999

Max time steps (N) 35

Ωmax 1

End time (T) 5
Ωmax

Time step T
N

discount factor γ 0.95

Detuning ∆ 0

Rabi frequency Ω {−1,− 3
4 ,− 1

2 ,− 1
4 , 0, 1

4 , 1
2 , 3

4 , 1}

Actions δΩ {−2,−1,− 1
2 ,− 1

4 , 0, 1
4 , 1

2 , 1, 2}

Target fidelity 0.9999

Training Iterations 2000

Actor Hidden layers (2) (100, 75)

Value Hidden layers (2) (100, 75)

Learning rate 0.001

Optimizer Adam

Training time ≈20 mins

Figure 13. Results for REINFORCE algorithm with 9 actions and discrete state space after 2000 training
iterations: (a) optimal normalized Rabi frequency Ω(t) as the external control, (b) fidelity (population
of excited state |2⟩) as the metric of the population transfer, (c) expected return (cumulative rewards)
from the training episodes averaged from 10 episode samples, (d) populations of states |1⟩ and |2⟩.
Agent succeeds in giving the optimal solution (π-pulse).

Information 2024, 15, 272 21 of 29

Table 7. REINFORCE with baseline parameters—continuous action and state spaces—Resonant case
(∆ = 0).

Parameters F = 0.9999

Max time steps (N) 35

Ωmax 1

End time (T) 5
Ωmax

Time step T
N

discount factor γ 0.95

Detuning ∆ 0

Rabi frequency Ω ∈ [−Ωmax, Ωmax]

Actions δΩ ∈ R

Target fidelity 0.9999

Training Iterations 2000

Actor Hidden layers (2) (100, 75)

Value Hidden layers (2) (100, 75)

Learning rate 0.001

Optimizer Adam

Training time ≈30 mins

Figure 14. Results for REINFORCE algorithm with continuous action and state spaces for the
resonant case (∆ = 0) after 2000 training iterations: (a) optimal normalized Rabi frequency Ω(t) as the
external control, (b) fidelity (population of excited state |2⟩) as the metric of the population transfer,
(c) expected return (cumulative rewards) from the training episodes averaged from 10 episode
samples, (d) populations of states |1⟩ and |2⟩. Optimal π-pulse shape is successfully obtained by the
training process.

Information 2024, 15, 272 22 of 29

Table 8. REINFORCE with baseline parameters—continuous action and state spaces—Additional
detuning control.

Parameters F = 0.9999

Max time steps (N) 30

Ωmax 1

∆max 0.5

End time (T) 3.5
Ωmax

Time step T
N

discount factor γ 0.99

Detuning ∆ ∈ [−∆max, ∆max]

Rabi frequency Ω ∈ [−Ωmax, Ωmax]

Actions δΩ ∈ R
Target fidelity 0.9999

Training Iterations 3000

Actor Hidden layers (2) (100, 75)

Value Hidden layers (2) (75, 50)

Learning rate 0.001

Optimizer Adam

Training time ≈30 mins

Figure 15. Results for REINFORCE algorithm with continuous action and state spaces with additional
detuning control (∆ ̸= 0) after 3000 training iterations: (a) optimal normalized Rabi frequency Ω(t)
(blue) and detuning ∆(t) (orange) as two external controls of the system, (b) fidelity (population
of excited state |2⟩), (c) expected return (cumulative rewards) from the training episodes averaged
from 10 episode samples, (d) populations of states |1⟩ and |2⟩. Agent successfully produces optimal
solution that approximates the resonant π pulse.

Information 2024, 15, 272 23 of 29

5.3. Actor-Critic Methods

Actor-critic methods try to exploit the advantages of both the value-based and policy
gradient methods. The best results are given by the PPO algorithm, which is mostly used
with continuous action and state spaces. The algorithm finds successful (near-) optimal
policies for both the resonant configuration (Table 9, Figure 16) and the case with additional
detuning control (Table 10, Figure 17), obtaining fidelities higher than 0.9999. Note that
in the former case, the π pulse is recovered, while in the latter case, there is a bang-
bang modulation of the detuning between its minimum and maximum allowed values
(orange line in Figure 17a), which does not noticeably speed up the population inversion.
The addition of detuning control increases the variance during training, as observed by
comparing Figures 16c and 17c.

5.4. Trigonometric Series Optimization Algorithm (TSOA)

The TSOA algorithm can produce a policy that gives the coefficients of the trigono-
metric series in Equations (29) and (30), so the resultant smooth controls attain the target
threshold fidelity of Fth = 0.9999. The parameters of the algorithm are given in Table 11.
With a few harmonics and quite small neural networks, the optimization process is able
to produce smooth pulses that are (near-)optimal and solve the problem by achieving the
desired fidelity, as displayed in Figure 18. The optimal coefficients for the harmonics in
Equations (29) and (30) obtained from the optimization are shown in Table 12. Note that
the duration of pulses in the TSOA algorithm is fixed a priori, which means that the system
is not able to optimize the procedure with respect to timing, but, given a time interval, it is
able to obtain optimal smooth pulses attaining the target fidelity, within the algorithm and
time discretization limitations.

Table 9. PPO parameters—continuous action and state space—resonant case (∆ = 0).

Parameters F = 0.9999

Max time steps (N) 35

Ωmax 1

End time (T) 5
Ωmax

Time step T
N

Detuning ∆ 0

Rabi frequency Ω ∈ [−Ωmax, Ωmax]

Actions δΩ ∈ R
Target fidelity 0.9999

Training Iterations 1500

Actor Hidden layers (2) (100, 75)

Value Hidden layers (2) (100, 50)

Learning rate 0.001

Optimizer Adam

Training time ≈45–60 mins

Information 2024, 15, 272 24 of 29

Figure 16. Results for PPO algorithm with continuous action and state space for the resonant
case (∆ = 0) after 1500 training iterations: (a) optimal normalized Rabi frequency Ω(t) as the
external control, (b) fidelity (population of excited state |2⟩) as the metric of the state transfer,
(c) expected return (cumulative rewards) from the training episodes averaged from 10 episode
samples, (d) populations of states |1⟩ and |2⟩. Agent successfully solves the problem in the optimal
way (π-pulse).

Table 10. PPO parameters—continuous action and state space—additional detuning control.

Parameters F = 0.9999

Max time steps (N) 30

Ωmax 1

∆max 0.5

End time (T) 3.5
Ωmax

Time step T
N

Detuning ∆ ∈ [−∆max, ∆max]

Rabi frequency Ω ∈ [−Ωmax, Ωmax]

Actions δΩ ∈ R
Target fidelity 0.9999

Training Iterations 2000

Actor Hidden layers (2) (100, 75)

Value Hidden layers (2) (100, 50)

Learning rate 0.001

Optimizer Adam

Training time ≈45–60 mins

Information 2024, 15, 272 25 of 29

Figure 17. Results for PPO algorithm with continuous action and state space with additional detuning
control (∆ ̸= 0) after 2000 training iterations: (a) optimal normalized Rabi frequency Ω(t) and
detuning ∆(t) as the two external control functions, (b) fidelity (population of excited state |2⟩) as
the metric of the state transfer, (c) expected return (cumulative rewards) from the training episodes
averaged from 10 episode samples, (d) populations of states |1⟩ and |2⟩. Agent utilizes both controls
to produce an optimal solution.

Figure 18. Results for TSOA—PPO algorithm achieving fidelity of 0.99999: (a) optimal Rabi frequency
Ω(t) and detuning ∆(t), (b) fidelity (population of excited state |2⟩), (c) populations of states |1⟩
and |2⟩. Agent uses a finite trigonometric series function consisting of 3 harmonics to produce a
very-high-fidelity solution.

Information 2024, 15, 272 26 of 29

Table 11. Parameters for TSOA—PPO algorithm.

Parameters F = 0.9999

Simulation Time steps 300

Ω0 1

End time (Ω−1
0) 3.15

MDP Time step 1

Actions ∈ R2k

Target fidelity 0.9999

Actor Hidden layers (2) (100, 100, 50)

Value Hidden layers (2) (75, 75, 50)

Learning rate 0.002

Optimizer Adam

Training time ≈4 mins

Table 12. Optimal trigonometric series parameters for fidelity > 0.9999.

i Ω : ai ∆ : bi

0 0.87517912 0.07352462

1 0.20610334 −0.13624175

2 0.16243254 −0.09679438

3 0.02755164 0.02831635

4 −0.03201709 0.22532735

5 −0.18376116 −0.10505782

6 0.11923808 0.13957184

6. Conclusions and Future Work

RL methods can provide optimal or suboptimal pulses that can be used to control
qubit systems. There are different ways to construct the MDP process, with both finite and
infinite dimensional action and state spaces. Each formulation provides a different type of
freedom and enables the use of even more RL methods from the finite to the infinite cases.
The first and most important step is to clearly define the problem of quantum state transfer
mathematically as an MDP. This is the key that unlocks the use of RL methods to solve
the problem.

Tabular methods can be used with limited applicability, since they require a lot of
training episodes to find optimal pulses that achieve high fidelity. They are not able
to achieve the target fidelity (0.9999), as required by quantum computing applications.
So, deep RL methods were utilized to solve this problem. They are able to produce
optimal or suboptimal pulses more easily than the tabular methods. Their expressivity and
generalization properties offer freedom in the state and action spaces definition, allowing
even infinite continuous spaces. Infinite state spaces are more intuitive and closer to the
state space of the quantum system, while infinite action spaces give more freedom in the
choice of controls. Deep RL methods are able to produce policies and pulses within the
current requirements and to achieve fidelities up to 0.9999 or higher. As expected, fidelities
up or larger than 0.9999 are more difficult to achieve since more time steps are required,
leading to larger state spaces. This increase requires more training and larger models to be
able to approximate the optimal policies. In most cases, RL methods successfully generate
pulses that achieve the desired fidelity.

Information 2024, 15, 272 27 of 29

Temporal difference methods can handle continuous state spaces but not continuous
action spaces. If continuity in action space is an important requirement, one should employ
policy gradient or actor-critic methods since they can easily work with continuous state and
action spaces. This could be important in problems where control functions with limited
discrete values are not able to solve the problem with high accuracy. More possible values
in action spaces automatically implies bigger search spaces. Consequently, the training
process would require more iterations to converge to the optimal policy.

The problem was also formulated as another MDP, using truncated trigonometric
series to express the controls. This different setup was solved by approximating the
optimization process via the deep RL methods to obtain the optimal coefficients in the
series. We called the created algorithm the trigonometric series optimization algorithm
(TSOA), which is a step forward from the current state in the literature. The algorithm
is able to produce smooth controls achieving fidelity higher than 0.9999, which might be
easier to implement experimentally.

Other methodologies may be also exploited for the efficient control of a qubit and
quantum systems in general. For example, Ref. [36] proposed a novel architecture of
heterogeneous graph neural networks to analyze complex networks, while in Ref. [37],
output feedback was combined with machine learning approaches for the optimal control
of continuous-time systems. These works addressed complex system identification and
control in ways that might inspire robust approaches in the quantum context.

RL methods offer more flexibility than other methods, like optimal control. They can
be easily adapted, and it seems straightforward to extend them to quantum systems with
three or more energy levels, which are encountered in modern quantum technologies. The
main implication of the results is that reinforcement learning methods appear to have the
potential to tackle important problems in quantum control. Because of their flexibility, these
methods can be easily adjusted for the efficient control of more complex systems, such as
systems with more energy levels than a qubit (for example real molecules) as well as the
simultaneous control of a collection of qubits with different frequencies. This flexibility
allows one to add more controls into the model and, by adjusting the parameters of the
model, the same techniques can easily scale and tackle more complex problems. Their
formulation is not necessarily physics-informed, which means that they can discover on
their own feasible solutions for the dynamics of the system, within reasonable restrictions
following the physical laws. Another major challenge is to utilize machine learning models
to tackle the noise in quantum systems and obtain robust solutions. We plan to address
these interesting problems in future works. Note that as systems become more complex,
the hyperparameters of the RL methods should be adapted, and the deep neural networks
need to be bigger, so they can approximate more complex models. Any problem that can
be formulated as an MDP can be solved with the use of RL algorithms. More systematic
analysis is needed when RL methods are applied to other problems, such as quantum error
correction [38], quantum gates creation [39], and quantum circuit optimization.

Author Contributions: Conceptualization, E.P.; methodology, D.K.; software, D.K.; validation, D.K.,
D.S. and E.P.; formal analysis, D.K. and D.S.; investigation, D.K.; data curation, D.K.; writing—original
draft preparation, D.K., D.S. and E.P.; writing—review and editing, D.K., D.S. and E.P.; visualization,
D.K. and D.S.; supervision, E.P. and D.S.; project administration, D.S. All authors have read and
agreed to the published version of the manuscript.

Funding: The work of D.S. was funded by an Empirikion Foundation research grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on reasonable request
from the corresponding author.

Acknowledgments: We acknowledge Ioannis Thanopulos for useful discussions during the develop-
ment of this work.

Information 2024, 15, 272 28 of 29

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

QC Quantum Control
MDP Markov Decision Process
ML Machine Learning
RL Reingorcement Learning
NN Neural Network
ANN Artificial Neural Network
MC Monte Carlo
TD Temporal Difference
SARSA State Action Reward State Action
DQN Deep Q-Network
TSOA Trigonometric Series Optimization Algorithm
PPO Proximal Policy Optimization
TF Tensor Flow

References
1. Shore, B.W. Manipulating Quantum Structures Using Laser Pulses; Cambridge University Press: Cambridge, UK, 2011.
2. Stefanatos, D.; Paspalakis, E. A shortcut tour of quantum control methods for modern quantum technologies. Europhys. Lett.

2021, 132, 60001. [CrossRef]
3. Vitanov, N.V.; Rangelov, A.A.; Shore, B.W.; Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond.

Rev. Mod. Phys. 2017, 89, 015006. [CrossRef]
4. Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts,

methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [CrossRef]
5. Boscain, U.; Sigalotti, M.; Sugny, D. Introduction to the Pontryagin maximum principle for quantum optimal control. PRX

Quantum 2021, 2, 030203. [CrossRef]
6. Goerz, M.; Basilewitsch, D.; Gago-Encinas, F.; Krauss, M.G.; Horn, K.P.; Reich, D.M.; Koch, C. Krotov: A Python implementation

of Krotov’s method for quantum optimal control. SciPost Phys. 2019, 7, 080. [CrossRef]
7. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
8. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
9. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
10. Krenn, M.; Landgraf, J.; Foesel, T.; Marquardt, F. Artificial intelligence and machine learning for quantum technologies. Phys. Rev.

A 2023, 107, 010101. [CrossRef]
11. Dawid, A.; Arnold, J.; Requena, B.; Gresch, A.; Płodzień, M.; Donatella, K.; Nicoli, K.A.; Stornati, P.; Koch, R.; Büttner, M.; et al.

Modern applications of machine learning in quantum sciences. arXiv 2022, arXiv:2204.04198.
12. Couturier, R.; Dionis, E.; Guérin, S.; Guyeux, C.; Sugny, D. Characterization of a driven two-level quantum system by Supervised

Learning. Entropy 2023, 25, 446. [CrossRef]
13. Bonizzoni, C.; Tincani, M.; Santanni, F.; Affronte, M. Machine-Learning-Assisted Manipulation and Readout of Molecular Spin

Qubits. Phys. Rev. Appl. 2022, 18, 064074. [CrossRef]
14. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
15. Bukov, M.; Day, A.G.; Sels, D.; Weinberg, P.; Polkovnikov, A.; Mehta, P. Reinforcement learning in different phases of quantum

control. Phys. Rev. X 2018, 8, 031086. [CrossRef]
16. Giannelli, L.; Sgroi, P.; Brown, J.; Paraoanu, G.S.; Paternostro, M.; Paladino, E.; Falci, G. A tutorial on optimal control and

reinforcement learning methods for quantum technologies. Phys. Lett. A 2022, 434, 128054. [CrossRef]
17. Sivak, V.; Eickbusch, A.; Liu, H.; Royer, B.; Tsioutsios, I.; Devoret, M. Model-free quantum control with reinforcement learning.

Phys. Rev. X 2022, 12, 011059. [CrossRef]
18. Niu, M.Y.; Boixo, S.; Smelyanskiy, V.N.; Neven, H. Universal quantum control through deep reinforcement learning. Npj Quantum

Inf. 2019, 5, 33. [CrossRef]
19. Ding, Y.; Ban, Y.; Martín-Guerrero, J.D.; Solano, E.; Casanova, J.; Chen, X. Breaking adiabatic quantum control with deep learning.

Phys. Rev. A 2021, 103, L040401. [CrossRef]
20. Porotti, R.; Tamascelli, D.; Restelli, M.; Prati, E. Coherent transport of quantum states by deep reinforcement learning. Commun.

Phys. 2019, 2, 61. [CrossRef]
21. Paparelle, I.; Moro, L.; Prati, E. Digitally stimulated Raman passage by deep reinforcement learning. Phys. Lett. A 2020,

384, 126266. [CrossRef]

http://doi.org/10.1209/0295-5075/132/60001
http://dx.doi.org/10.1103/RevModPhys.89.015006
http://dx.doi.org/10.1103/RevModPhys.91.045001
http://dx.doi.org/10.1103/PRXQuantum.2.030203
http://dx.doi.org/10.21468/SciPostPhys.7.6.080
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1103/PhysRevA.107.010101
http://dx.doi.org/10.3390/e25030446
http://dx.doi.org/10.1103/PhysRevApplied.18.064074
http://dx.doi.org/10.1103/PhysRevX.8.031086
http://dx.doi.org/10.1016/j.physleta.2022.128054
http://dx.doi.org/10.1103/PhysRevX.12.011059
http://dx.doi.org/10.1038/s41534-019-0141-3
http://dx.doi.org/10.1103/PhysRevA.103.L040401
http://dx.doi.org/10.1038/s42005-019-0169-x
http://dx.doi.org/10.1016/j.physleta.2020.126266

Information 2024, 15, 272 29 of 29

22. Brown, J.; Sgroi, P.; Giannelli, L.; Paraoanu, G.S.; Paladino, E.; Falci, G.; Paternostro, M.; Ferraro, A. Reinforcement learning-
enhanced protocols for coherent population-transfer in three-level quantum systems. New J. Phys. 2021, 23, 093035. [CrossRef]

23. An, Z.; Song, H.J.; He, Q.K.; Zhou, D. Quantum optimal control of multilevel dissipative quantum systems with reinforcement
learning. Phys. Rev. A 2021, 103, 012404. [CrossRef]

24. Liu, W.; Wang, B.; Fan, J.; Ge, Y.; Zidan, M. A quantum system control method based on enhanced reinforcement learning. Soft
Comput. 2022, 26, 6567–6575. [CrossRef]

25. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
26. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
27. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992,

8, 229–256. [CrossRef]
28. Konda, V.; Tsitsiklis, J. Actor-critic algorithms. Adv. Neural Inf. Process. Syst. 1999, 12, 1008–1014
29. Grondman, I.; Busoniu, L.; Lopes, G.A.; Babuska, R. A survey of actor-critic reinforcement learning: Standard and natural policy

gradients. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2012, 42, 1291–1307. [CrossRef]
30. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.
31. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International

Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1889–1897.
32. Stefanatos, D.; Paspalakis, E. Efficient generation of the triplet Bell state between coupled spins using transitionless quantum

driving and optimal control. Phys. Rev. A 2019, 99, 022327. [CrossRef]
33. Martinis, J.M.; Geller, M.R. Fast adiabatic qubit gates using only σ z control. Phys. Rev. A 2014, 90, 022307. [CrossRef]
34. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on 1
April 2024).

35. Johansson, J.; Nation, P.; Nori, F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys.
Commun. 2013, 184, 1234–1240. [CrossRef]

36. Wang, Y.; Liu, Z.; Xu, J.; Yan, W. Heterogeneous network representation learning approach for ethereum identity identification.
IEEE Trans. Comput. Soc. Syst. 2022, 10, 890–899. [CrossRef]

37. Zhao, J.; Lv, Y.; Zeng, Q.; Wan, L. Online Policy Learning Based Output-Feedback Optimal Control of Continuous-Time Systems.
IEEE Trans. Circuits Syst. II Express Briefs 2022, 71, 652–656. [CrossRef]

38. Fösel, T.; Tighineanu, P.; Weiss, T.; Marquardt, F. Reinforcement learning with neural networks for quantum feedback. Phys. Rev.
X 2018, 8, 031084. [CrossRef]

39. An, Z.; Zhou, D. Deep reinforcement learning for quantum gate control. Europhys. Lett. 2019, 126, 60002. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1367-2630/ac2393
http://dx.doi.org/10.1103/PhysRevA.103.012404
http://dx.doi.org/10.1007/s00500-022-07179-5
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1109/TSMCC.2012.2218595
http://dx.doi.org/10.1103/PhysRevA.99.022327
http://dx.doi.org/10.1103/PhysRevA.90.022307
https://www.tensorflow.org/
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1109/TCSS.2022.3164719
http://dx.doi.org/10.1109/TCSII.2022.3211832
http://dx.doi.org/10.1103/PhysRevX.8.031084
http://dx.doi.org/10.1209/0295-5075/126/60002

	Introduction
	Two-Level System and Markov Decision Process (MDP)
	Two-Level System
	Markov Decision Process (MDP)
	Qubit System and State Transfer as an MDP
	Finite State Space
	Continuous State Space
	Action Space
	Reward Function

	Reinforcement Learning (RL) Methods
	Temporal Difference (TD) Methods
	Q-Learning
	Expected State–Action–Reward–State–Action (SARSA)
	Deep Q-Network

	Policy Gradient Methods
	Policy Approximation
	Discrete Action Space Parameterization
	Continuous Action Space Parameterization
	REINFORCE Algorithm

	Actor-Critic Methods

	Trigonometric Series Optimization Algorithm (TSOA)
	Results and Discussion
	Temporal Difference Methods
	Tabular Methods (Q-Learning and Expected SARSA)
	DQN Algorithm

	Policy Gradient Methods
	Actor-Critic Methods
	Trigonometric Series Optimization Algorithm (TSOA)

	Conclusions and Future Work
	References

